
' Convert quantity to numeric variables.
quantityInteger = Integer.Parse(quantityTextBox.Te
Try

' Convert price if quantity was successful.
priceDecimal = Decimal.Parse(priceTextBox.Text)

' Calculate values for sale.
extendedPriceDecimal = quantityInteger * priceD
discountDecimal = extendedPriceDecimal *

DISCOUNT_RATE_Decimal
discountedPriceDecimal = extendedPriceDecimal -

discountDecimal

' Calculate summary values.

C H A P T E R

2
Building Multitier
Programs with
Classes

at the completion of this chapter, you will be able to . . .

1. Discuss object-oriented terminology.

2. Create your own class and instantiate objects based on the class.

3. Create a new class based on an existing class.

4. Divide an application into multiple tiers.

5. Throw and catch exceptions.

6. Choose the proper scope for variables.

7. Validate user input using the TryParse and display messages using an ErrorProvider component.

bra17178_ch02_51-108 03/13/06 22:22 Page 51

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

At this point in your programming career, you should be comfortable with using
objects, methods, and properties. You have already learned most of the basics
of programming including decisions, loops, and arrays. You must now start writ-
ing your programs in styles appropriate for larger production projects.

Most programming tasks are done in teams. Many developers may work on
different portions of the code and all of the code must work together. One of the
key concepts of object-oriented programming (OOP) is that of using building
blocks. You will now break your programs into blocks, or, using the proper
term, classes.

This chapter reviews object-oriented programming concepts and tech-
niques for breaking your program into multiple tiers with multiple classes.
Depending on how much of your first course was spent on OOP, you may find
that much of this chapter is review.

Object-Oriented Programming
Visual Basic is an object-oriented language and all programming uses the OOP
approach. If you learned to program in a previous version of VB, you used ob-
jects, but you were shielded from most of the nitty-gritty of creating objects. But
in VB you will find that everything you do is based on classes. Each form is a
class, which must be instantiated before it can be used. Even variables of the
basic data types are objects, with properties and methods.

OOP Terminology

The key features of object-oriented programming are abstraction, encapsula-
tion, inheritance, and polymorphism.

Abstraction
Abstraction means to create a model of an object, for the purpose of deter-
mining the characteristics (properties) and the behaviors (methods) of the
object. For example, a Customer object is an abstract representation of a real
customer, and a Product object is an abstract version of a real product. You
need to use abstraction when planning an object-oriented program, to deter-
mine the classes that you need and the necessary properties and methods. It is
helpful to think of objects generically; that is, what are the characteristics of a
typical product, rather than a specific product.

Encapsulation
Encapsulation refers to the combination of characteristics of an object along
with its behaviors. You have one “package” that holds the definition of all
properties, methods, and events.

Encapsulation is sometimes referred to as data hiding. Each object keeps
its data (properties) and procedures (methods) hidden. Through use of the
Public and Private keywords, an object can “expose” only those data elements
and procedures that it wishes to allow the outside world to see.

You can witness encapsulation by looking at any Windows program. The
form is actually a class. All of the methods and events that you code are

52 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

bra17178_ch02_51-108 3/13/06 13:30 Page 52

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

C H A P T E R 2 53

enclosed within the Class and End Class statements. The variables that you
place in your code are actually properties of that specific form class.

Inheritance
Inheritance is the ability to create a new class from an existing class. You can
add enhancements to an existing class without modifying the original. By creat-
ing a new class that inherits from an existing class, you can add or change class
variables and methods. For example, each of the forms that you create is inher-
ited from, or derived from, the existing Form class. The original class is known
as the base class, superclass, or parent class. The inherited class is called a
subclass, a derived class, or a child class. Of course, a new class can inherit
from a subclass—that subclass becomes a superclass as well as a subclass.

You can see the inheritance for a form, which is declared in the form’s
designer.vb file. Show all files in the Solution Explorer, expand the files for a
form, and open the form’s designer.vb file. Look closely at the first line of code:

Partial Public Class MainForm
Inherits System.Windows.Forms.Form

Inherited classes should always have an “is a” relationship with the base
class. In the form example, the new MainForm “is a” Form (Figure 2.1). You
could create a new Customer class that inherits from a Person class; a customer
“is a” person. But you should not create a new SalesOrder class that inherits
from Person; a sales order is not a person.

The real purpose of inheritance is reusability. You may need to reuse or
obtain the functionality from one class of object when you have another similar
situation. The new MainForm class that you create has all of the characteristics
and actions of the base class, System.Windows.Forms.Form. From there you
can add the functionality for your own new form.

You can create your own hierarchy of classes. You place the code you want
to be common in a base class. You then create other classes, the derived classes
or subclasses, which can call the shared functions. This concept is very help-
ful if you have features that are similar in two classes. Rather than writing two
classes that are almost identical, you can create a base class that contains the
similar procedures.

Sometimes you create a class specifically to use it as a base for derived
classes. You can create a class strictly for inheritance; such a class is called an
abstract class and is declared with MustInherit in the class header. You cannot

Form Person

Customer

is a is a

MainForm

F i g u r e 2 . 1

A derived or inherited class has
an “is a” relationship with its
base class.

bra17178_ch02_51-108 3/13/06 13:30 Page 53

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

instantiate objects from an abstract class, only inherit new classes from it. Some of
the methods in the base class may not even contain any code but are there as
placeholders, forcing any derived classes to have methods with the defined names.
A derived class with a method named the same as a method in the base class is
said to override the method in the base class. Overriding allows an inherited
class to take different actions from the identically named method in the base class.

