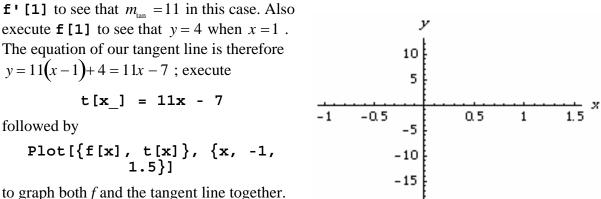
Assignment 8: Derivatives of Explicit Functions (2.1–9) Name_ Please provide a handwritten response.

1a. In Example 2.2 the derivative of the function $f(x) = 3x^3 + 2x - 1$ was found to be $f'(x) = 9x^2 + 2$. To carry out this calculation in *Mathematica*, first execute the command

$$f[x_] = 3x^3 + 2x - 1$$

followed by the command **f** ' **[x]** . Record the result below; did *Mathematica* find the derivative correctly?

1b. The slope m_{tan} of the line tangent to the graph of f at, say, x = 1 is given by f'(1); execute

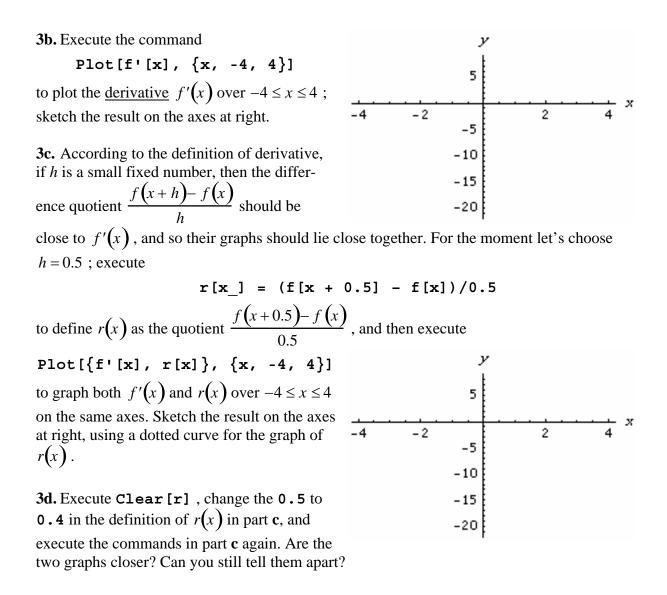


to graph both f and the tangent line together. Sketch the result on the axes at right. Does the tangent line really look as though its slope is 11 ? Why?

2a. To find the second derivative f'' of f, execute the command f''[x]. (The double-prime symbol '' consists of <u>the single-quote (or apostrophe) twice</u>, not the double-quote once!) Record the result below; is it correct?

2b. Next execute the commands $g[x_] = Sin[2x/(x + 1)]$ followed by g''[x], and record the result below; would you care to work this out by hand?!

3a. Execute Clear [f] and f [x_] = $x^2 \times Exp[Sin[x]]$ to define the function $f(x) = x^2 e^{\sin x}$, followed by f'[x]. Record the result below; what rules and formulas presented in this chapter did *Mathematica* need to find f'(x)?



3e. Experiment with smaller and smaller values of *h* until the graphs of f'(x) and r(x) over $-4 \le x \le 4$ become indistinguishable on your computer screen. How small does *h* have to be for this to happen?