Assignment 8: Derivatives of Explicit Functions (2.1-9) Please provide a handwritten response.

1a. In Example 2.2 the derivative of the function $f(x)=3 x^{3}+2 x-1$ was found to be $f^{\prime}(x)=9 x^{2}+2$. To carry out this calculation in Mathematica, first execute the command

$$
f\left[x_{-}\right]=3 x^{\wedge} 3+2 x-1
$$

followed by the command $\mathbf{f}^{\prime}[\mathbf{x}]$. Record the result below; did Mathematica find the derivative correctly?

1b. The slope $m_{\text {tan }}$ of the line tangent to the graph of f at, say, $x=1$ is given by $f^{\prime}(1)$; execute f^{\prime} [1] to see that $m_{\text {tan }}=11$ in this case. Also execute $\mathrm{f}[1]$ to see that $y=4$ when $x=1$. The equation of our tangent line is therefore $y=11(x-1)+4=11 x-7$; execute

$$
t\left[x_{-}\right]=11 x-7
$$

followed by
Plot $[\{f[x], t[x]\},\{x,-1$, 1.5\}]
to graph both f and the tangent line together.

Sketch the result on the axes at right. Does the tangent line really look as though its slope is 11 ? Why?

2a. To find the second derivative $f^{\prime \prime}$ of f, execute the command f^{\prime} ' $[\mathrm{x}]$. (The double-prime symbol ' ' consists of the single-quote (or apostrophe) twice, not the double-quote once!) Record the result below; is it correct?

2b. Next execute the commands $g\left[\mathbf{x}_{-}\right]=\operatorname{Sin}[2 \mathbf{x} /(\mathbf{x}+1)]$ followed by g^{\prime} ' $[\mathbf{x}]$, and record the result below; would you care to work this out by hand?!

3a. Execute Clear $[\mathrm{f}]$ and $\mathrm{f}\left[\mathrm{x} _\right]=\mathbf{x}^{\wedge} \mathbf{2} * \operatorname{Exp}[\operatorname{Sin}[\mathrm{x}]$] to define the function $f(x)=x^{2} e^{\sin x}$, followed by $f^{\prime}[\mathbf{x}]$. Record the result below; what rules and formulas presented in this chapter did Mathematica need to find $f^{\prime}(x)$?

3b. Execute the command

$$
\text { Plot }[f \cdot[x],\{x,-4,4\}]
$$

to plot the derivative $f^{\prime}(x)$ over $-4 \leq x \leq 4$; sketch the result on the axes at right.

3c. According to the definition of derivative, if h is a small fixed number, then the difference quotient $\frac{f(x+h)-f(x)}{h}$ should be
 close to $f^{\prime}(x)$, and so their graphs should lie close together. For the moment let's choose $h=0.5$; execute

$$
r\left[x_{-}\right]=(f[x+0.5]-f[x]) / 0.5
$$

to define $r(x)$ as the quotient $\frac{f(x+0.5)-f(x)}{0.5}$, and then execute Plot [\{f'[x], $r[x]\},\{x,-4,4\}]$ to graph both $f^{\prime}(x)$ and $r(x)$ over $-4 \leq x \leq 4$ on the same axes. Sketch the result on the axes at right, using a dotted curve for the graph of $r(x)$.

3d. Execute Clear [r], change the 0.5 to
0.4 in the definition of $r(x)$ in part \mathbf{c}, and execute the commands in part \mathbf{c} again. Are the two graphs closer? Can you still tell them apart?

3e. Experiment with smaller and smaller values of h until the graphs of $f^{\prime}(x)$ and $r(x)$ over $-4 \leq x \leq 4$ become indistinguishable on your computer screen. How small does h have to be for this to happen?