An example of reusing classes could be a Person class, where you might
have properties for name, address, and phone number. The Person class can be
a base class, from which you derive an Employee class, a Customer class, or a
Student class (Figure 2.2). The derived classes could call procedures from the
base class and contain any additional procedures that are unique to the derived
class. In inheritance, typically the classes go from the general to the more spe-
cific. You can add functionality to an inherited class. You also can change or
delete a function by overriding a method from the base class.

Polymorphism
The term polymorphism actually means the ability to take on many shapes or
forms. As applied to OOP, polymorphism refers to method names that have
identical names but different implementations, depending on the situation. For
example, radio buttons, check boxes, and list boxes each has a Select method.
In each case, the Select method operates appropriately for its class.

When a derived class overrides a method of its base class, both methods
have the same name. But in each case, the actions performed are appropriate
for the class. For example, a Person class might have a Print method that
prints an address label with name and address information. But the Print
method of the Employee class, which overrides the Print method of the Person
class, might display the employee’s information, including hire date and super-
visor name, on the screen.

Polymorphism also allows a single class to have more than one method with
the same name but a different argument list. The method is said to be over-
loaded. When an overloaded method is called, the argument type determines
which version of the method to use. Each of the identically named methods per-
forms its tasks in a slightly different way from the other methods.

54 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

F i g u r e 2 . 2

Multiple subclasses can inherit
from a single base class.

-Name
-Address
-Phone

Person

-HireDate
-Supervisor

Employee Customer

-PIN
-BirthDate

Student

bra17178_ch02_51-108 3/13/06 13:30 Page 54

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

C H A P T E R 2 55

Reusable Objects

A big advantage of object-oriented programming over traditional programming
is the ability to reuse objects. When you create a new class by writing a class
module, you can then use that class in multiple projects. Each object that you
create from the class has its own set of properties. This process works just like
the built-in VB controls you have been using all along. For example, you can
create two PictureBox objects: imageOnePictureBox and imageTwoPictureBox.
Each has its own Visible property and Image property, which will probably be
set differently than for the other.

The building-block concept can streamline programming. Consider a large
corporation such as Microsoft, with many different programming teams. Perhaps
one team develops the Word product and another team works on Excel. What
happened when the Word team decided to incorporate formulas in tables? Do
you think they wrote all new code to process the formulas? Likewise, there was
a point when the Excel team added spell checking to worksheets. Do you think
that they had to rewrite the spell-checking code? Obviously, it makes more
sense to have a spell-checking object that can be used by any application and a
calculation object that processes formulas in any application where needed.

Developing applications should be like building objects with LegoTM blocks.
The blocks all fit together and can be used to build many different things.

Multitier Applications

A common use of classes is to create applications in multiple “tiers” or layers.
Each of the functions of a multitier application can be coded in a separate
component and the components may be stored and run on different machines.

One of the most popular approaches is a three-tier application. The tiers in
this model are the presentation (or user interface) tier, business tier, and data
tier (Figure 2.3). You also may hear the term “n-tier” application, which is an
expansion of the three-tier model. The middle tier, which contains all of the
business logic or business rules, may be written in multiple classes that can
be stored and run from multiple locations.

In a multitier application, the goal is to create components that can be
combined and replaced. If one part of an application needs to change, such as
a redesign of the user interface or a new database format, the other components
do not need to be replaced. A developer can simply “plug in” a new user inter-
face and continue using the rest of the components of the application.

The presentation tier refers to the user interface, which in a Windows
application is the form. Consider that, in the future, the user interface could be
completely redesigned or even converted to a Web page.

F i g u r e 2 . 3

The three-tier model for
application design.

User Interface
 Forms, controls, menus

Business Objects
 Validation
 Calculations
 Business logic
 Business rules

Data Retrieval
 Data storage

Presentation Tier Business Tier Data Tier

bra17178_ch02_51-108 3/13/06 13:30 Page 55

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

➤

The business tier is a class or classes that manipulate the data. This layer
can include validation to enforce business rules as well as the calculations. If
the validation and calculations are built into the form, then modifying the user
interface may require a complete rewrite of a working application.

The data tier includes retrieving and storing the data in a database. Oc-
casionally an organization will decide to change database vendors or need to
retrieve data from several different sources. The data tier retrieves the data and
passes the results to the business tier, or takes data from the business tier and
writes them in the appropriate location.

Programmers must plan ahead for reusability in today’s environment. You
may develop the business tier for a Windows application. Later the company
may decide to deliver the application via the Web or a mobile device, such as
a cell phone or palm device. The user interface must change, but the process-
ing shouldn’t have to change. If you develop your application with classes that
perform the business logic, you can develop an application for one interface
and easily move it to another platform.

Feedback 2.1

1. Name at least three types of operations that belong in the business tier.
2. List as many operations that you can think of that belong in the presen-

tation tier.

Creating Classes
You most likely learned to create classes in your introductory course. It’s time
to review the techniques and to delve deeper into the concepts. If you are com-
fortable with creating new classes, writing property procedures including read-
only properties, and using a parameterized constructor, you may want to skip
over the next few sections and begin with “A Basic Business Class.”

Designing Your Own Class

To design your own class, you need to analyze the characteristics and behaviors
that your object needs. The characteristics or properties are defined as vari-
ables, and the behaviors (methods) are sub procedures or function procedures.

Creating Properties in a Class

Inside your class you define private variables, which contain the values for the
properties of the class. Theoretically, you could declare all variables as Public
so that all other classes could set and retrieve their values. However, this ap-
proach violates the rules of encapsulation that require each object to be in
charge of its own data. Remember that encapsulation is also called data hiding.
To accomplish encapsulation, you will declare all variables in a class as
Private. As a private variable, the value is available only to the procedures
within the class, the same way that private module-level variables in a form are
available only to procedures within the form’s class.

