1a. Many ordinary limits can be found in Mathematica using the Limit command. For example, to evaluate the limit in Example 2.2, execute the command

$$
\text { Limit }\left[(3 x+9) /\left(x^{\wedge} 2-9\right), x->-3\right]
$$

and record the result below; is your answer the same as that in the text?

1b. Example 2.4 suggests that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$; execute the command

$$
\text { Limit }[\sin [x] / x, x->0]
$$

and record the result below. Does Mathematica's result support the conjecture made in the text?

2a. Exercise 13 asks for numerical and
graphical evidence regarding $\lim _{x \rightarrow 0} \frac{\tan x}{\sin x}$. First execute the command

$$
f\left[x _\right]=\operatorname{Tan}[x] / \operatorname{Sin}[x]
$$

followed by

```
Plot[f[x], {x, -Pi/4, Pi/4}]
```


and sketch the result on the axes at right. What value for $\lim _{x \rightarrow 0} \frac{\tan x}{\sin x}$ does this graph suggest?

2b. Next, execute the commands $\mathbf{f}[0.1], f[0.01]$, etc. to complete the table at right. What value for $\lim _{x \rightarrow 0} \frac{\tan x}{\sin x}$ does the table suggest?

2c. Finally, execute the command

$$
\text { Limit }[f[x], x->0]
$$

and record the result below; did all three approaches lead you to

x	$f(x)$
0.1	
0.01	
0.001	
-0.1	
-0.01	
-0.001	

3a. Exploratory Exercise 2, Section 1.2 uses the example $\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}}$ to show that round-off error can cause very misleading computed results. Execute the command Clear [f] followed by

$$
f\left[x_{-}\right]=(\operatorname{Cos}[x]-1) / x^{\wedge} 2
$$

to define $f(x)=\frac{\cos x-1}{x^{2}}$ and then use this Mathe-

x	$f(x)$
0.1	
0.0001	
0.0000001	
0.00000001	
0.000000001	

3b. Do you think that all of Mathematica's results in parts a and \mathbf{b} are correct? If not, then which one(s) do you think are wrong, and why?

4a. To find one-sided limits we apply the Direction option to the Limit command; setting Direction->1 gives the limit from the left, and setting Direction->-1 gives the limit from the right. For example, the function $g(x)=\frac{x}{|x|}$ discussed in Example 2.5 would be written in Mathematica using the Abs function by executing the following command:

$$
g\left[x_{-}\right]=x / \operatorname{Abs}[x]
$$

Next execute the command
Plot [g[x], \{x, -5, 5\}]
and sketch the result on the axes at right. Now execute the command
Limit[g[x], x->0, Direction->1]
to find $\lim _{x \rightarrow 0^{-}} g(x)$, and record the result below.

4b. Now execute the command Limit $[\mathrm{g}[\mathrm{x}], \mathbf{x}->0$, Direction->-1] to find $\lim _{x \rightarrow 0^{+}} g(x)$, and record the result below.

4c. Finally execute Limit [g [x], x->0] ; would we have expected this result? Why? (The reason for it is that by default, Limit assumes the option Direction->-1.)

