1. The only acceleration involved is that of gravity, so this is an example of uniformly accelerated motion for which the relationship between velocity, acceleration and time is given as $v=v_{o}+a$ t. Here the initial velocity, v_{0}, is given as zero and the acceleration is that of gravity and is directed downward. If the positive direction is chosen as upward, $a=g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ so we have

$$
\begin{aligned}
& v=0+a t \\
& v=\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(2 \mathrm{~s}) \\
& v=-19.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Note the negative sign indicating that the velocity is downward (recall that the upward direction was chosen as positive).