When your program creates objects from your class, you will need to assign
values to the properties. Because the properties are private variables, you will
use special property procedures to pass the values to the class module and to
return values from the class module.

56 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

bra17178_ch02_51-108 3/13/06 13:30 Page 56

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

G
eneral

F
orm Private ClassVariable As DataType ' Declared at the module level.

[Public] Property PropertyName() As DataType
Get

PropertyName = ClassVariable
or

Return ClassVariable
End Get

Set(ByVal Value As DataType)

[Statements, such as validation]
ClassVariable = Value

End Set
End Property

Private lastNameString As String ' Declared at the module level.

Public Property LastName() As String
Get

Return lastNameString
' Alternate version:
' LastName = lastNameString

End Get

Set(ByVal Value As String)
lastNameString = Value

End Set
End Property

E
xam

ple

C H A P T E R 2 57

Property Procedures
The way that your class allows its properties to be accessed is through
property procedures. A property procedure may contain a Get to retrieve a
property value and/or a Set to assign a value to the property. The name that you
use for the Property procedure becomes the name of the property to the
outside world. Create “friendly” property names that describe the property
without using a data type, such as LastName or EmployeeNumber.

The Property Procedure—General Form

The Set statement uses the Value keyword to refer to the incoming value
for the property. Property procedures are public by default, so you can omit the
optional Public keyword. Get blocks are similar to function procedures in at
least one respect: Somewhere inside the procedure, before the End Get, you
must assign a return value to the procedure name or use a Return statement.
The data type of the incoming value for a Set must match the type of the return
value of the corresponding Get.

The Property Procedure—Example

Remember, the private module-level variable holds the value of the
property. The Property Get and Set retrieve the current value and assign a
new value to the property.

bra17178_ch02_51-108 3/13/06 13:30 Page 57

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

Private payDecimal As Decimal ' Declared at the module level

Public ReadOnly Property Pay() As Decimal ' Make the property read-only.
Get

Return payDecimal
End Get

End Property

Private passwordString As String ' Declared at the module level.

Public WriteOnly Property Password() As String ' Make it write-only.
Set

passwordString = Value
End Set

End Property

Sub New()
' Constructor for class.

' Initialization statements.
End Sub

Read-Only and Write-Only Properties
In some instances, you may wish to set a value for a property that can only be
retrieved by an object but not changed. To create a read-only property, use the
ReadOnly modifier and write only the Get portion of the property procedure.
Security recommendations are to not include a Set procedure unless one is
needed for your application or for class inheritance.

58 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

A write-only property is one that can be set but not returned. Use the
WriteOnly modifier and write only the Set portion of the property procedure:

Constructors and Destructors

A constructor is a method that automatically executes when an object is in-
stantiated. A destructor is a method that automatically executes when an ob-
ject is destroyed. In VB, the constructor must be a procedure named New. The
destructor must be named Dispose and must override the Dispose method of
the base class. You will generally write constructors for your classes, but usu-
ally not destructors. Most of the time the Dispose method of the base class
handles the class destruction very well.

You create a constructor for your class by writing a Sub New procedure. The
constructor executes automatically when you instantiate an object of the class.
Because the constructor method executes before any other code in the class,
the constructor is an ideal location for any initialization tasks that you need to
do, such as opening a database connection.

The Sub New procedure must be Public or Protected, because the objects
that you create must execute this method. Remember that the default is Public.

Overloading the Constructor
Recall that overloading means that two methods have the same name but a
different list of arguments (the signature). You can create overloaded methods
in your class by giving the same name to multiple procedures, each with a

bra17178_ch02_51-108 3/13/06 13:30 Page 58

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

' Constructors in the Payroll class.

Sub New()
' Constructor with empty argument list.

End Sub

Sub New(ByVal hoursDecimal As Decimal, ByVal rateDecimal As Decimal)
' Constructor that passes arguments.

' Assign incoming values to private variables.
With Me

.hoursDecimal = hoursDecimal

.rateDecimal = rateDecimal
End With

End Sub

' Code in the Form class to instantiate an object of the Payroll class.

Try
Dim payObject As New Payroll(_
Decimal.Parse(hoursTextBox.Text), Decimal.Parse(rateTextBox.Text))

Catch Err As Exception
MessageBox.Show("Enter the hours and rate.", "Payroll")

End Try

C H A P T E R 2 59

different argument list. The following example shows an empty constructor (one
without arguments) and a constructor that passes arguments to the class.

Note: It isn’t necessary to include the ByVal modifier to arguments since
ByVal is the default. The editor adds ByVal to the arguments if you leave it out.

A Parameterized Constructor
The term parameterized constructor refers to a constructor that requires ar-
guments. This popular technique allows you to pass arguments/properties as
you create the new object. In the preceding example, the Payroll class requires
two decimal arguments: the hours and the rate. By instantiating the Payroll ob-
ject in a Try / Catch block, you can catch any missing input value as well as
any nonnumeric input.

Assigning Arguments to Properties
As a further improvement to the Payroll parameterized constructor, we will
use the property procedures to assign initial property values. Within the class
module, use the Me keyword to refer to the current class. So Me. Hours refers
to the Hours property of the current class. Me.hoursDecimal refers to the
class-level variable hoursDecimal. Assigning the passed argument to the
property name is preferable to just assigning the passed argument to the module-
level property variable, since validation is performed in the Property Set
procedures.

