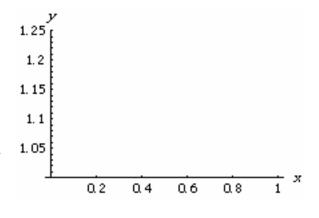
Assignment 13: Numerical Integration (4.7) Please provide a handwritten response.

Name

1. Apply the estimation rules of this section to $\int_0^1 \sqrt[3]{x^2 + 1} dx$. Execute

$$f[x] = (x^2 + 1)^{(1/3)}$$

to define $f(x) = \sqrt[3]{x^2 + 1}$ and then use the **Plot** command to graph f over $0 \le x \le 1$; sketch the result on the axes at right. Based on this graph, what would be your estimate of $\int_0^1 \sqrt[3]{x^2 + 1} dx$? (Be careful about where the origin is!)



2a. To apply the Midpoint Rule to this integral we must first define $x_i = a + i\Delta x$ just as in the preceding assignment. Execute in order the commands $\mathbf{a} = 0.0$, $\mathbf{b} = 1$, $\mathbf{n} = 10$, $\mathbf{deltax} = (\mathbf{b} - \mathbf{a})/\mathbf{n}$ and $\mathbf{x}[\mathbf{i}] = \mathbf{a} + \mathbf{i*deltax}$; record below the result for x_i .

2b. The midpoint of each interval $\left[x_{i-1}, x_i\right]$ is given by $c_i = \frac{x_{i-1} + x_i}{2}$; execute

$$c[i] = (x[i-1] + x[i])/2$$

and then obtain the Midpoint approximation $\sum_{i=1}^{n} f(c_i) \Delta x$ by executing

$$mr = Sum[f[c[i]]*deltax, {i, 1, n}]$$

Is this result plausible? Enter it in the table on the next page.

3. To calculate the Trapezoid Rule approximation $\sum_{i=1}^{n} \frac{f(x_{i-1}) + f(x_i)}{2} \Delta x$, execute

$$tr = Sum[((f[x[i-1]] + f[x[i]])/2)*deltax, {i, 1, n}]$$

and enter the result in the table.

4. According to the formula in Exercise 52, we can execute tr/3 + 2mr/3 to calculate the Simpson's Rule approximation. Enter the result in the table.

n	Midpoint	Trapezoid	Simpson's
10			
20			
50			

- 5. Execute Clear[a, b, n, deltax, x, mr, tr], replace n = 10 with n = 20 and re-execute all of the commands in Questions 2a-4 in order. Enter the results in the table. Which of the three approximations did not change when n was increased? Why?
- **6.** Repeat Question **5** but with n = 50 instead, and enter the results in the table. Are the three approximations drawing closer together as n increases?
- **7.** As Remark 7.3 suggests, *Mathematica* has a sophisticated command called **NIntegrate** that accurately calculates difficult definite integrals like the one we are studying. Execute the command

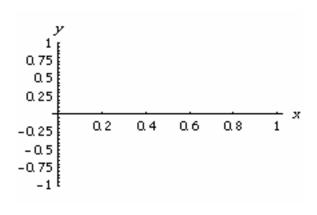
NIntegrate[f[x],
$$\{x, 0, 1\}$$
]

and record the result below. Based on this, which of the three approximation methods applied above was most accurate?

8a. You can almost always take the results of **NIntegrate** to be completely accurate. However, there are some unusual situations that cause trouble even for **NIntegrate**. Execute

$$g[x_] = Sin[1/x]$$

to define $g(x) = \sin \frac{1}{x}$ and then use the **Plot** command to draw the graph of g over [0,1], and sketch the result (as best you can!) on the axes at right.



8b. Execute **NIntegrate** [g[x], {x, .001, 1}] to calculate $\int_{0.001}^{1} g(x) dx$ and describe what happens below. Do you think the numerical result given is trustworthy?