1a. The integrals $\int_{-1}^{1} \frac{1}{X} d x$ and $\int_{-1}^{1} \frac{1}{X^{2}} d x$ are both improper and divergent. Execute Plot $\left[\left\{1 / \mathrm{x}, 1 / \mathrm{x}^{\wedge} 2\right\},\{\mathrm{x},-1,1\}, \operatorname{PlotRange->\{ -100,100\}]}\right.$
to sketch the functions $y=\frac{1}{x}$ and $y=\frac{1}{x^{2}}$ over $-1 \leq x \leq 1$ and sketch the results on the axes at right, labeling the graphs.

and record the result below. Does Mathe-
1b. To try to evaluate $\int_{-1}^{1} \frac{1}{X} d x$, execute
Integrate[1/x, $\{x,-1,1\}]$ matica give a value for this integral?

1c. Likewise evaluate $\int_{-1}^{1} \frac{1}{x^{2}} d x$ by executing Integrate $\left[1 / x^{\wedge} 2,\{\mathbf{x},-1,1\}\right]$, and record the result below.

1d. Does Mathematica confirm that each of these integrals is divergent? Explain carefully below why Mathematica nevertheless gives very different results for them.

2a. Use the Plot command to sketch the graph of $f(x)=\frac{1}{\sqrt{1+\cos x}}$ over $0 \leq x \leq \pi$ on

2b. Execute the command
Integrate[1/Sqrt[1 + Cos[x]], \{x, 0, Pi\}]
and record the result below; does this integral converge?

2c. Repeat part a but with the command

$$
\text { Integrate }\left[1 /(1+\operatorname{Cos}[x])^{\wedge}(.5),\{x, 0, P i\}\right]
$$ and record the result below; does this integral converge?

2d. Repeat part a but with the command

$$
\text { Integrate }\left[1 /(1+\operatorname{Cos}[x])^{\wedge}(1 / 2),\{x, 0, P i\}\right]
$$

and record the result below; so, does this integral converge?

2e. Apparently improper integrals can be difficult even for Mathematica! To decide which result is correct, note that when $\frac{\pi}{2}<x<\pi,-1<\cos x<0$, so that $1<\sqrt{1-\cos x}<\sqrt{2}$, or $\frac{1}{\sqrt{2}}<\frac{1}{\sqrt{1-\cos x}}<1$. For such x, therefore,

$$
\frac{1}{\sqrt{1+\cos x}}>\frac{1}{\sqrt{1+\cos x}} \frac{1}{\sqrt{1-\cos x}}=\frac{1}{\sin x}=\csc x
$$

so that if $\int_{0}^{\pi} \csc x d x$ diverges, then our integral diverges by comparison. Does it? Why? (Note that $\csc x$ is represented in Mathematica by Csc [x] .)

3a. To evaluate the integral $\int_{0}^{\infty} x e^{-2 x} d x$ execute

$$
\text { Integrate }[\mathbf{x * E x p}[-2 \mathrm{x}],\{\mathbf{x}, 0, \text { Infinity }\}]
$$

and record the result below.

3b. In the same way evaluate $\int_{0}^{\infty} x^{2} e^{-2 x} d x$ and explain how these two answers could be the same.

