1a. Example 7.1 uses the function $f(x)=\frac{\left(x^{3}+4\right)^{2}-x^{6}}{x^{3}}$ to illustrate the dangers of loss of significance errors. Execute the command

| $f\left[\mathbf{x}_{-}\right]=\left(\left(x^{\wedge} 3+4\right)^{\wedge} 2-\mathbf{x}^{\wedge} 6\right) / x^{\wedge} 3$ | 8.1 |
| :---: | ---: | ---: |
| to define f and then execute the command | 8.075 |
| Plot $[f[x], \quad\{\mathbf{x}, 10000,100000\}]$ | 8.05 |

to reproduce Figure 1.57a. Sketch the result on the axes at right. Does this graph give any indication of the value of $\lim _{x \rightarrow \infty} f(x)$? Explain.

1b. Next, execute the commands $\mathrm{f}[1000$.] , $\mathrm{f}[10000$.], etc. to complete the table at right.

1c. Now execute the command

```
Limit[f[x], x -> Infinity]
```

and record the result below. Is it likely that all of these results are correct? Which ones are not?

x	$f(x)$
1000	
10000	
100000	
1000000	
10000000	

1d. Remark 7.1 points out that f can be rewritten as $f(x)=\frac{8 x^{3}+16}{x^{3}}$; execute the commands Clear [f] and
$f\left[x_{-}\right]=\left(8 x^{\wedge} 3+16\right) / x^{\wedge} 3$
and then complete the table at right with this new (but equivalent) formula for f. Do you think these new results are more trustworthy?

x	$f(x)$
1000	
10000	
100000	
1000000	
10000000	

2. Scientific notation is used to write very large or very small numbers in a convenient form; for example, .000000000002673 would be written in scientific notation as 2.673×10^{-12}. In Mathematica execute the command $2.673 * 10^{\wedge}(-12)$ and record the result below.

3a. In Exercise 3 we seek a value of x for which loss of significance occurs in $\lim _{x \rightarrow \infty} \sqrt{x}(\sqrt{x+4}-\sqrt{x+2})$. Define $g(x)=\sqrt{x}(\sqrt{x+4}-\sqrt{x+2})$ by executing the command

$$
g\left[x_{-}\right]=\operatorname{Sqr} t[x] \quad(\operatorname{Sqr} t[x+4]-\operatorname{Sqr} t[x+2])
$$

Then execute the command

```
Plot [g[x], \{x, 0, 100000 \}]
```

and sketch the result on the axes at right. Based on this graph, what value would you 0995
 0.999 give for $\lim _{x \rightarrow \infty} \sqrt{x}(\sqrt{x+4}-\sqrt{x+2})$?

3b. Next, execute the commands occur?

3c. We can rewrite g to avoid loss of significance; you can check that multiplying $g(x)$ by $\frac{\sqrt{x+4}+\sqrt{x+2}}{\sqrt{x+4}+\sqrt{x+2}}$ gives $\frac{2 \sqrt{x}}{\sqrt{x+4}+\sqrt{x+2}}$. Enter the commands Clear [g] and

x	$g(x)$
1×10^{13}	
1×10^{14}	
1×10^{15}	
1×10^{16}	
1×10^{17}	

$$
g\left[x _\right]=2 \operatorname{Sqr} t[x] /(\operatorname{Sqr} t[x+4]+\operatorname{Sqr} t[x+2])
$$

Then complete the table at right just as in part \mathbf{b}. Do these results seem more reliable?

3d. Finally, execute the command

$$
\text { Limit }[g[x], x->\operatorname{Infinity}]
$$

and record the result below. Does it seem to be correct?

x	$g(x)$
1×10^{13}	
1×10^{14}	
1×10^{15}	
1×10^{16}	
1×10^{17}	

3e. Repeat parts a and \mathbf{b} for Exercise 6 and record below a value of x at which loss of significance occurs.

