10. This problem also involves a direct application of the principle of the conservation of momentum.

$$
\begin{aligned}
\mathrm{p}_{\text {before }} & =\mathrm{p}_{\text {after }} \\
\mathrm{m} \mathrm{v}_{1}+m \mathrm{v}_{2} & =\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{v}_{\text {after }} \\
(2000 \mathrm{~kg}) \mathrm{v}_{1}+(1500 \mathrm{~kg})(0) & =(2000 \mathrm{~kg}+1500 \mathrm{~kg})(6 \mathrm{~m} / \mathrm{s}) \\
(2000 \mathrm{~kg}) \mathrm{v}_{1} & =(3500 \mathrm{~kg})(6 \mathrm{~m} / \mathrm{s}) \\
(2000 \mathrm{~kg}) \mathrm{v}_{1} & =21000 \mathrm{~kg} \mathrm{~m} / \mathrm{s} \\
v_{1} & =10.5 \mathrm{~m} / \mathrm{s}=23.5 \mathrm{miles} / \mathrm{hr}
\end{aligned}
$$

