Assignment 21: Fourier Series (8.9)

\qquad Please provide a handwritten response.

1. Execute ?Sign and record the result below. Then execute $\mathrm{f}\left[\mathrm{x}_{-}\right]=-\operatorname{Sign}[\mathrm{x}]$ to define f as in Exercise 5, and use the Plot command to sketch the graph of f over $-\pi \leq x \leq \pi$; sketch the result on the axes at right.

2a. We can find the Fourier coefficients of f in at least two different ways in Mathematica. To apply the Euler-Fourier formulas directly, execute the following commands, noting the use of spaces between \mathbf{k} and \mathbf{x} to indicate multiplication:

```
        a0 = (1/Pi) Integrate[f[x], {x, -Pi, Pi}]
a[k_] = (1/Pi)Integrate[f[x]Cos[k x], {x, -Pi, Pi}]
b[k_] = (1/Pi) Integrate[f[x]Sin[k x], {x, -Pi, Pi}]
```

Record this last result below, and explain why the first two results came out as they did.

2b. Now construct the partial sum F5 of the Fourier series of f by executing

```
F5[x_] = a0/2 + Sum[a[k] Cos[k x] + b[k] Sin[k x], {k, 1, 5}]
```

Record the result below. Also graph \mathbf{f} and $\mathbf{F} 5$ together over $-\pi \leq x \leq \pi$ and sketch the result on your graph above.

2c. To measure how well this partial sum approximates f execute

```
Plot[f[x] - F5[x], {x, -Pi,
    Pi}, PlotRange->All]
``` and sketch the result on the axes at right. Roughly, what is the largest value, positive or negative, of the error in this approximation?
(The PlotRange->All option is needed here to get the whole picture; what happens if you omit it?)

2d. Repeat parts \(\mathbf{b}\) and \(\mathbf{c}\) with 5 replaced by 50 and explain below why we might naturally expect our answer about the error in part \(\mathbf{c}\) to become smaller. Does it?

2e. Experiment with still larger values of \(n\), as computer memory allows; are you able to find a partial sum of the Fourier series of \(f\) for which the maximum error in the approximation over \(-\pi \leq x \leq \pi\) is smaller than your results so far? (When \(n\) is large it will be helpful to attach a semicolon to the end of the command in part \(\mathbf{b}\) to suppress the output on the screen.)

2f. Read Writing Exercise 4; what might account for our rather surprising results in parts \(\mathbf{c}-\mathbf{e}\) ?

3a. Execute ? Floor and record the result below. Then execute
\[
g\left[x_{-}\right]=x-\operatorname{Floor}[x]
\]
and graph \(g\) over \(-2 \leq x \leq 2\); sketch the result on the axes at right. Do the vertical lines have any significance?

3b. The period \(T\) of this function is not \(2 \pi\); what is it? Clear the variable a0 and try to use the Euler-Fourier formulas to modify the first command in part a to define a0 for \(g\). Was this successful? Why?

3c. Actually Mathematica has built-in capacity to find many Fourier series, execute
Needs ["Calculus`FourierTransform'"]

We can think of g as being the periodic function with period 1 which is equal to \(x\) over \(0 \leq x<1\); execute
```

F4[x_] = FourierTrigSeries[x, {x, 0, 1}, 4]

```

Why is it that the constant term is nonzero but there are no cosine terms in the result?
4. What is the coefficient of \(\cos \left(\frac{5 \pi x}{3}\right)\) in the Fourier expansion of the function in Exercise 16?```

