Assignment 2: Graphing Functions (0.2)

 Please provide a handwritten response.1a. In Mathematica, functions $y=f(x)$ are graphed using the Plot command. For example, execute the command

$$
f\left[x_{-}\right]=x^{\wedge} 2
$$

to define the familiar function $f(x)=x^{2}$ and then graph this function over the domain $-2 \leq x \leq 2$ by executing the command

```
Plot[f[x], {x, -2, 2}]
```

Sketch the result on the axes at right. Also execute ?Plot and record below Mathematica's description of Plot.

1b. Mathematica automatically chose an appropriate y-range for the graph in Question 1. However, we can specify a different y-range by applying an "option" called PlotRange to the Plot command. Execute the command
\qquad
b. Mathematica automatically chose an ap-
propriate y-range for the graph in Question 1.
However, we can specify a different y-range
y applying an "option" called PlotRange
the Plot command. Execute the command

$$
\begin{array}{r}
\text { Plot }[f[x], \quad\{x,-2,2\}, \\
\text { PlotRange- }>\{-3,4\}]
\end{array}
$$

to graph f over the same domain as in part a but with y-range $-3 \leq y \leq 4$, and sketch the result on the axes at right.

1c. The Plot command can also be used to graph two or more functions together. Execute the command

$$
g\left[x_{_}\right]=4-x^{\wedge} 2
$$

to define the function $g(x)=4-x^{2}$, and then graph f and g over the domain $-2 \leq x \leq 2$ on the same axes by executing the command
Plot $[\{f[x], g[x]\},\{x,-2,2\}]$
Sketch the result on the axes at right.

2a. We can also use the Plot command to "zoom" in on details of graphs like the one in Example 2.2 of your text. Execute the commands Clear [f] and

$$
f\left[x_{-}\right]=x^{\wedge} 3+4 x^{\wedge} 2-5 x-1
$$

to define the function $f(x)=x^{3}+4 x^{2}-5 x-1$ in Mathematica, and then execute the command Plot [f[x], \{x, $-4,4\}]$. The result should look roughly like Figure 0.27a.

2b. As the text indicates, the graph seems to have a local minimum between $x=0$ and $x=1$; we can use zooming to locate this minimum as accurately as we wish. Start by executing the command

$$
\operatorname{Plot}[f[x],\{x, 0,1\}]
$$

to get a closer look, and sketch the result on the axes at right.

2c. We can see now that the minimum actually lies between $x=0.4$ and $x=0.6$; zoom in still further by executing the command

Plot[f[x], \{x, 0.4, 0.6\}]
and sketch the result on the axes at right. What can we now say about the location of the minimum?
3. Once again execute the command Clear [f], followed by the command

```
f[x_] = (x - 1)/(x^2 - 5x + 6)
```

to define the function $f(x)=\frac{x-1}{x^{2}-5 x+6}$ studied in Example 2.5. Now use the Plot command with the PlotRange option as you did above to graph f over the domain $1 \leq x \leq 4$ with y-range $-10 \leq y \leq 8$, and sketch the result on the axes at right. Do the cöordinate axes cross at the origin? Why does the graph include two vertical lines?

