Circular Polarization

In a circularly polarized EM wave, the electric field at any point has a constant magnitude but its direction rotates in the plane perpendicular to the direction of propagation. Imagine the electric field vector rotating, with its tip tracing out a circle. According to the convention used in optics, if you are looking at the wave coming toward you and the electric field vector rotates clockwise, it is right circularly polarized; if it rotates counterclockwise it is left circularly polarized.

A circularly polarized wave is the superposition of waves polarized along perpendicular axes that have the same amplitude and frequency and are 90° out of phase. Suppose that at some point the electric fields due to two waves traveling along the z-axis are $E_{x}=E_{\mathrm{m}} \cos \omega t$ and $E_{y}=E_{\mathrm{m}} \sin \omega t$. At any time the magnitude of the electric field is E_{m} :

$$
E=\sqrt{E_{x}^{2}+E_{y}^{2}}=\sqrt{E_{\mathrm{m}}^{2} \cos ^{2} \omega t+E_{\mathrm{m}}^{2} \sin ^{2} \omega t}=E_{\mathrm{m}} \sqrt{\cos ^{2} \omega t+\sin ^{2} \omega t}=E_{\mathrm{m}}
$$

At a time t the electric field makes an angle θ with respect to the $+x$-axis, where

$$
\theta=\tan ^{-1} \frac{E_{y}}{E_{x}}=\tan ^{-1}\left(\frac{E_{\mathrm{m}} \sin \omega t}{E_{\mathrm{m}} \cos \omega t}\right)=\omega t
$$

Thus, the electric field vector rotates with constant angular velocity ω.

