Assignment 32: Vector Fields in Space (14.6–8) Please provide a handwritten response.

```
Name_____
```

1a. To graph the surface S defined parametrically by $x = u\cos v$, $y = u\sin v$, z = v over $0 \le u \le 10$, $0 \le v \le 4\pi$ execute $\mathbf{r}[\mathbf{u}, \mathbf{v}] = \{\mathbf{u} \ \cos[\mathbf{v}], \mathbf{u} \ \sin[\mathbf{v}], \mathbf{v}\}$ and then

ParametricPlot3D[Evaluate[r[u, v]], {u, 0, 10}, {v, 0, 4Pi}, ViewPoint->{3, 2, 2}, PlotPoints->{15, 50}]

(The specification for **PlotPoints** causes fewer points to be sampled for u than for v.) Sketch the result in the box at right and describe the surface.

1b. We will study the flux integral $\iint_{s} \mathbf{F} \cdot \mathbf{n} dS$ where $\mathbf{F}(x, y, z)$ is the vector field $\langle y, -x, 1 \rangle$ of Exercise 39, Section 14.6. Execute Needs ["Graphics`PlotField3D`"] and then draw F using the commands $\mathbf{F}[\mathbf{x}, \mathbf{y}, \mathbf{z}_{-}] = \{\mathbf{y}, -\mathbf{x}, 1\}$ PlotVectorField3D[F[x, y, z], {x, -10, 10}, {y, -10, 10}, {z, 0}, {z, 0}, {z, 0}

-10

10}, Axes->True, ScaleFunction->(1.5&), ScaleFactor->None, Viewpoint->{3,2,2}, VectorHeads->True]

Suppose $\mathbf{F}(x, y, z)$ were the velocity vector of the wind at the point (x, y, z) and you released a leaf into this wind; in your own words, where would it go?

1c. Taking the unit normal **n** to have positive *z*-component, would we expect $\iint \mathbf{F} \cdot \mathbf{n} dS$ to be

positive, negative or zero? Why?

1d. To find a normal vector $\mathbf{r}_{u} \times \mathbf{r}_{v}$ execute

 $norm[u_, v_] = Cross[D[r[u, v], u], D[r[u, v], v]]$

and explain how we know that this is the "correct" normal vector.

1e. To find the integrand $\mathbf{F} \cdot \mathbf{n} dS$ execute

F[r[u, v][[1]], r[u, v][[2]], r[u, v][[3]]].norm[u, v]
followed by Integrate[%, {v, 0, 4Pi}, {u, 0, 10}] and record the result below.

Were your expectations borne out?

2a. To graph the region Q of Exercise 9, Section 14.7 using cylindrical coordinates execute

Needs["Graphics ParametricPlot3D"]

followed by the commands

b = CylindricalPlot3D[r², {r,0,2}, {t,0,2Pi}, ViewPoint->{3,2,2}] t = CylindricalPlot3D[4, {r,0,2}, {t,0,2Pi}, ViewPoint->{3,2,2}]

and Show [b, t]; sketch the result in the box at right. Next clear and redefine **F** to be the vector field $\mathbf{F}(x, y, z) = \langle x^3, y^3 - z, xy^2 \rangle$ and execute the commands **Needs** ["Calculus `VectorAnalysis`"]

SetCoordinates[Cartesian[x,y,z]]

Execute Div[F[x, y, z]] and Curl[F[x, y, z]] to find $\nabla \cdot F$ and $\nabla \times F$, and record the results below.

2b. Now set up an iterated integral giving $\iiint_{Q} \nabla \cdot \mathbf{F}(x, y, z) dV$ and use *Mathematica* to

evaluate it; record your answers below.

2c. By Stokes' Theorem, $\iint_{s} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS$ is the same whether *S* is the "bowl" or the "lid" of ∂Q . Clear variables, parameterize the "bowl" using $\mathbf{r}(u,v) = \langle u\cos v, u\sin v, u^2 \rangle$, $0 \le u \le 2$, $0 \le v \le 2\pi$ and use Question **1d** to find $\mathbf{r}_u \times \mathbf{r}_v$. Execute

and then find $\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS$ for the "bowl" by executing

Integrate [delF[u, v].norm[u, v], {u, 0, 2}, {v, 0, 2Pi}] Now make slight modifications in the above to calculate $\iint_{s} (\nabla \times \mathbf{F}) \cdot \mathbf{n} dS$ for the "lid"; do the two results agree? What are they?