' Improved constructor for the Payroll class.
Sub New(ByVal hoursDecimal As Decimal, ByVal rateDecimal As Decimal)

' Assign arguments to properties.

bra17178_ch02_51-108 3/13/06 13:30 Page 59

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

F i g u r e 2 . 4

Create a nondatabase project
in two tiers.

User Interface
 PayrollForm
 Controls
 Menus

Business Objects
 Validation
 Calculations
 Business logic
 Business rules

Presentation Tier Business Tier

When your class has both an empty constructor and a parameterized con-
structor, the program that creates the object can choose which method to use.

A Basic Business Class

The following example creates a very simplistic payroll application in two tiers
(Figure 2.4). The application does not have a data tier since it doesn’t have any
database element.

This first version of the payroll application inputs hours and rate from the
user, validates for numeric data and some business rules, calculates the pay,
and displays the pay on the form. We must analyze the tasks that belong in the
presentation tier and those that belong in the business tier (Figure 2.5).

The Presentation Tier
The presentation tier, also called the user interface, must handle all communi-
cation with the user. The user enters input data and clicks the Calculate button.
The result of the calculation and any error messages to the user must come from
the presentation tier. Generally, validation for numeric input is handled in the
form, but validation for business rules is handled in the business tier.

The Business Tier
Looking at Figure 2.5, you can see what should go in the class for the business
tier. The class needs private property variables for Hours, Rate, and Pay. It also

60 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

With Me
.Hours = hoursDecimal
.Rate = rateDecimal

End With
End Sub

F i g u r e 2 . 5

The form is the user interface;
the validation and calcula-
tions are performed in the
Payroll class, which is the
business tier.

Payroll class

Business TierPresentation Tier

Receives Hours and
Rate in a parameterized
constructor.

Must return Pay

bra17178_ch02_51-108 3/13/06 13:30 Page 60

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

'Project: Ch02Payroll
'Module: Payroll Class
'Programmer: Bradley/Millspaugh
'Date: June 2006
'Description: Business tier for payroll calculation: validates input data
' and calculates the pay.

Public Class Payroll

' Private class variables.
Private hoursDecimal As Decimal ' Hold the Hours property.
Private rateDecimal As Decimal ' Hold the Rate property.
Private payDecimal As Decimal ' Hold the Pay property.

' Constants.
Private Const MINIMUM_WAGE_Decimal As Decimal = 6.25D
Private Const MAXIMUM_WAGE_Decimal As Decimal = 50D
Private Const MINIMUM_HOURS_Decimal As Decimal = 0D
Private Const MAXIMUM_HOURS_Decimal As Decimal = 60D
Private Const REGULAR_HOURS_Decimal As Decimal = 40D
Private Const OVERTIME_RATE_Decimal As Decimal = 1.5D

' Constructor.
Sub New(ByVal hoursDecimal As Decimal, ByVal rateDecimal As Decimal)

' Assign properties and calculate the pay.

Me.Hours = hoursDecimal
Me.Rate = rateDecimal
findPay()

End Sub

Private Sub findPay()
' Calculate the pay.
Dim overtimeHoursDecimal As Decimal

If hoursDecimal <= REGULAR_HOURS_Decimal Then ' No overtime.
payDecimal = hoursDecimal * rateDecimal
overtimeHoursDecimal = 0D

Else ' Overtime.
overtimeHoursDecimal = hoursDecimal � REGULAR_HOURS_Decimal
payDecimal = (REGULAR_HOURS_Decimal * rateDecimal) + _
(overtimeHoursDecimal * OVERTIME_RATE_Decimal * rateDecimal)

End If
End Sub

C H A P T E R 2 61

needs a parameterized constructor to pass the arguments, property procedures
to validate and set the Hours and Rate, and a read-only property to allow a Pay-
roll object to retrieve the calculated pay.

The property procedures will include code to validate the input Hours and
Rate for business rules. At this point, company policy is that the number of
hours must be in the range 0–60 and the pay rate must be at least 6.25 and no
more than 50. If the input values for Hours or Rate are outside of the accept-
able range, the class will throw an exception that can be caught in the form’s
code. Remember that all user interaction, including any error messages, should
occur in the presentation tier (the form).

Note: Throwing exceptions is covered in the section that follows the class code.

The Payroll Class

bra17178_ch02_51-108 3/13/06 13:30 Page 61

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

' Property procedures.
Public Property Hours() As Decimal

Get
Return hoursDecimal

End Get
Set(ByVal Value As Decimal)

If Value >= MINIMUM_HOURS_Decimal And _
Value <= MAXIMUM_HOURS_Decimal Then
hoursDecimal = Value

Else
Dim Ex As New ApplicationException(_
"Hours are outside of the acceptable range.")

Ex.Source = "Hours"
Throw Ex

End If
End Set

End Property

Public Property Rate() As Decimal
Get

Return rateDecimal
End Get
Set(ByVal Value As Decimal)

If Value >= MINIMUM_WAGE_Decimal And _
Value <= MAXIMUM_WAGE_Decimal Then
rateDecimal = Value

Else
Throw New ApplicationException(_
"Pay rate is outside of the acceptable range.")

End If
End Set

End Property
Public ReadOnly Property Pay() As Decimal

Get
Return payDecimal

End Get
End Property

End Class

Throwing and Catching Exceptions

The system throws an exception when an error occurs. Your program can catch
the exception and take some action, or even ignore the exception. Your own
class also can throw an exception to indicate that an error occurred, which
generally is the best way to pass an error message back to the user interface. You
can enclose any code that could cause an exception in a Try / Catch block.

