Assignment 7: Limits, Part III (1.7) Please provide a handwritten response.

1a. Example 7.1 uses the function $f(x) = \frac{(x^3 + x^3)}{x^3}$	$\frac{(x+4)^2 - x^6}{x^3}$ to illustrate the dangers of loss of
significance errors. Execute the command	V
$f[\mathbf{x}_{]} = ((\mathbf{x}^{3} + 4)^{2} - \mathbf{x}^{6})/\mathbf{x}^{3}$ to define <i>f</i> and then execute the command Plot[f[x], {x, 10000, 100000}] to reproduce Figure 1.57a. Sketch the result on the axes at right. Does this graph give any in- dication of the value of $\lim_{x \to \infty} f(x)$? Explain.	8.1 8.075 8.05 8.025 7.975 7.975 7.95 7.925 7.9

1b. Next, execute the commands f[1000.], f[10000.], etc. to complete the table at right.

1c. Now execute the command

Limit[f[x], x -> Infinity]

and record the result below. Is it likely that all of these results are correct? Which ones are not?

X	$f(\mathbf{x})$
1000	
10000	
100000	
1000000	
10000000	

1d. Remark 7.1 points out that <i>f</i> can be rewritten as	
$f(x) = \frac{8x^3 + 16}{x^3}$; execute the commands Clear[f] and	
$f[x_] = (8x^3 + 16)/x^3$	

and then complete the table at right with this new (but equivalent) formula for f. Do you think these new results are more trustworthy?

x	$f(\mathbf{x})$
1000	
10000	
100000	
1000000	
1000000	

Name_____

2. Scientific notation is used to write very large or very small numbers in a convenient form; for example, .0000000002673 would be written in scientific notation as 2.673×10^{-12} . In *Mathematica* execute the command $2.673 \times 10^{-}$ (-12) and record the result below.

3a. In Exercise 3 we seek a value of x for which loss of significance occurs in

$$\lim_{x \to \infty} \sqrt{x} \left(\sqrt{x+4} - \sqrt{x+2} \right).$$
 Define $g(x) = \sqrt{x} \left(\sqrt{x+4} - \sqrt{x+2} \right)$ by executing the command
 $g[\mathbf{x}] = \text{Sqrt}[\mathbf{x}]$ (Sqrt $[\mathbf{x} + 4] - \text{Sqrt}[\mathbf{x} + 2]$)

 \boldsymbol{y}

0.9995

0.999

0.9985

0.998 0.9975 0.997

0. 9965 ^E

Then execute the command

Plot[g[x], {x, 0, 100000}]

and sketch the result on the axes at right. Based on this graph, what value would you give for $\lim_{x\to\infty} \sqrt{x} \left(\sqrt{x+4} - \sqrt{x+2} \right)$?

3b. Next, execute the commands

 $g[1.*10^13]$, $g[1.*10^14]$, etc. to

complete the table at right. Where does loss of significance occur?

3c. We can rewrite g to avoid loss of significance; you can check that multiplying
$$g(x)$$
 by $\frac{\sqrt{x+4} + \sqrt{x+2}}{\sqrt{x+4} + \sqrt{x+2}}$ gives

 $\frac{2\sqrt{x}}{\sqrt{x+4}+\sqrt{x+2}}$. Enter the commands Clear[g] and

g[x] = 2Sqrt[x]/(Sqrt[x + 4] + Sqrt[x + 2])

Then complete the table at right just as in part **b**. Do these results seem more reliable?

3d. Finally, execute the command

Limit[g[x], x->Infinity]

and record the result below. Does it seem to be correct?

3e. Repeat parts **a** and **b** for Exercise 6 and record below a value of *x* at which loss of significance occurs.

x	g(x)
1×10^{13}	
1×10^{14}	
1×10^{15}	
1×10^{16}	
1×10^{17}	

20000400006000080000100000

	• /
x	g(x)
1×10^{13}	
1×10^{14}	
1×10^{15}	
1×10^{16}	
1×10^{17}	

Insights into Calculus using Mathematica