8. The car is traveling in a curve, so the required force is the centripetal force. We know the force and the radius in this case, so we solve for the speed.

$$
F_{c}=m v^{2} / r
$$

We multiply both sides of the equation by r / m in order to obtain v^{2} alone on one side of the equation as in problem 2 above.

$$
\begin{aligned}
& v^{2}=\left(F_{\mathrm{c}}\right)(\mathrm{r} / \mathrm{m}) \\
& \mathrm{v}^{2}=(7000 \mathrm{~N})(40 \mathrm{~m} / 1000 \mathrm{~kg})=280 \mathrm{~m}^{2} / \mathrm{s}^{2}
\end{aligned}
$$

We take the square root of both sides of the equation to obtain the speed.

$$
v=16.7 \mathrm{~m} / \mathrm{s}=54.8 \mathrm{ft} / \mathrm{s}=37.3 \mathrm{miles} / \mathrm{hr}
$$