62 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

' Code in the form's class.
Try

Dim payObject As New Payroll(_
Decimal.Parse(hoursTextBox.Text), Decimal.Parse(rateTextBox.Text))

Catch Err As ApplicationException
' Display a message to the user.
MessageBox.Show(Err.Message)

End Try

bra17178_ch02_51-108 3/13/06 13:30 Page 62

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

C H A P T E R 2 63

Note: If you are not familiar with structured exception handling using a
Try / Catch block, see Appendix B.

What Exception to Throw?
The .NET Framework has several exception classes that you can use, or you
can create your own new exception class that inherits from one of the existing
classes. However, the system-defined exception classes can handle most every
type of exception.

Microsoft recommends that you use the System.ApplicationException class
when you throw your own exceptions from application code. System.Applica-
tionException has the same properties and methods as the System.Exception
class, which is the generic system exception. All specific exceptions generated
by the CLR inherit from System.Exception.

When you want to throw a generic application exception, use the Throw
statement in this format:

Throw New ApplicationException("Error message to display.")

The message that you include becomes the Message property of the excep-
tion, which you can display when you catch the exception.

Passing Additional Information in an Exception
The constructor for the ApplicationException class takes only the error mes-
sage as an argument. But the class has additional properties that you can set
and check. For example, you can set the Source property and the Data property,
which can hold sets of key/value pairs.

In our Payroll class, we want to be able to indicate which field is in error,
so that the code in the form can set the focus and select the text in the field in
error. For this, we will use the exception’s Source property. We must instantiate
a new exception object, set the Source property, and then throw the exception:

Public Property Hours() As Decimal
Get

Return hoursDecimal
End Get
Set(ByVal Value As Decimal)

If Value >= MINIMUM_HOURS_Decimal And _
Value <= MAXIMUM_HOURS_Decimal Then
hoursDecimal = Value

Else
Dim Ex As New ApplicationException(_
"Hours are outside of the acceptable range.")

Ex.Source = "Hours"
Throw Ex

End If
End Set

End Property

Public Property Rate() As Decimal
Get

Return rateDecimal
End Get
Set(ByVal Value As Decimal)

bra17178_ch02_51-108 3/13/06 13:30 Page 63

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

64 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

Throwing Exceptions Up a Level
You should show messages to the user only in the user interface. At times, you
may have several levels of components. For example, the form creates an object
that calls code in another class. If an exception occurs in a class that does not
have a user interface, you should pass the exception up to the next higher
level—the component that called the current code. Use the Throw keyword to
pass an exception to the form or other component that invoked the class.

Try
' Code that might cause an exception.

Catch Err As Exception
Throw Err

End Try

Guidelines for Throwing Exceptions
When you throw exceptions, you should always include an error message. The
message should be

• Descriptive.

• Grammatically correct, in a complete sentence with punctuation at the end.

Alternatives to Exception Handling

It takes considerable system resources to handle exceptions. You should use
exception handling for situations that are errors and truly out of the ordinary. If
an error occurs fairly often, you should look for another technique to handle it.
However, Microsoft recommends throwing exceptions from components rather
than returning an error code.

VS 2005 includes a new tool to help avoid generating parsing exceptions
for invalid user input. You can use the TryParse method of the numeric
classes instead of using Parse. TryParse returns zero if the parse fails, rather
than throw an exception.

The TryParse Method—General Form

If Value >= MINIMUM_WAGE_Decimal And _
Value <= MAXIMUM_WAGE_Decimal Then
rateDecimal = Value

Else
Dim Ex As New ApplicationException(_
"Pay rate is outside of the acceptable range.")

Ex.Source = "Rate"
Throw Ex

End If
End Set

End Property

G
eneral

F
orm DataType.TryParse(ValueToParse, NumericVariableToHoldResult)

bra17178_ch02_51-108 3/13/06 13:30 Page 64

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

C H A P T E R 2 65

As you can see, this technique is preferable for numeric validation of user
input since it does not throw an exception for nonnumeric data. Instead, bad
input data is handled by the Else clause.

Modifying the User Interface to Validate at the Field Level

You can further improve the user interface in the payroll application by per-
forming field-level validation. This technique displays a message directly on the
form, next to the field in error, before the user moves to the next control. You can
use an ErrorProvider component for the message, rather than a message box,
which is a more up-to-date approach. You perform field-level validation for nu-
meric data in the Validating event of each text box.

The Validating Event
As the user enters data in a text box and moves to another control, the events of
the text box occur in this order:

Enter
GotFocus
Leave
Validating
Validated
LostFocus

Each control on the form has a CausesValidation property that is set to True
by default. When the user finishes an entry and presses Tab or clicks on an-
other control, the Validating event occurs for the control just left. That is, the
event occurs if the CausesValidation property of the new control is True. You
can leave the CausesValidation property of most controls set to True so that
validation occurs. Set CausesValidation to False on a control such as Cancel
or Exit to give the user a way to bypass the validation when canceling the
transaction.

Dim hoursDecimal As Decimal

Decimal.TryParse(Me.hoursTextBox.Text, hoursDecimal)
If hoursDecimal > 0 Then

' Passed the conversion; perform calculations.
Else

MessageBox.Show("Invalid data entered.")
End If

E
xam

ple

The TryParse method converts the ValueToParse into an expression of the
named data type and places the result into the numeric variable, which should
be declared before this statement. If the conversion fails, the numeric variable
is set to zero.

