Assignment 6: Limits, Part II (1.5) Please provide a handwritten response.

 Name1a. The Limit command can be used even when the answer is $\pm \infty$. Example 5.1 explains that whereas $\lim _{x \rightarrow 0} \frac{1}{x}$ does not exist, it is nonetheless true that $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty$ and that $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$. Execute the command Limit $\left[1 / \mathbf{x}, \mathbf{x}->0\right.$, Direction->-1] to find $\lim _{x \rightarrow 0^{+}} \frac{1}{x}$ and record the result below. Is Mathematica's result correct?

1b. Likewise execute the command Limit [1/x, $\mathbf{x - > 0}$, Direction->1] to find $\lim _{x \rightarrow 0^{-}} \frac{1}{x}$ and record the result below. Is Mathematica's result again correct?

2a. Now find the value of $\lim _{x \rightarrow 2^{+}} \frac{4-x}{(x-2)^{2}}$. First execute the command

$$
f\left[x_{-}\right]=(4-x) /(x-2)^{\wedge} 2
$$

and then the command

```
Plot[f[x], {x, 1, 3}]
```

to see the graph near $x=2$. Sketch the result on the axes at right.

2b. Based on this graph, what do you think is the value of $\lim _{x \rightarrow 2^{+}} \frac{4-x}{(x-2)^{2}}$?

2c. Based on this graph, do you think that $\lim _{x \rightarrow 2} \frac{4-x}{(x-2)^{2}}$ exists? If so, then what is its value?

2d. Execute the command Limit $\left[\mathrm{f}[\mathrm{x}], \mathbf{x - > 2}\right.$, Direction->-1] to find $\lim _{x \rightarrow 2^{+}} \frac{4-x}{(x-2)^{2}}$, and record the result below. Does Mathematica's result appear to be correct?
3. The Limit command can also be used when $x \rightarrow \infty$ or $x \rightarrow-\infty$; in this case we refer to ∞ as Infinity. For instance, to find the limit in Example 5.7, execute the command

```
Limit[(5x - 7)/(4x + 3), x->Infinity]
```

and record the result below. Is this answer correct?

4a. Now find the value of $\lim _{x \rightarrow-\infty} \frac{x+\cos x}{3 x+2}$.
First execute the command

4b. Based on this graph, how accurately can you tell the value of $\lim _{x \rightarrow-\infty} \frac{x+\cos x}{3 x+2}$? What do you think it is?

4c. Zoom out further by executing

```
Plot[g[x], {x, -100, 10}]
```

Sketch the result on the axes at right. Can you now be more specific about the value of $\lim _{x \rightarrow-\infty} \frac{x+\cos x}{3 x+2}$? Why was the graph in part a so much smoother than this one?

4d. Try executing Limit [g[x], x->-Infinity] to find our limit; is the result surprising? This is Mathematica's way of saying "I don't know"! Sometimes we can "help" Mathematica by putting the question differently. Execute Clear [g] and then write \mathbf{g} in a different way by executing

$$
g\left[x_{-}\right]=x /(3 x+2)+\operatorname{Cos}[x] /(3 x+2)
$$

Now execute Limit [g[x], x->-Infinity] again. Is the result correct this time? In the same way use Mathematica to find $\lim _{x \rightarrow-\infty} \frac{x^{3 / 2}+\sin x}{\left(x^{2}+4\right)}$ and record the result below.

