6. Newton's Second Law of Rotational Motion relates the torque to the moment of inertia and angular acceleration as

$$
\tau=\mathrm{I} \alpha
$$

We are interested in the angular acceleration, so we divide both sides of the equation by the moment of inertia to get

$$
\begin{aligned}
& \alpha=\tau / \mathrm{I} \\
& \alpha=(30 \mathrm{~N} \mathrm{~m}) /\left(5.0 \mathrm{~kg} \mathrm{~m}^{2}\right)=\left(6 \mathrm{~m} \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}\right) /\left(\mathrm{kg} \mathrm{~m}^{2}\right) \\
& \alpha=6.0 \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