The TryParse Method—Example

bra17178_ch02_51-108 3/13/06 13:30 Page 65

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

Private Sub PayrollForm_FormClosing(ByVal sender As Object, _
ByVal e As System.Windows.Forms.FormClosingEventArgs) _
Handles Me.FormClosing
' Do not allow validation to cancel the form's closing.

e.Cancel = False
End Sub

The Validating event handler is the preferred location for field-level vali-
dation. Here is the procedure header for a Validating event handler:

66 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

Controlling Validating Events You can get into trouble if you generate Validat-
ing events when you don’t want them. For example, after an input value has
passed the numeric checking, it may fail a business rule, such as falling in an
acceptable range of values. To display a message to the user, you will probably
execute the Focus method of the text box in error. But the Focus method trig-
gers a Validating event on the control most-recently left, which is likely not the
result that you want. You can suppress extra Validating events by temporarily
turning off CausesValidation. You will see this technique used in the form’s
code in the “The Code for the Modified Form” section.

The ErrorProvider Component
Using an ErrorProvider component, you can make an error indicator ap-
pear next to the field in error, rather than pop up a message box. Generally, you

e.Cancel = True

Canceling the Validating Event You can use the CancelEventArgs argument of
the Validating event handler to cancel the Validating event and return focus to
the control that is being validated.

Canceling the event returns the focus to the text box, making the text box
“sticky.” The user is not allowed to leave the control until the input passes
validation.

One note of caution: If you use the validating event on the field that re-
ceives focus when the form is displayed, and the validation requires an entry,
the user will be unable to close the form without making a valid entry in the text
box. To get around this problem, write an event handler for the form’s Form-
Closing event and set e.Cancel = False.

Private Sub rateTextBox_Validating(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) _
Handles rateTextBox.Validating

With .rateTextBox
.SelectAll()
.CausesValidation = False
.Focus()
.CausesValidation = True

End With

bra17178_ch02_51-108 3/13/06 13:30 Page 66

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

C H A P T E R 2 67

F i g u r e 2 . 6

The ErrorProvider displays a
blinking icon next to the field
in error. When the user points
to the icon, the error message
appears in a pop-up.

use one ErrorProvider for all controls on a form. You add the ErrorProvider to
the form’s component tray at design time and set its properties in code. If the
input data value is invalid, the ErrorProvider component can display a blink-
ing icon next to the field in error and display a message in a pop-up, similar to
a ToolTip (Figure 2.6).

The ErrorProvider SetError Method—General Form
You turn on the blinking error indicator and error message with the Error-
Provider’s SetError method.

G
eneral

F
orm ErrorProviderObject.SetError(ControlName, MessageString)

ErrorProvider1.SetError(Me.quantityTextBox, "Quantity must be numeric.")
ErrorProvider1.SetError(Me.creditCardTextBox, "Required field.")

E
xam

ples

The ErrorProvider SetError Method—Examples

You can replace message boxes with ErrorProviders in most any program
without changing the logic of the program.

Turning Off the Error Indicator You must clear the ErrorProvider after the error
is corrected. Use the ErrorProvider’s Clear method to turn off the error indicator.

ErrorProvider1.Clear()

In a button’s Click event handler, the best approach is to clear the Error-
Provider at the top of the procedure and turn it on anywhere that a value fails
validation.

bra17178_ch02_51-108 3/13/06 13:30 Page 67

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

68 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

'Project: Ch02PayrollApplication
'Module: Payroll Form
'Programmer: Bradley/Millspaugh
'Date: June 2006
'Description: User interface for payroll application.
' Provides data entry and validates for nonnumeric data.

Public Class PayrollForm
Private Sub calcuateButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles calculateButton.Click

In a Validating event handler, the most common technique is to use an If
statement and turn the ErrorProvider on or off.

The Code for the Modified Form
Here is the code for the modified form, using the TryParse and field-level val-
idation in the Validating event handlers of the text boxes.

Private Sub hoursTextBox_Validating(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) _
Handles hoursTextBox.Validating
' Test hours for numeric.
Dim hoursDecimal As Decimal

With Me
Decimal.TryParse(.hoursTextBox.Text, hoursDecimal)
If hoursDecimal = 0 Then

.ErrorProvider1.SetError(.hoursTextBox, _
"The hours must be numeric.")

.hoursTextBox.SelectAll()
e.Cancel = True

Else
.ErrorProvider1.Clear()

End If
End With

End Sub

Private Sub calcuateButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles calculateButton.Click
' Create a Payroll object to connect to the business tier.
Dim hoursDecimal As Decimal

With Me
' Check for valid input data.
.ErrorProvider1.Clear()
Decimal.TryParse(.hoursTextBox.Text, hoursDecimal)
If hoursDecimal > 0 Then

' Perform any calculations with good data.
Else

' Hours did not pass validation.
Me.ErrorProvider1.SetError(Me.hoursTextBox, _
"The hours must be numeric.")

End If
End With

End Sub

bra17178_ch02_51-108 3/13/06 13:30 Page 68

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

C H A P T E R 2 69

' Create a Payroll object to connect to the business tier.
Dim hoursDecimal As Decimal
Dim rateDecimal As Decimal

With Me
' Check for valid input data.
.ErrorProvider1.Clear()
Decimal.TryParse(.hoursTextBox.Text, hoursDecimal)
If hoursDecimal > 0 Then

Decimal.TryParse(.rateTextBox.Text, rateDecimal)
If rateDecimal > 0 Then

' Both values converted successfully.
Try

Dim payObject As New Payroll(hoursDecimal, rateDecimal)
.payTextBox.Text = payObject.Pay.ToString("C")

Catch Err As ApplicationException
' Catch exceptions from the Payroll class.
Select Case Err.Source

Case "Hours"
.ErrorProvider1.SetError(.hoursTextBox, _
Err.Message)

With .hoursTextBox
.SelectAll()
.Focus()

End With
Case "Rate"

.ErrorProvider1.SetError(.rateTextBox, _
Err.Message)

With .rateTextBox
.SelectAll()
.Focus()

End With
End Select

End Try
Else

' Rate did not pass validation.
Me.ErrorProvider1.SetError(Me.rateTextBox, _
"The rate must be numeric.")

