1. Current is defined as the amount of charge per unit time or $I=q / t$, so we can determine the amount of charge involved with a given current if we multiply both sides of the equation by t to get

$$
\begin{aligned}
& q=I t \\
& q=(1 A)(1 s)
\end{aligned}
$$

One Ampere is defined as one Coulomb per second, so we have a charge of

$$
\begin{aligned}
& q=(1 C / s)(1 \mathrm{~s}) \\
& q=1 C
\end{aligned}
$$

From Chapter 12 (see problem 1 for Chapter 12 on page 94 in this Study Guide) we know that one electron charge is equivalent to 1.6×10^{-19} Coulomb.

Multiplying both sides of the equation by one in the form (1 electron charge) / (1.6 $\left.\times 10^{-19} \mathrm{C}\right)$ gives

$$
\begin{aligned}
q & =(1 \mathrm{C})(1 \text { electron charge }) /\left(1.6 \times 10^{-19} \mathrm{C}\right) \\
\text { or } \quad \mathrm{q} & =6.25 \times 10^{18} \text { electron charges }
\end{aligned}
$$

This is a very large number of charges indicating that even a relatively modest current of one Ampere represents the motion of a very large number of individual charges.

