Assignment 4: Trigonometry and Exponentials (0.4&5) Name Please provide a handwritten response.

1a. In *Mathematica*, $\sin x$ is expressed as **Sin**[**x**], and the constant $\pi \approx 3.14$ is denoted by **Pi**. We can plot the sine function over the domain $-2\pi \le x \le 2\pi$ using the command

 $Plot[Sin[x], \{x, -2Pi, 2Pi\}]$

Execute this command and sketch the result on the axes at right.

1b. More complicated trigonometric functions can also be used, but they are not always written in *Mathematica* as they would be in traditional mathematical notation. For example, the function $y = \sin^2 x$ would be plotted over the domain $-2\pi \le x \le 2\pi$ using the command

Plot[Sin[x]²,{x, -2Pi, 2Pi}]

(Note where the exponent goes!) Execute this command and sketch the result on the axes at right.

1c. The cosine function $\cos x$ is represented in *Mathematica* by **Cos**[**x**], and the tangent function $\tan x$ by **Tan**[**x**]. So, the function $f(x) = \cos 5x + 3\sin 5x$, for example, would be represented by

 $f[x_] = Cos[5x] + 3Sin[5x]$

Execute this command followed by

 $Plot[f[x], \{x, -Pi, Pi\}]$

and sketch the result on the axes at right.

1d. All six trigonometric functions in *Mathematica* assume that the variable is measured in radians, not degrees. Execute the commands Sin[Pi/2], Cos[Pi/4], and Tan[-Pi/3], and record the results below; were the answers what you would expect?

2. The **Degree** constant can be used to express degree measure. For example, execute the command **Sin[60 Degree]** to find $\sin 60^\circ$; is the result correct?

3a. Exponential functions in *Mathematica* are expressed using the ^ symbol just like any other exponent. For example, the function $y = 2^x$ appearing in Example 5.3 would be plotted over the domain $-5 \le x \le 5$ using the command

$$Plot[2^x, \{x, -5, 5\}]$$

Execute this command, sketch the result on the axes at right and tell how it compares with Figure 0.69a.

3b. The special constant $e \approx 2.7$ is represented in *Mathematica* by **E**, and the function e^x is represented either by **E^x** or by **Exp**[**x**]; for example, to graph $f(x)=10e^{-x/3}$ in Exercise 26, Section 0.5 of the text, execute the command

Plot[10Exp[-x/3], {x, -2, 2}]

and sketch the result on the axes at right.

4. In *Mathematica* the natural logarithm function $\ln x$ is represented by Log[x], whereas the logarithm $\log_b x$ of x with base b is denoted by Log[b, x]. (The b comes first!) Execute the command

to plot the functions $\ln x$ and $\log_{1/2} x$ together on the same axes, and sketch the result on the axes at right. Label which graph is which.

