Assignment 1: Expressions and Functions (0.1) Please provide a handwritten response.

Name

\qquad

1a. Mathematica can be used just like an ordinary calculator; addition is denoted by + , subtraction by - , multiplication by *, and division by / . For example, $\frac{3.017(56+45.26)}{-97.3}$ would be represented in Mathematica by

$$
3.017 *(56+45.26) /(-97.3)
$$

Execute this command and record the result below; does your calculator confirm your result?

1b. Exponents are denoted in Mathematica using the ^ symbol, located above the " 6 " on your keyboard. Execute the command $4^{\wedge} 2$ and record the result below; repeat with $27^{\wedge}(1 / 3)$; are the results correct? Explain.

1c. Find $\sqrt{25}$ by executing Sqrt [25] , and record the result below. Is the answer correct?

1d. In general, you can ask Mathematica about commands or variables using ? ; for example, execute ?Sqrt and record the result below.

1e. What happens when you execute Sqrt [26] to find $\sqrt{26}$? The reason Mathematica does not give you a decimal answer is that $\sqrt{26}$ is an irrational number, and therefore cannot be exactly expressed as a decimal. However, we can apply the \mathbf{N} command to get an approximate decimal value: Execute the command N [Sqrt [26]] (careful with those brackets!) and record the result below. Finally, execute Sqrt [26.] (note the decimal point); does this give the "exact" value or a decimal? Why?

2a. You can also apply these operations to a variable, say x, to create algebraic expressions in Mathematica; for example, the expression $\frac{x^{2}+7 x-11}{x^{2}-4}$ would be represented by

$$
\left(x^{\wedge} 2+7 x-11\right) /\left(x^{\wedge} 2-4\right)
$$

(Note that a multiplication symbol * is not necessary in this case between the $\mathbf{7}$ and the \mathbf{x}; however, it's always safe to include one if in doubt.) Execute this command and record the output below. Did Mathematica rearrange the parts of the expression in any way?

2b. Often we want to substitute a particular value of x, say $x=-2.3$, into an expression like the one above; this is done in Mathematica by applying a "replacement rule". In this particular example we would type

```
( (x^2 + 7x - 11)/( (x^2 - 4) /. x->-2. 3
```

Here, the "replacement operator" /. applies the "rule" $\mathbf{x}->-2.3$ to our expression, which causes Mathematica to make the substitution we want. (The arrow -> is made of two characters, a hyphen - followed by a "greater than" sign > found just to the left of the question mark on your keyboard.) Execute this command and record the result below; does your calculator give the same result?

3a. Just as in precalculus, we can also use our expression $\frac{x^{2}+7 x-11}{x^{2}-4}$ to define a rational function $f(x)$ in Mathematica. Execute the command

$$
f\left[x_{-}\right]=\left(x^{\wedge} 2+7 x-11\right) /\left(x^{\wedge} 2-4\right)
$$

and record the result below. (Make sure you type \mathbf{x}_{-}, not just \mathbf{x}, on the left side! The underscore character " - " is found just to the left of the "+" sign, above the hyphen, on your keyboard, and must be included for Mathematica to define a function properly.)

3b. Execute the command $\mathbf{f}[-2.3]$ to calculate $f(-2.3)$; your result should agree with that of Question 2b. Does it? (If you have a problem, then your function \mathbf{f} may not have been defined properly in Question 3a.)

3c. Execute the command $f[2]$ to try to calculate $f(2)$ and describe the result below. Explain why any attempt to calculate $f(2)$ in this case would cause an error message.

3d. Make Mathematica "forget" about our definition of f by executing the command Clear [f] . (You will not see any output from this command.) Then execute the command $\mathrm{f}\left[\mathbf{x}_{-}\right]=$Sqrt $[\mathbf{x}+1]$ and use Mathematica to do Exercise 49, Section 0.1 of your text by executing (one at a time!) the commands $\mathrm{f}[0], \mathrm{f}[3], \mathrm{f}[-1]$, and $\mathrm{f}[1 / 2]$. Neatly record the results below.

