

large dot and draw the line tangent to the curve there. What do you estimate the slope of this line to be?

1c. Execute y' [1/2] /x' [1/2] to find this slope exactly, and record the result below.

1d. Execute NIntegrate [Sqrt[x'[t]² + y'[t]²], {t, 0, 1}] to find the length of this curve, and record the result in the table on the next page.

1e. The time needed to ski this curve can be calculated using Formula (3.2) (taking k = 1 for convenience); execute

```
NIntegrate[Sqrt[(x'[t]<sup>2</sup> + y'[t]<sup>2</sup>)/y[t]], {t, 0, 1}]
```

and record the result in the table.

1f. Now clear \mathbf{x} and \mathbf{y} , modify the commands in part \mathbf{a} and re–execute the commands in parts \mathbf{d} and \mathbf{e} to complete the table for Exercises 13-15, Section 9.3 as well. Based on these examples, does there seem to be any correlation between the arc length and the time?

1

Exercise	Arc length	Time
19		
20		
21		
22		

1g. In the same way find the arc length and time for the cycloid of Example 3.3; in both categories, where does it rank among the other four curves considered so far?

2a. Clear your variables once again and define the parametric curve $\begin{cases} x = 8\cos t - 2\cos 4t \\ y = 8\sin t - 2\sin 4t \end{cases}$ in

Mathematica as in Question 1a, and then execute

ParametricPlot[{x[t], y[t]}, {t, 0, 2Pi}, AspectRatio->Automatic]

to draw this curve over $0 \le t \le 2\pi$; sketch the result on the axes at right. (Also try it without the **AspectRatio** option and tell what this option does.)

2b. Where are the "corner" points of this curve? By Theorem 2.1, at such points both x'(t) and y'(t) must be zero. Execute

xlist = Solve[x'[t] == 0, t]

to list the values of t for which x'(t)=0 and record the results below. Is the warning message of concern?

to find the values of *t* common to the lists, and record the results below. Finally execute $\{x[t], y[t]\}$.

2d. Find the "corner" point(s) on the curve in Exercise 24, Section 9.2. How many are there?

2