3. This problem is very similar to a problem we solved in an Chapter 3 for linear motion in which an object starting from rest experienced a constant acceleration. We can use the expression for angular velocity that is analogous to that for linear velocity as expressed in Table 8.1 on page 137 in the text.

$$
\begin{aligned}
& \omega=\omega_{0}+\alpha \mathrm{t} \\
& \omega=0+\left(2.0 \mathrm{rad} / \mathrm{s}^{2}\right)\left(5 \mathrm{~s}^{2}\right) \\
& \omega=10.0 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

We know that one revolution is equal to 2π radians, so we convert to rev/s by dividing by 2π.

$$
\begin{aligned}
& \omega=(10.0 \mathrm{rad} / \mathrm{s})(1 \mathrm{rev} / 2 \pi \mathrm{rad}) \\
& \omega=1.59 \mathrm{rev} / \mathrm{s}
\end{aligned}
$$

