1a. The implicit function $x^{2} y^{2}-2 x=4-4 y$ from Example 8.2 can be entered into Mathematica by executing

```
eqn = x^2*y[x]^2 - 2x == 4 - 4y[x]
```

Record the result below. (Be careful! The double equal sign $==$ is used within the equation itself, whereas the single equal sign $=$ is used to assign the label eqn to the entire equation. Also, whereas x is simply entered as \mathbf{x} in the command above, y must be entered as $\mathbf{y}[\mathbf{x}]$, to make it clear to Mathematica that y is to be considered as a function of x in this equation.)

1b. We can "take the derivative of both sides with respect to x " by executing the command deriv = D [eqn, x] ; record the result below. (We will use the "differentiation operator" D to find more derivatives later.)

1c. We can solve this equation for the desired $y^{\prime}(x)$ by executing

```
yprime = Solve[deriv, y'[x]]
```

Record the result below; does it agree with Example 8.2 so far?
2. Mathematica can draw the graph of our equation, but first we must provide some extra capability by loading in a "package". Execute the command

Needs["Graphics`ImplicitPlot`"]
to load in the ImplicitPlot package. (Be
careful - the `character is not the singlequote, but rather is located to the left of the " 1 " on your keyboard; however, the " character is the double-quote.) Now execute


```
curve = ImplicitPlot[x^2* y^2 - 2x == 4-4y, {x, -5, 5}]
```

and sketch the result on the axes. (Notice that here we must refer to y simply as \mathbf{y}, not as $\mathbf{y}[\mathbf{x}$] as we did above; that's just how Mathematica works.) Does your graph look like Figure 2.41 so far?

3a. In Example 8.2 a tangent line is drawn to the graph at the point $(2,-2)$; using Mathematica, however, we are free to use any value of x we wish, for example $x=2.235$. Execute the command

```
eqn/. x->2.235
```

and record the result below. How was eqn changed by the replacement /. $\mathbf{x - > 2 . 2 3 5 ?}$

Now execute the command

```
Solve[eqn/. x->2.235, y[2.235]]
```

and record the result below. How many points on this curve satisfy $x=2.235$? Mark them with dots on the curve you drew in Question 2, and label their cöordinates clearly.

3b. One of the y-values you found in part \mathbf{a} is -1.76271 ; based on your graph in Question 2, would you expect y^{\prime} to be positive or negative at the point $(2.235,-1.76271)$? About how large would you expect y^{\prime} to be? Why?

3c. Execute the command

$$
\text { yprime/.\{x->2.235, y[x]->-1.76271\} }
$$

to replace x and $y[x]$ in yprime with the appropriate values, which will give the exact value of y^{\prime} at the point $(2.235,-1.76271)$. Record the result below.

3d. Since we found that $y^{\prime}=0.873528$ in part \mathbf{c}, an equation of the tangent line to our curve at the point $(2.235,-1.76271)$ is given by

$$
\begin{aligned}
& y=0.873528(x-2.235)-1.76271 \text {; execute } \\
& \quad \mathrm{t}\left[\mathbf{x}_{-}\right]=0.873528(\mathbf{x}-2.235)-1.76271
\end{aligned}
$$

and then graph the tangent line by executing

```
tanline = Plot[t[x], {x, -2.5, 5}]
```

3e. Finally, we can use the Show command to draw the curve and the tangent line together. Execute

```
Show[curve, tanline]
```

and sketch the result on the axes at right.

