Assignment 18: Separable Differential Equations (7.2) Name Please provide a handwritten response.

1a. The separable differential equation $y^{\prime}=\frac{x^{2}+\sqrt{x}}{e^{2 y}+y-\sin y}$ is written $\int\left(e^{2 y}+y-\sin y\right) d y=\int\left(x^{2}+\sqrt{x}\right) d x$ with variables separated. To solve the equation in Mathematica we first treat each side separately; execute

$$
G\left[y _\right]=\text {Integrate }[\operatorname{Exp}[2 y]+y-\operatorname{Sin}[y], y]
$$

to calculate $G(y)=\int\left(e^{2 y}+y-\sin y\right) d y$ and record the result below.

Then execute

$$
\mathrm{H}\left[\mathrm{x}_{-}\right]=\text {Integrate }\left[\mathrm{x}^{\wedge} 2+\operatorname{Sqr}[\mathrm{x}], \mathrm{x}\right]
$$

to calculate $H(x)=\int\left(x^{2}+\sqrt{x}\right) d x$ and record the result below.

1b. Execute gensoln $=G[y]==H[x]+c$ to enter the general solution of the differential equation. (Review the comments in Assignment 9, Question 1a regarding the single and double equal signs. Unlike that assignment, however, it is not necessary in this case to write \mathbf{y} [\mathbf{x}] instead of \mathbf{y}, since we are not using Mathematica to find any derivatives.) Record the result below.

1c. We can form an IVP by adding the initial condition $y(1.5)=1$ to our differential equation. To extract the value of c corresponding to this initial condition, first execute

$$
\text { gensoln/. }\{x->1.5, y->1\}
$$

to watch Mathematica substitute $x=1.5$ and $y=1$ into the general solution using the replacement operator / . ; record the result below.

Now execute

$$
\text { const }=\text { Solve [gensoln } / .\{x->1.5, y->1\}, c]
$$

to find our value of c, and record the result below.

To substitute this value of c in the general solution, execute

```
partsoln = gensoln/.const
```

and record the result below.

1d. As you can see, it would be impossible to solve this particular solution for y; so, to graph this solution we will resort to the ImplicitPlot command as in Assignment 9. Execute

Needs["Graphics-ImplicitPlot`"]
We will use ImplicitPlot a bit differently here than we did before; in Assignment 9 we specified only the x-range for the graph, which allowed Mathematica to set the y-range
 automatically. We would like to do the same in this case, but our present example is more complicated than the earlier one was; it will be necessary here to specify the ranges for both x and y. Execute

```
ImplicitPlot[partsoln, {x, 0, 5}, {y, -6, 6}]
```

to graph the solution of our IVP over the viewing window $0 \leq x \leq 5,-6 \leq y \leq 6$. Sketch the result on the axes at right. Use a large dot to mark the point on the curve corresponding to the initial condition.

1e. Did the graph include the entire y-range $-6 \leq y \leq 6$? Why is this? Suppose we try to get a bigger view by changing $\{\mathbf{x}, \mathbf{0}, 5\}$ to $\{\mathbf{x},-1,5\}$ in the preceding command; do things get better or worse? Why?

1f. If there were no initial condition attached to our differential equation, then we could create a family of particular solutions by letting c range, say, from -5 to 5 ; all these solutions could then be graphed on the same axes, showing how the solutions vary with c. Execute

```
solnfamily = Table[gensoln/.c->i, {i, -5, 5}]
```

(you need not record the result!) followed by
ImplicitPlot[solnfamily, $\{\mathbf{x}, \mathbf{0}, 7\},\{y,-10,3\}]$
and sketch the result on the axes at right. Can you get a better view using different viewing windows?

