Assignment 3: Solving Equations (0.1&2) Please provide a handwritten response.

Name_____

1a. One way to solve algebraic equations in *Mathematica* is to use the **Solve** command. For example, we can find the zeros of $f(x) = x^2 - 3x + 2$ by executing the command

$$f[x_] = x^2 - 3x + 2$$
 followed by

$$Solve[f[x] == 0, x]$$

Record the result below. (The double equal sign == indicates an equation in *Mathematica*. You can write "replacement rules" such as $\{\{x->1\}, \{x->2\}\}\$ in *Mathematica*'s output as simply "x=1 or x=2".)

1b. The **Solve** command can be used on more complicated equations, such as the one studied in Example 1.22; execute the commands **Clear[f]** and

$$f[x] = x^3 - x^2 - 2x + 2$$

followed by **Solve**[f[x] == 0, x] to find the zeros of $f(x) = x^3 - x^2 - 2x + 2$, and record the result below.

1c. Once again, *Mathematica* did not give a completely decimal answer. We can achieve a decimal answer by giving a name, say **solns**, to the solutions *Mathematica* finds, and then applying the **N** command to those solutions. Execute the command

$$solns = Solve[f[x] == 0, x]$$

followed by N[solns], and record the result below.

2a. Sometimes the **Solve** command is unable to solve an equation algebraically; in this case we can try to solve it numerically, as mentioned in Example 2.7, using the **FindRoot** command. **FindRoot** requires, however, that an approximate value of the solution be known in advance, and this can usually be found by graphing. As an example, execute the command

$$Solve[Cos[x] == x^2 - 1, x]$$

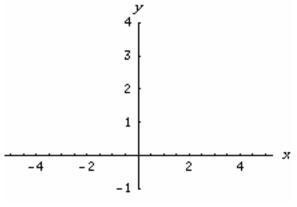
to try to solve the equation $\cos x = x^2 - 1$ in Exercise 55, Section 0.2 of the text. (We will learn how to use *Mathematica* with trigonometric functions in general later.) Record the output below; did we get our answer?

2b. To use **FindRoot** instead, we will begin with a graph to show approximately where the solution(s), if any, might be found. Execute the command

Plot[
$$\{Cos[x], x^2 - 1\}, \{x, -5, 5\}$$
]

to plot each side of our equation as a function of x over the domain $-5 \le x \le 5$, and sketch the result on the axes at right. It seems from this graph that there are solutions at roughly $x = \pm 1$, and we can now use this information in the **FindRoot** command.

2c. Because **FindRoot** strictly speaking only finds zeros of functions, we will consider ourselves to be finding zeros of the function $\cos x - (x^2 - 1)$ rather than solving the equa-



tion $\cos x = x^2 - 1$, although these of course amount to the same thing. Execute the command

$$FindRoot[Cos[x] - (x^2 - 1), \{x, 1\}]$$

to find an accurate value of the solution of the equation near x = 1, and likewise execute

$$FindRoot[Cos[x] - (x^2 - 1), \{x, -1\}]$$

to do the same near x = -1; record the results below.

2d. Now change parts **b** and **c** so as to solve the equation $\cos x = x^2 - 5$ instead; remember to replace the **1** in $\{x, 1\}$ to an appropriate starting value suggested by your graph, and similarly for $\{x, -1\}$. Record the solutions below.

3a. Mathematica can perform many other algebraic operations. For example, the **Expand** command expands algebraic expressions; execute the command **Expand** [$(x + y)^7$] to expand the binomial expression $(x + y)^7$, and record the result below.

3b. Likewise the Factor command factors expressions; execute the command

Factor[
$$x^4 - 3x^2 + 2$$
]

to find the factors of $x^4 - 3x^2 + 2$, and record the result below.