Assignment 5: Limits, Part I (1.2) Please provide a handwritten response.

Name_____

1a. Many ordinary limits can be found in *Mathematica* using the Limit command. For example, to evaluate the limit in Example 2.2, execute the command

Limit[$(3x + 9)/(x^2 - 9), x - > -3$]

and record the result below; is your answer the same as that in the text?

1b. Example 2.4 suggests that $\lim_{x \to 0} \frac{\sin x}{x} = 1$; execute the command

Limit [Sin[x]/x, $x \rightarrow 0$]

and record the result below. Does Mathematica's result support the conjecture made in the text?

v 2a. Exercise 13 asks for numerical and graphical evidence regarding $\lim_{x\to 0} \frac{\tan x}{\sin x}$. First 1.4 execute the command 1.3 f[x] = Tan[x]/Sin[x]1.2 followed by 1.1 $Plot[f[x], \{x, -Pi/4, Pi/4\}]$ and sketch the result on the axes at right. What -0.75 -0.5 -0.25 0.25 0.5 0.75 value for $\lim_{x\to 0} \frac{\tan x}{\sin x}$ does this graph suggest?

2b. Next, execute the commands f[0.1], f[0.01], etc. to complete the table at right. What value for $\lim_{x\to 0} \frac{\tan x}{\sin x}$ does the table suggest?

2c. Finally, execute the command

Limit[f[x], x->0]

and record the result below; did all three approaches lead you to the same conclusion?

x	f(x)
0.1	
0.01	
0.001	
-0.1	
-0.01	
-0.001	

3a. Exploratory Exercise 2, Section 1.2 uses the	x
example $\lim_{x \to 0} \frac{\cos x - 1}{r^2}$ to show that round-off error can	0.1
cause very misleading computed results. Execute the	0.0001
command Clear[f] followed by	0.000000
$f[x] = (Cos[x] - 1)/x^2$	0.000000

to define $f(x) = \frac{\cos x - 1}{x^2}$ and then use this *Mathe*-

x	$f(\mathbf{x})$
0.1	
0.0001	
0.0000001	
0.00000001	
0.000000001	

matica function to complete the table at right. (Be sure to count the zeros!) Then execute the command Limit[f[x], x->0] and record the result below.

3b. Do you think that all of *Mathematica*'s results in parts **a** and **b** are correct? If not, then which one(s) do you think are wrong, and why?

4a. To find one-sided limits we apply the **Direction** option to the **Limit** command; setting **Direction->1** gives the limit from the left, and setting **Direction->-1** gives the limit

from the right. For example, the function $g(x) = \frac{x}{|x|}$ discussed in Example 2.5 would be written

in *Mathematica* using the **Abs** function by executing the following command:

$g[x_] = x/Abs[x]$		ر ۱			
Next execute the command		0.75			
$Plot[q[x], \{x, -5, 5\}]$		0.5			
and sketch the result on the axes at right. Now		0.25			- x
execute the command	-4	- ² -0.25	2	4	
<pre>Limit[g[x], x->0, Direction->1]</pre>		-0.5			
to find $\lim_{x \to \infty} g(x)$, and record the result below.		-0.75			
$x \rightarrow 0$		_1 I			

4b. Now execute the command Limit [g[x], x->0, Direction->-1] to find $\lim_{x\to 0^+} g(x)$, and record the result below.

4c. Finally execute Limit [g[x], x -> 0]; would we have expected this result? Why? (The reason for it is that by default, Limit assumes the option Direction->-1.)

2