9. The potential difference can be calculated by dividing the work done by the size of the charge.

$$
\Delta \mathrm{V}=\mathrm{W} / \mathrm{q}
$$

Multiplying both sides of the equation by the size of the charge allows us to calculate the work done.

$$
\begin{aligned}
& \mathrm{W}=(\Delta \mathrm{V}) \mathrm{q} \\
& \mathrm{~W}=(80 \mathrm{~V})\left(3.0 \times 10^{-6} \mathrm{C}\right) \\
& \mathrm{W}=240 \times 10^{-6} \mathrm{VC}=2.4 \times 10^{-4} \mathrm{~J} \text { because } 1 \mathrm{~J}=(1 \mathrm{~V})(1 \mathrm{C})
\end{aligned}
$$

