Assignment 4: Trigonometry and Exponentials (0.4\&5) Please provide a handwritten response.

1a. In Mathematica, $\sin x$ is expressed as $\sin [x]$, and the constant $\pi \approx 3.14$ is denoted by Pi. We can plot the sine function over the domain $-2 \pi \leq x \leq 2 \pi$ using the command

Plot[Sin [x], \{x, -2Pi, 2Pi\}]
Execute this command and sketch the result on the axes at right.

1b. More complicated trigonometric functions can also be used, but they are not always written in Mathematica as they would be in traditional mathematical notation. For example, the function $y=\sin ^{2} x$ would be plotted over the domain $-2 \pi \leq x \leq 2 \pi$ using the command

```
Plot[Sin[x]^2,{x, -2Pi, 2Pi}]
```

(Note where the exponent goes!) Execute this command and sketch the result on the axes at right.

1c. The cosine function $\cos x$ is represented in Mathematica by Cos [x], and the tangent function $\tan x$ by $\operatorname{Tan}[x]$. So, the function $f(x)=\cos 5 x+3 \sin 5 x$, for example, would be represented by

$$
f\left[x_{-}\right]=\operatorname{Cos}[5 x]+3 \operatorname{Sin}[5 x]
$$

Execute this command followed by
Plot[f[x], \{x, -Pi, Pi\}]
and sketch the result on the axes at right.

1d. All six trigonometric functions in Mathematica assume that the variable is measured in radians, not degrees. Execute the commands $\operatorname{Sin}[\mathrm{Pi} / 2]$, $\operatorname{Cos}[\mathrm{Pi} / 4]$, and $\operatorname{Tan}[-\mathrm{Pi} / 3]$, and record the results below; were the answers what you would expect?
2. The Degree constant can be used to express degree measure. For example, execute the command $\sin \left[60\right.$ Degree] to find $\sin 60^{\circ}$; is the result correct?

3a. Exponential functions in Mathematica are expressed using the ${ }^{\wedge}$ symbol just like any other exponent. For example, the function $y=2^{x}$ appearing in Example 5.3 would be plotted over the domain $-5 \leq x \leq 5$ using the command

```
Plot[2^x, {x, -5, 5}]
```

Execute this command, sketch the result on the axes at right and tell how it compares with Figure 0.69a.

3b. The special constant $e \approx 2.7$ is represented in Mathematica by \mathbf{E}, and the function e^{x} is represented either by $\mathbf{E}^{\wedge} \mathbf{x}$ or by $\operatorname{Exp}[\mathbf{x}]$; for example, to graph $f(x)=10 e^{-x / 3}$ in Exercise 26 , Section 0.5 of the text, execute the command

```
Plot[10Exp[-x/3], {x, -2, 2}]
```

and sketch the result on the axes at right.
4. In Mathematica the natural logarithm function $\ln x$ is represented by $\log [\mathbf{x}]$, whereas the logarithm $\log _{b} x$ of x with base b is denoted by $\log [\mathbf{b}, \mathbf{x}]$. (The \mathbf{b} comes first!) Execute the command

to plot the functions $\ln x$ and $\log _{1 / 2} x$ together on the same axes, and sketch the result on the
 axes at right. Label which graph is which.

