\qquad Please provide a handwritten response.

1a. To graph the portion of $z=f(x, y)=e^{x^{2}+y^{2}}$ inside $x^{2}+y^{2}=1$, execute

$$
f\left[x_{-}, y_{-}\right]=\operatorname{Exp}\left[x^{\wedge} 2+y^{\wedge} 2\right]
$$

and then use Plot3D as we have before to draw the graph of f over $-1 \leq x \leq 1,-1 \leq y \leq 1$.
Next execute Needs ["Graphics`ParametricPlot3D`"] followed by

```
CylindricalPlot3D[f[r Cos[t], r Sin[t]], {r, 0, 1}, {t, 0, 2Pi},
    ViewPoint->{3, 2, 2}]
```

to draw the graph of $z=f(r \cos \theta, r \sin \theta)$ in cylindrical cöordinates over $r \leq 1,0 \leq \theta \leq 2 \pi$, and sketch the result in the box at right. Which method gave the better graph? Why?

1b. By formula (4.3) the surface area is given by

$$
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \sqrt{\left[f_{x}(x, y)\right]+\left[f_{y}(x, y)\right]+1} d y d x .
$$

First define the integrand above by executing

$$
\begin{aligned}
\operatorname{int}\left[x_{-}, y_{-}\right]= & \operatorname{Sqrt}\left[D[f[x, y], x]^{\wedge} 2\right. \\
& \left.+D[f[x, y], y]^{\wedge} 2+1\right]
\end{aligned}
$$

and then try to find the surface area by executing

$$
\text { Integrate }\left[\text { int }[x, y],\{x,-1,1\},\left\{y,-\operatorname{Sqrt}\left[1-x^{\wedge} 2\right], \operatorname{Sqrt}\left[1-x^{\wedge} 2\right]\right\}\right]
$$

Was Integrate successful here?

1c. Does converting to polar cöordinates help? Execute
Integrate [r int[r Cos[t], $r \operatorname{Sin}[t]],\{t, 0,2 P i\},\{r, 0,1\}]$ and record the result below.

1d. Try parts \mathbf{b} and \mathbf{c} again, replacing Integrate with NIntegrate, and record the results below. Does this work better?
2. To evaluate the triple integral $\int_{0}^{2} \int_{0}^{4-2 x} \int_{0}^{4-2 x-z} 6 x y d y d z d x$ from Example 5.3, execute Integrate [6x $y,\{x, 0,2\},\{z, 0,4-2 x\},\{y, 0,4-2 x-z\}]$ Do you get the correct value?

3a. To draw a picture of the region Q between $z=\sqrt{x^{2}+y^{2}}$ and $z=\sqrt{4-x^{2}-y^{2}}$ execute

$$
\begin{aligned}
& \text { cone }=\text { CylindricalPlot3D }[r,\{r, 0, \operatorname{Sqrt}[2]\},\{t, 0,2 P i\}, \\
&\text { ViewPoint }->\{3,2,2\}]
\end{aligned}
$$

followed by a similar command to draw the graph of $z=\sqrt{4-r^{2}}$ over the same ranges for t and θ. Use Show to combine the two graphs and sketch the result in the box at right. How would you describe in words the shape of this region?

3b. The triple integral $\iiint_{Q} z e^{\sqrt{x^{2}+y^{2}}} d V$ would be written $\int_{0}^{2 \pi} \int_{0}^{1} \int_{r}^{\sqrt{4-r^{2}}} r z e^{r} d z d r d \theta$ when converted to cylindrical cöordinates. Give both an exact and a decimal value for this integral.

4a. We can draw the "roof" of the solid in Exercise 43, Section 13.7 using another command from the package that was loaded in Question 1a. Because $z=\rho \cos \phi$ in spherical cöordinates, the equation $x^{2}+y^{2}+z^{2}=4 z$ is equivalent to $\rho=4 \cos \phi$; execute (still using t for θ)

```
SphericalPlot3D[4Cos[phi], {phi, 0, Pi/4}, {t, 0, 2Pi},
    ViewPoint->{3, 2, 2}]
```

and describe the result below.

4b. How would you describe the "floor" of the solid?

4c. Set up an integral giving the volume of the solid, and then evaluate it, recording below both the exact and approximate decimal values; use rho or some other convenient label to represent ρ in Mathematica.

