\qquad Please provide a handwritten response.

1a. To find the partial sum S_{10} of the infinite series $\sum_{k=1}^{\infty} \frac{1}{k^{0.9}}$ execute

```
Sum[1./k^(0.9), {k, 1, 10}]
``` and record the result in the table. By changing the 10 to 100 , etc. complete the second column of the table.
\begin{tabular}{|c|c|c|}
\hline\(n\) & \(S_{n}=\sum_{k=1}^{n} \frac{1}{k^{0.9}}\) & \(S_{n}=\sum_{k=1}^{n} \frac{5}{k^{1.1}}\) \\
\hline 10 & & \\
\hline 100 & & \\
\hline 1000 & & \\
\hline 10000 & & \\
\hline 100000 & & \\
\hline
\end{tabular}

1b. Likewise modify the command in part a to find the partial sums of the infinite series \(\sum_{k=1}^{\infty} \frac{5}{k^{1.1}}\) and complete the third column. Notice that in each row, the entry in the second column is smaller than that in the third; can this be the case for all \(n\) ? Why?

1c. Add one more row to the bottom of the table corresponding to \(n=10^{8}\) and fill it in; are the results consistent with your answer to part \(\mathbf{b}\) ?

2a. The text explains that the harmonic series \(\sum_{k=1}^{\infty} \frac{1}{k}\) diverges. To get an idea of how quickly or slowly it does so, execute \(s\left[n _\right]=\operatorname{Sum}[1 . / k,\{k, 1, n\}] ;\) followed by
```

psums = Table[{n, s[n]}, {n, 1, 50}];

```
to construct a list called psums of ordered pairs \(\left(n, \sum_{k=1}^{n} \frac{1}{k}\right)\) where the " \(y\)-value" is the \(n{ }^{\text {th }}\) partial sum of the harmonic series. Then execute ListPlot [psums] and roughly sketch the result on the axes at right.

2b. Execute Clear [psums] and repeat the last two commands in part a with 50 replaced by 500 ; would you say that the partial sums
 are approaching \(\infty\) quickly?

3a. To find the Taylor polynomial with \(c=\frac{\pi}{2}\)
and \(n=4\) for \(\cos x\) (Exercise 18, Section 8.7), execute

Series [Cos[x], \{x, Pi/2, 4\}]
and record the result below; what do you think the final term means?

3b. We can remove this final term using
 Normal; execute tp [x_] = Normal [\%] and enter the result below.

3c. Now plot the cosine function and the Taylor polynomial over \(-\pi \leq x \leq 2 \pi\) by executing
\[
\operatorname{Plot}[\{\operatorname{Cos}[x], \operatorname{tp}[x]\},\{x,-P i, 2 P i\}]
\]

Sketch the result on the axes at right, labeling the graphs; on roughly what interval are the two graphs indistinguishable on your computer screen?

3d. Change the 4 in part a to 8 and then execute Clear [tp] followed by the commands in parts a-c once again. For the new Taylor polynomial, sketch its graph with labeling on your graph above, and answer the question in part cagain.

3e. To measure the error in this Taylor approximation, execute
\[
\text { Plot }[\operatorname{Cos}[x]-\operatorname{tp}[x],\{x,-P i, 2 P i\}, \text { PlotRange->All] }
\]
and sketch the result on the axes at right. How large (positive or negative) does the error become, and for what value(s) of \(x\) is the error greatest?

3f. By increasing \(n\) still further while keeping everything else the same, can we reduce the maximum error in part \(\mathbf{e}\) to less than 0.1 ? Experiment to find how large a value of \(n\) is needed.

3g. Try to answer part \(\mathbf{f}\) with \(\cos x\) changed to \(\tan ^{-1} x\) (denoted \(\operatorname{ArcTan}[\mathbf{x}]\)), \(c\) to 0 and the interval to \(-1.5 \leq x \leq 1.5\). Can you find \(n\) large enough? Why?```

