Assignment 13: Numerical Integration (4.7) Please provide a handwritten response.

1. Apply the estimation rules of this section
to $\int_{0}^{1} \sqrt[3]{x^{2}+1} d x$. Execute

$$
f\left[x_{-}\right]=\left(x^{\wedge} 2+1\right)^{\wedge}(1 / 3)
$$

to define $f(x)=\sqrt[3]{x^{2}+1}$ and then use the Plot command to graph f over $0 \leq x \leq 1$; sketch the result on the axes at right. Based on this graph, what would be your estimate of $\int_{0}^{1} \sqrt[3]{x^{2}+1} d x$? (Be careful about where the
 origin is!)

2a. To apply the Midpoint Rule to this integral we must first define $x_{i}=a+i \Delta x$ just as in the preceding assignment. Execute in order the commands $\mathrm{a}=0.0, \mathrm{~b}=1, \mathrm{n}=10$, deltax $=(\mathrm{b}-\mathrm{a}) / \mathrm{n}$ and $\mathbf{x}\left[\mathrm{i} _\right]=\mathrm{a}+\mathrm{i} *$ deltax ; record below the result for x_{i}.
$\mathbf{2 b}$. The midpoint of each interval $\left[x_{i-1}, x_{i}\right]$ is given by $c_{i}=\frac{x_{i-1}+x_{i}}{2}$; execute

$$
c\left[i _\right]=(x[i-1]+x[i]) / 2
$$

and then obtain the Midpoint approximation $\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x$ by executing

```
mr = Sum[f[c[i]]*deltax, {i, 1, n}]
```

Is this result plausible? Enter it in the table on the next page.
3. To calculate the Trapezoid Rule approximation $\sum_{i=1}^{n} \frac{f\left(x_{i-1}\right)+f\left(x_{i}\right)}{2} \Delta x$, execute

$$
\operatorname{tr}=\operatorname{Sum}[((f[x[i-1]]+f[x[i]]) / 2) * \operatorname{del} \operatorname{tax},\{i, 1, n\}]
$$

and enter the result in the table.
4. According to the formula in Exercise 52, we can execute tr/3 $+2 \mathrm{mr} / 3$ to calculate the Simpson's Rule approximation. Enter the result in the table.

n	Midpoint	Trapezoid	Simpson's
10			
20			
50			

5. Execute Clear [a, b, n, deltax, \mathbf{x}, mr, tr], replace $\mathrm{n}=10$ with $\mathrm{n}=20$ and re-execute all of the commands in Questions 2a-4 in order. Enter the results in the table. Which of the three approximations did not change when n was increased? Why?
6. Repeat Question $\mathbf{5}$ but with $\mathrm{n}=50$ instead, and enter the results in the table. Are the three approximations drawing closer together as n increases?
7. As Remark 7.3 suggests, Mathematica has a sophisticated command called NIntegrate that accurately calculates difficult definite integrals like the one we are studying. Execute the command
```
NIntegrate[f[x], {x, 0, 1}]
```

and record the result below. Based on this, which of the three approximation methods applied above was most accurate?

8a. You can almost always take the results of NIntegrate to be completely accurate.
However, there are some unusual situations that cause trouble even for NIntegrate . Execute

$$
g\left[x_{-}\right]=\sin [1 / x]
$$

to define $g(x)=\sin \frac{1}{x}$ and then use the Plot command to draw the graph of g over $[0,1]$,
 and sketch the result (as best you can!) on the axes at right.

8b. Execute NIntegrate [g[x], \{x,.001, 1\}] to calculate $\int_{0.001}^{1} g(x) d x$ and describe what happens below. Do you think the numerical result given is trustworthy?

