3. This problem differs from the first one in that it has a non-zero value for the initial velocity. We use the same equation as was used in the first problem with a negative value for the initial velocity, because the rock was initially thrown downward.

$$
\begin{aligned}
& \mathrm{v}=\mathrm{v}_{0}+\mathrm{at} \\
& \mathrm{v}=-5 \mathrm{~m} / \mathrm{s}+\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& \mathrm{v}=-5 \mathrm{~m} / \mathrm{s}-19.6 \mathrm{~m} / \mathrm{s}=-24.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Note the negative sign indicating that the velocity is downward. The initial velocity was downward and the acceleration due to gravity is downward, so this should not be surprising.

