\qquad Please provide a handwritten response.

1a. Execute

$$
x\left[t _\right]=P i t-0.6 S i n[P i t]
$$

(watch those spaces after the Pi !) and

$$
y[t]=2 t+0.4 \operatorname{Sin}[P i t]
$$

followed by
ParametricPlot[\{x[t], $y[t]\},\{t, 0,1\}]$
to plot the curve in Exercise 16, Section 9.3 and sketch the result on the axes at right. (Note that here the y-axis is pointing upward as usual, so our skier is skiing uphill!)

1b. Execute

$$
\{x[1 / 2], y[1 / 2]\}
$$

to find the point on the curve corresponding to $t=\frac{1}{2}$, mark this point on the curve with a
 large dot and draw the line tangent to the curve there. What do you estimate the slope of this line to be?

1c. Execute $y^{\prime}[1 / 2] / x^{\prime}[1 / 2]$ to find this slope exactly, and record the result below.

1d. Execute NIntegrate [Sqrt [$\left.\left.x^{\prime}[t]^{\wedge} 2+y^{\prime}[t]^{\wedge} 2\right],\{t, 0,1\}\right]$ to find the length of this curve, and record the result in the table on the next page.

1e. The time needed to ski this curve can be calculated using Formula (3.2) (taking $k=1$ for convenience); execute

```
NIntegrate[Sqrt[(x'[t]^2 + y'[t]^2)/y[t]], {t, 0, 1}]
```

and record the result in the table.

1f. Now clear \mathbf{x} and \mathbf{y}, modify the commands in part a and re-execute the commands in parts \mathbf{d} and \mathbf{e} to complete the table for Exercises 13-15, Section 9.3 as well. Based on these examples, does there seem to be any correlation between the arc length and the time?

Exercise	Arc length	Time
19		
20		
21		
22		

1g. In the same way find the arc length and time for the cycloid of Example 3.3; in both categories, where does it rank among the other four curves considered so far?

2a. Clear your variables once again and define the parametric curve $\left\{\begin{array}{l}x=8 \cos t-2 \cos 4 t \\ y=8 \sin t-2 \sin 4 t\end{array}\right.$ in Mathematica as in Question 1a, and then execute

```
ParametricPlot[{x[t], y[t]}, {t, 0, 2Pi}, AspectRatio->Automatic]
```

to draw this curve over $0 \leq t \leq 2 \pi$; sketch the result on the axes at right. (Also try it without the AspectRatio option and tell what this option does.)
$\mathbf{2 b}$. Where are the "corner" points of this curve? By Theorem 2.1, at such points both $x^{\prime}(t)$ and $y^{\prime}(t)$ must be zero. Execute

```
xlist = Solve[x'[t] == 0, t]
```

to list the values of t for which $x^{\prime}(t)=0$ and record the results below. Is the warning message of concern?

2c. Likewise execute ylist $=$ Solve [y'[t] $==0$, t] followed by corners $=$ Intersection [xlist, ylist]
to find the values of t common to the lists, and record the results below. Finally execute $\{\mathbf{x}[\mathrm{t}]$, $y[t]\} /$. corners to find the cöordinates of the corner points, and label them on the graph.

2d. Find the "corner" point(s) on the curve in Exercise 24, Section 9.2. How many are there?

