1a. The text notes that using identities we can often show that two different-looking results for an integral are both correct. Evaluate $\int \cos ^{3} x \sin ^{2} x d x$ by hand and record the result below.

1b. Evaluate this integral in Mathematica by executing

$$
\text { Integrate }\left[\operatorname{Cos}[x]^{\wedge} 3 * \operatorname{Sin}[x]^{\wedge} 2, x\right]
$$

and record the result below. Does it look the same as your answer in part a?

1c. The TrigReduce command applies identities to change the form of trigonometric expressions; execute

```
TrigReduce[(1/3)Sin[x]^3 - (1/5)Sin[x]^5]
```

to transform your result in part a and record the result below. Was Mathematica's result correct after all?

2a. As Exercise 30, Section 6.5 suggests, multiplication in Mathematica can be denoted using simply a space rather than the multiplication operator * ; to find $\int x \sin x d x$ execute both

```
Integrate[x*Sin[x], x]
```

and

```
Integrate[x Sin[x], x]
```

and record the result below; was there any difference between the two?

2b. Now repeat the last command without the space between $\mathbf{x}$ and $\sin [\mathbf{x}]$, and record the result below. What does this result mean?

3a. The inverse tangent function is denoted in Mathematica by ArcTan ; execute

$$
\text { Integrate }[\operatorname{Exp}[x] * \operatorname{ArcTan}[\operatorname{Exp}[x]], x]
$$

to evaluate the integral $\int e^{x} \tan ^{-1} e^{x} d x$ of Exercise 27, Section 6.5 and record the result below.

3b. The \% symbol (found above the " 5 " on your keyboard) refers in Mathematica to the immediately preceding output, and is useful provided you don't lose track of what the last output was! Execute \% and compare it to your answer in part a.

3c. We can differentiate Mathematica's result in part a using the D command introduced earlier; execute D[\%, x] and record the result below. Was Mathematica's integral correct?

4a. Exercise 32, Section 6.5 investigates Mathematica's ability to evaluate $\int x^{3} e^{5 x} \cos 3 x d x$; execute

```
Integrate [x^3*Exp [5x] *Cos[3x], x]
```

and record below just the denominator of the leading fraction in Mathematica's result.

4b. Now check your result by executing D [\%, x] as in Question 2c; is your answer surprising? Do you think that Mathematica has made a mistake somewhere?

4c. Bearing in mind that \% now refers to the output you just obtained, execute Simplify [\%] and record the result below. What lesson should we learn here?

5a. The Apart command performs partial fraction decompositions. Begin Exercise 34, Section 6.5 by executing

$$
\text { Apart }\left[\left(x^{\wedge} 2+2 x-1\right) /\left(\left((x-1)^{\wedge} 2\right) *\left(x^{\wedge} 2+4\right)\right)\right]
$$

and recording the result below. Check your result by executing Together [\%] ; does everything look correct?

5b. Use the Integrate command to find an antiderivative of the expression in part a, and record the result below.

5c. Now proceed according to Question 4b,c to check Mathematica's result. Does it appear to be correct at first? At last?
6. Go through the three steps in Question 4 for the integral in Exercise 6, Section 6.5. Are you able to confirm that Mathematica's antiderivative is correct? Explain.

