7. Kepler's Third Law states that the cube of the radius is proportional to the square of the period. This means that the quantity $\mathrm{T}^{2} / \mathrm{r}^{3}$ is a constant. This allows us to equate one set of such values for an orbit about the Sun to another set of values or

$$
\mathrm{T}_{1}^{2} / \mathrm{r}_{1}^{3}=\mathrm{T}_{2}^{2} / \mathrm{r}_{2}^{3}
$$

We multiply both sides of the equation by $\mathrm{r}_{1}{ }^{2}$ to obtain $\mathrm{T}_{1}{ }^{2}$ alone

$$
\begin{aligned}
& \mathrm{T}_{1}^{2}=\left(\mathrm{T}_{2}^{2}\right)\left(\mathrm{r}_{1}^{3}\right) /\left(\mathrm{r}_{2}^{3}\right) \\
& \mathrm{T}_{1}^{2}=\left(\mathrm{T}_{2}^{2}\right)\left(\mathrm{r}_{1} / \mathrm{r}_{2}\right)^{3} \\
& \mathrm{~T}_{1}^{2}=(1 \mathrm{yr})^{2}\left[\left(2 \times 1.5 \times 10^{11} \mathrm{~m}\right) /\left(1.5 \times 10^{11} \mathrm{~m}\right)\right]^{3} \\
& \mathrm{~T}_{1}^{2}=1 \mathrm{yr}^{2}[2]^{3}=8 \mathrm{yr}^{2}
\end{aligned}
$$

We now take the square root of both sides of the equation to obtain the time for the orbit as

$$
\mathrm{T}_{1}=2.83 \mathrm{yr}
$$

Thus it would take 2.83 years for a planet located at twice the distance from the Sun that the Earth is located to complete one rotation about the Sun.

