10. This problem can be solved using the principle of conservation of mechanical energy in exactly the same manner as we solved problem number 6 and problem number 8 . Thus we have

$$
\begin{aligned}
& \mathrm{PE}_{1}+\mathrm{KE}_{1}=\mathrm{PE}_{2}+\mathrm{KE}_{2} \\
& \mathrm{mgh}+0=0+1 / 2 \mathrm{~m}\left(\mathrm{v}_{2}\right)^{2} \\
& \mathrm{~g} \mathrm{~h}_{1}=1 / 2\left(\mathrm{v}_{2}\right)^{2} \\
& \left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.4 \mathrm{~m})=(1 / 2)\left(\mathrm{v}_{2}\right)^{2} \\
& \left(\mathrm{v}_{2}\right)^{2}=7.84 \mathrm{~m}^{2} / \mathrm{s}^{2} \\
& \mathrm{v}_{2}=2.8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