End If
Else

' Hours did not pass validation.
Me.ErrorProvider1.SetError(Me.hoursTextBox, _
"The hours must be numeric.")

End If
End With

End Sub

Private Sub clearButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles clearButton.Click
' Clear the screen fields.

With Me
.ErrorProvider1.Clear()
With .nameTextBox

.Clear()

.Focus()
End With

bra17178_ch02_51-108 3/13/06 13:30 Page 69

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

70 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

.hoursTextBox.Clear()

.rateTextBox.Clear()

.payTextBox.Clear()
End With

End Sub

Private Sub hoursTextBox_Validating(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) _
Handles hoursTextBox.Validating
' Test hours for numeric.
Dim hoursDecimal As Decimal

With Me
Decimal.TryParse(.hoursTextBox.Text, hoursDecimal)
If hoursDecimal = 0 Then

.ErrorProvider1.SetError(.hoursTextBox, _
"The hours must be numeric.")

.hoursTextBox.SelectAll()
e.Cancel = True

Else
.ErrorProvider1.Clear()

End If
End With

End Sub

Private Sub rateTextBox_Validating(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) _
Handles rateTextBox.Validating
' Test pay rate for numeric.
Dim rateDecimal As Decimal

With Me
Decimal.TryParse(.rateTextBox.Text, rateDecimal)
If rateDecimal = 0 Then

.ErrorProvider1.SetError(.rateTextBox, _
"The rate must be numeric.")

.rateTextBox.SelectAll()
e.Cancel = True

Else
.ErrorProvider1.Clear()

End If
End With

End Sub

Private Sub ExitToolStripMenuItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ExitToolStripMenuItem.Click
' Close the program.

Me.Close()
End Sub

Private Sub AboutToolStripMenuItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles AboutToolStripMenuItem.Click
' Show the About box.

AboutBox1.ShowDialog()
End Sub

bra17178_ch02_51-108 3/13/06 13:30 Page 70

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

C H A P T E R 2 71

Private Sub payrollForm_FormClosing(ByVal sender As Object, _
ByVal e As System.Windows.Forms.FormClosingEventArgs) _
Handles Me.FormClosing
' Do not allow validation to prevent the form closing.

e.Cancel = False
End Sub

End Class

Modifying the Business Class

As business rules change, you can modify the business class or create a new
class that inherits from the original class. You can usually add properties and
methods to an existing class without harming any application that uses the
class, but you should not change the behavior of existing properties and meth-
ods if any applications use the class.

In our Payroll example, we will expand the user interface to display a sum-
mary form. The summary form displays the number of employees processed,
the total amount of pay, and the number of overtime hours. We must modify the
Payroll class to calculate these values and return the values in read-only prop-
erties (Figure 2.7).

Instance Variables versus Shared Variables
Each new instance of the Payroll object has its own values for the hours, pay
rate, and pay. These properties are called instance properties, instance
variables, or instance members. But the properties we are adding now, such
as the number of employees processed and the total pay amount, must accu-
mulate totals for all instances of the class. These properties are called shared
properties, shared variables, or shared members. Recall that properties
are just the variables of a class, so the terms properties and variables can be
used interchangeably.

The Payroll class requires three shared variables, one for each of the sum-
mary fields. As each instance of the Payroll class is created, the values are
accumulated in the shared variables. In this way, the values for employee two
are added to the values for employee one, and so on.

F i g u r e 2 . 7

The new summary form dis-
plays summary information.
The Payroll class must accu-
mulate the summary figures in
shared properties.

Payroll class

Business TierPresentation Tier

(Shared Properties)

NumberProcessed

OvertimeHours

TotalPay

bra17178_ch02_51-108 3/13/06 13:30 Page 71

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

72 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

Public Shared ReadOnly Property NumberProcessed() As Integer
Get

Return numberEmployeesInteger
End Get

End Property

Public Shared ReadOnly Property TotalPay() As Decimal
Get

Return totalPayDecimal
End Get

End Property

Public Shared ReadOnly Property OvertimeHours() As Decimal
Get

Return totalOvertimeHoursDecimal
End Get

End Property

' Payroll Class.
' Shared properties declared at the module level.
' Hold the NumberProcessed shared property.
Private Shared numberEmployeesInteger As Integer
' Hold the TotalPay shared property.
Private Shared totalPayDecimal As Decimal
' Hold the OvertimeHours shared property.
Private Shared totalOvertimeHoursDecimal As Decimal

Since these variables are Private to the class, Public Get methods are
required to make the properties accessible. You retrieve shared properties by
using the class name such as Payroll.NumberProcessed or Payroll.Overtime-
Hours. This is the same concept that you use when converting input values:
Decimal.Parse() calls the Parse method of the Decimal class.

