1a. To graph the surface S defined parametrically by $x=u \cos v, y=u \sin v, z=v$ over $0 \leq u \leq 10$, $0 \leq v \leq 4 \pi$ execute $r\left[u_{-}, v_{-}\right]=\{u \operatorname{Cos}[v], u \operatorname{Sin}[v], v\}$ and then

ParametricPlot3D[Evaluate[r[u, v]], $\{u, 0,10\},\{v, 0,4 P i\}$, ViewPoint->\{3, 2, 2\}, PlotPoints->\{15, 50\}]
(The specification for PlotPoints causes fewer points to be sampled for u than for v.) Sketch the result in the box at right and describe the surface.

1b. We will study the flux integral $\iint \mathbf{F} \cdot \mathbf{n} d S$ where $\mathbf{F}(x, y, z)$ is the vector field $\langle y,-x, 1\rangle$ of Exercise 39, Section 14.6. Execute

Needs["Graphics`PlotField3D`"]

 and then draw \mathbf{F} using the commands$$
F\left[x_{-}, y_{-}, z_{-}\right]=\{y,-x, 1\}
$$

PlotVectorField3D[F[x, y, z], \{x,
 $-10,10\},\{y,-10,10\},\{z, 0$, 10\}, Axes->True, ScaleFunction->(1.5\&), ScaleFactor->None, Viewpoint->\{3,2,2\}, VectorHeads->True]

Suppose $\mathbf{F}(x, y, z)$ were the velocity vector of the wind at the point (x, y, z) and you released a leaf into this wind; in your own words, where would it go?

1c. Taking the unit normal \mathbf{n} to have positive z-component, would we expect $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$ to be positive, negative or zero? Why?

1d. To find a normal vector $\mathbf{r}_{u} \times \mathbf{r}_{v}$ execute

```
norm[u_, v_] = Cross[D[r[u, v], u], D[r[u, v], v]]
```

and explain how we know that this is the "correct" normal vector.
1e. To find the integrand $\mathbf{F} \cdot \mathbf{n} d S$ execute

$$
\mathrm{F}[r[\mathrm{u}, \mathrm{v}][[1]], \mathrm{r}[\mathrm{u}, \mathrm{v}][[2]], \mathrm{r}[\mathrm{u}, \mathrm{v}][[3]]] . \operatorname{norm}[\mathrm{u}, \mathrm{v}]
$$

followed by Integrate $[\%,\{\mathrm{v}, 0,4 \mathrm{Pi}\},\{\mathrm{u}, 0,10\}$] and record the result below. Were your expectations borne out?

2a. To graph the region Q of Exercise 9, Section 14.7 using cylindrical cöordinates execute

Needs["Graphics`ParametricPlot3D`"]

followed by the commands

$$
\begin{aligned}
\mathrm{b} & =C y l i n d r i c a l P l o t 3 D\left[r^{\wedge} 2,\{r, 0,2\},\{t, 0,2 P i\}, V i e w P o i n t->\{3,2,2\}\right] \\
t & =C y l i n d r i c a l P l o t 3 D[4,\{r, 0,2\},\{t, 0,2 P i\}, V i e w P o i n t->\{3,2,2\}]
\end{aligned}
$$

and Show [b, t] ; sketch the result in the box at right. Next clear and redefine F to be the vector field $\mathbf{F}(x, y, z)=\left\langle x^{3}, y^{3}-z, x y^{2}\right\rangle$ and execute the commands
Needs["Calculus`VectorAnalysis`"] SetCoordinates[Cartesian [x,y,z]]

Execute Div[F[x, y, z]] and Curl [F[x, y, z]] to find $\nabla \cdot \mathbf{F}$ and $\nabla \times \mathbf{F}$, and record the results below.

2b. Now set up an iterated integral giving
$\iiint_{Q} \nabla \cdot \mathbf{F}(x, y, z) d V$ and use Mathematica to
 evaluate it; record your answers below.

2c. By Stokes' Theorem, $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S$ is the same whether S is the "bowl" or the "lid" of ∂Q. Clear variables, parameterize the "bowl" using $\mathbf{r}(u, v)=\left\langle u \cos v, u \sin v, u^{2}\right\rangle, 0 \leq u \leq 2$, $0 \leq v \leq 2 \pi$ and use Question 1d to find $\mathbf{r}_{u} \times \mathbf{r}_{v}$. Execute

$$
\begin{gathered}
\operatorname{delF}\left[u _, v_{-}\right]=\operatorname{Curl}[F[x, y, z]] / .\{x->r[u, v][[1]], \\
y->r[u, v][[2]], z->r[u, v][[3]]\}
\end{gathered}
$$

and then find $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S$ for the "bowl" by executing
Integrate[delf[u, v] .norm[u, v], $\{u, 0,2\},\{v, 0,2 P i\}]$
Now make slight modifications in the above to calculate $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S$ for the "lid"; do the two results agree? What are they?

