\qquad Please provide a handwritten response.

1a. To graph the function $f(x, y)=\sin \left(y-x^{2}\right)$ in Exercise 46, Section 12.1 execute

$$
f\left[x_{-}, y_{-}\right]=\sin \left[y-x^{\wedge} 2\right]
$$

followed by

```
Plot3D[f[x, y], {x, -2, 2}, {y, -2, 2}, ViewPoint->{3, 2, 2}]
```

Sketch the result in the box at right; rather than try to copy every line drawn by Mathematica, just use general outlines and shading to give the overall shape.

1b. Graph f over a wider range and describe the general appearance of the resulting surface.

1c. To draw a contour plot of f execute

$$
\text { ContourPlot } \left.\left[f[x, y], \begin{array}{rl}
\{x, & -2, \\
2\},
\end{array},-2,2\right\}\right]
$$

What do we know about the level curves that makes the result look suspicious?

1d. Execute the preceding command with PlotPoints set to 25 , and sketch the result in the frame at right. Is this graph more credible?

1e. Now execute the command from part \mathbf{d} with ContourPlot replaced by DensityPlot ; how is the result both more, and less, accurate than the preceding result?

2a. According to Exploratory Exercise 1, Section 12.2 the facts that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}=0$ and that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}}$ does not exist can be detected using contour plots. Clear \mathbf{f} and execute

$$
\mathrm{f}\left[\mathrm{x}_{-}, \mathrm{y}_{-}\right]=\mathrm{x}^{\wedge} 2 \mathrm{y} /\left(\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2\right)
$$

followed by
ContourPlot[f[x, y], \{x,-.01,.01\}, \{y,-.01,.01\}, PlotPoints->50]
and sketch the result in the frame at right. Execute this command again with .01 replaced throughout by . 001 ; does the pattern seem to change?

2c. Now clear f and execute

$$
f\left[x_{-}, y_{-}\right]=x^{\wedge} 2 /\left(x^{\wedge} 2+y^{\wedge} 2\right)
$$

followed by the Contourplot command in part a, and sketch the result in the frame at right. Again, repeat this command with . 01 replaced throughout by . 001 ; does the pattern seem to change here?

2d. How do these graphs support the
conclusion that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}}$ does not exist?

2e. Based on contour plots, do you think that $\lim _{(x, y) \rightarrow(0,0)} \frac{x \sin y}{x^{2}+y^{2}}$ exists? Explain your answer.

