\qquad Please provide a handwritten response.

1a. The Integrate command is used to find both indefinite and definite integrals. Execute $\mathrm{f}[\mathrm{x}$] $]=4 \mathrm{x}-2$ Sqrt[x] followed by

```
Integrate[f[x], x]
```

to find the indefinite integral $\int(4 x-2 \sqrt{x}) d x$, and record the result below. Is the answer correct? Note Mathematica omits the arbitrary constant " $+c$ ".

1b. Next execute Clear [f] followed by $f[\mathbf{x}]=2 \mathbf{x}^{\wedge} 3 /\left(\mathbf{x}^{\wedge} 4+1\right)$ and

$$
F\left[x_{-}\right]=\text {Integrate }[f[x], x]
$$

to calculate $F(x)=\int \frac{2 x^{3}}{x^{4}+1} d x$; record the result below.

1c. By definition of antiderivative, what should $F^{\prime}(x)$ be? Execute F^{\prime} [\mathbf{x}] and record the result below; is it correct?

2a. Exercise 9, Section 4.3 calls for an approximation of the area under the graph of $f(x)=\cos x$ on the interval $\left[0, \frac{\pi}{2}\right]$. Execute
Clear[f] followed by

$$
f\left[x_{-}\right]=\operatorname{Cos}[x]
$$

and then use the Plot command to graph f over $\left[0, \frac{\pi}{2}\right]$. (Remember that π is denoted by

Pi in Mathematica.) Sketch the result on the axes at right.
2b. Exercise 9 calls for the use of $n=50$ rectangles in our approximation; moreover, in this case, our endpoints a and b are given by $a=0$ and $b=\frac{\pi}{2}$. Execute in order the commands $\mathbf{a}=$ $0.0, \mathrm{~b}=\mathrm{Pi} / 2, \mathrm{n}=50$ and deltax $=(\mathrm{b}-\mathrm{a}) / \mathrm{n}$. (The decimal point in the value for \mathbf{a} is a handy way to make sure that the final answer will be reported as a decimal, not a cumbersome "exact" value.) What value for Δx did Mathematica give? Is this correct?

2c. It will be convenient to enter $x_{i}=a+i \Delta x$ as a separate Mathematica function. Execute

$$
x\left[i _\right]=a+i * d e l t a x
$$

and record the result below.

2d. The Riemann sum $\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$ for right-hand evaluation can be found using the Sum command; execute

$$
\operatorname{Sum}[f[x[i]] * \operatorname{del} \operatorname{tax},\{i, 1, n\}]
$$

and record the result below. Is this a plausible approximation to the area?

2e. The Riemann sum for left-hand evaluation is $\sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x$. Execute

$$
\operatorname{Sum}[f[x[i-1]] * \operatorname{deltax},\{i, 1, n\}]
$$

and record the result below. Is your answer greater or less than your result in part d? Why should this be so?

2f. Likewise, the Riemann sum for midpoint evaluation is $\sum_{i=1}^{n} f\left[\frac{1}{2}\left(x_{i-1}+x_{i}\right)\right] \Delta x$. Execute

$$
\operatorname{Sum}[f[(1 / 2)(x[i-1]+x[i])] * \operatorname{del} t a x,\{i, 1, n\}]
$$

and record the result below.

2g. Execute Clear [a, b, n, deltax, x] and re-execute all of the commands in parts $\mathbf{b}-\mathbf{f}$ in order with $\mathbf{n}=50$ replaced by $\mathbf{n}=100$. Do the three approximations in parts d-f become more spread out or closer together? Is this what you would expect?
3. The exact value of the area we approximated in Question $\mathbf{2}$ is given by $\int_{0}^{\pi / 2} \cos x d x$. The Integrate command can also find such definite integrals: Execute Clear [x] (to make Mathematica forget about x_{i} !) followed by

```
Integrate[f[x], {x, 0, Pi/2}]
```

and record the result below. Based on the evidence we have already gathered, is this answer plausible?

