7. The moment of inertia of a point mass is the product of the mass times the square of the distance from the pivot point.

$$
\begin{aligned}
& I=m r^{2} \\
& I=(2.0 \mathrm{~kg})(0.3 \mathrm{~m})^{2} \\
& I=(2.0 \mathrm{~kg})\left(0.09 \mathrm{~m}^{2}\right)=0.18 \mathrm{~kg} \mathrm{~m}^{2}
\end{aligned}
$$

The angular momentum is defined as the product of the moment of inertia times the angular velocity.

$$
\begin{aligned}
L & =I \omega \\
L & =\left(0.18 \mathrm{~kg} \mathrm{~m}^{2}\right)(8.0 \mathrm{rad} / \mathrm{s})=1.44 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