The findPay method must be modified to add to the summary fields:

' Payroll class.
' Additional module-level named constants.
Private Const REGULAR_HOURS_Decimal As Decimal = 40D
Private Const OVERTIME_RATE_Decimal As Decimal = 1.5D

Private Sub findPay()
' Calculate the Pay.
Dim overtimeHoursDecimal As Decimal

If hoursDecimal <= REGULAR_HOURS_Decimal Then ' No overtime
payDecimal = hoursDecimal * rateDecimal
overtimeHoursDecimal = 0D

Else ' Overtime
overtimeHoursDecimal = hoursDecimal - REGULAR_HOURS_Decimal
payDecimal = (REGULAR_HOURS_Decimal * rateDecimal) + _
(overtimeHoursDecimal * OVERTIME_RATE_Decimal * rateDecimal)

End If
totalOvertimeHoursDecimal += overtimeHoursDecimal
totalPayDecimal += payDecimal
numberEmployeesInteger += 1

End Sub

bra17178_ch02_51-108 03/13/06 20:16 Page 72

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

C H A P T E R 2 73

'Project: Ch02PayrollWithSummary
'Module: Payroll Class
'Programmer: Bradley/Millspaugh
'Date: June 2006
'Description: Business tier for payroll calculation: validates input data
' and calculates the pay, with overtime, regular, and summary
' data.

Public Class Payroll

' Instance variables.
Private hoursDecimal As Decimal ' Hold the Hours property.
Private rateDecimal As Decimal ' Hold the Rate property.
Private payDecimal As Decimal ' Hold the Pay property.
Private numberEmployees As Integer ' Hold the NumberProcessed property.

' Shared variables.
' Hold the NumberProcessed shared property.
Private Shared numberEmployeesInteger As Integer
' Hold the TotalPay shared property.
Private Shared totalPayDecimal As Decimal
' Hold the OvertimeHours shared property.
Private Shared totalOvertimeHoursDecimal As Decimal

' Constants.
Private Const MINIMUM_WAGE_Decimal As Decimal = 6.25D
Private Const MAXIMUM_WAGE_Decimal As Decimal = 50D
Private Const MINIMUM_HOURS_Decimal As Decimal = 0D
Private Const MAXIMUM_HOURS_Decimal As Decimal = 60D
Private Const REGULAR_HOURS_Decimal As Decimal = 40D
Private Const OVERTIME_RATE_Decimal As Decimal = 1.5D

' Constructor.
Sub New(ByVal hoursDecimal As Decimal, ByVal rateDecimal As Decimal)

' Assign properties and calculate the pay.

Me.Hours = hoursDecimal
Me.Rate = rateDecimal
findPay()

End Sub

Private Sub findPay()
' Calculate the pay.
Dim overtimeHoursDecimal As Decimal

If hoursDecimal <= REGULAR_HOURS_Decimal Then ' No overtime.
payDecimal = hoursDecimal * rateDecimal
overtimeHoursDecimal = 0D

Else ' Overtime.
overtimeHoursDecimal = hoursDecimal � REGULAR_HOURS_Decimal
payDecimal = (REGULAR_HOURS_Decimal * rateDecimal) + _
(overtimeHoursDecimal * OVERTIME_RATE_Decimal * rateDecimal)

End If
totalOvertimeHoursDecimal += overtimeHoursDecimal
totalPayDecimal += payDecimal
numberEmployeesInteger += 1

End Sub

Following is the completed Payroll class that calculates and returns the
shared properties:

bra17178_ch02_51-108 3/13/06 13:30 Page 73

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

74 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

' Property procedures.
Public Property Hours() As Decimal

Get
Return hoursDecimal

End Get
Set(ByVal Value As Decimal)

If Value >= MINIMUM_HOURS_Decimal And _
Value <= MAXIMUM_HOURS_Decimal Then
hoursDecimal = Value

Else
Dim Ex As New ApplicationException(_
"Hours are outside of the acceptable range.")

Ex.Source = "Hours"
Throw Ex
End If

End Set
End Property

Public Property Rate() As Decimal
Get

Return rateDecimal
End Get
Set(ByVal Value As Decimal)

If Value >= MINIMUM_WAGE_Decimal And _
Value <= MAXIMUM_WAGE_Decimal Then
rateDecimal = Value

Else
Dim Ex As New ApplicationException(_
"Pay rate is outside of the acceptable range.")

Ex.Source = "Rate"
Throw Ex

End If
End Set

End Property

Public ReadOnly Property Pay() As Decimal
Get

Return payDecimal
End Get

End Property

Public Shared ReadOnly Property NumberProcessed() As Decimal
Get

Return numberEmployeesInteger
End Get

End Property

Public Shared ReadOnly Property TotalPay() As Decimal
Get

Return totalPayDecimal
End Get

End Property

Public Shared ReadOnly Property OvertimeHours() As Decimal
Get

Return totalOvertimeHoursDecimal
End Get

End Property
End Class

bra17178_ch02_51-108 3/13/06 13:30 Page 74

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

C H A P T E R 2 75

' In PayrollForm:
Private Sub summaryButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles summaryButton.Click
' Show the summary form.

Dim aSummaryForm As New SummaryForm()

With aSummaryForm
.countLabel.Text = Payroll.NumberProcessed.ToString()
.overtimeLabel.Text = Payroll.OvertimeHours.ToString("N1")
.totalPayLabel.Text = Payroll.TotalPay.ToString("C")
.ShowDialog()

End With
End Sub

SummaryForm.ShowDialog()

Dim aSummaryForm As New SummaryForm()
aSummaryForm.ShowDialog()

Displaying the Summary Data

To display a second form from the main form, you can declare an instance of
the form’s class and show the form.

In VB 2005, you can take advantage of the default instance of a form and
just show the default instance:

You can choose from two techniques for filling the screen fields with the
summary data:

1. Set the summary output from the Payroll form using the Shared methods
of the Payroll class before showing the Summary form:

2. Use the shared properties from the Payroll class in the Form_Load pro-
cedure of the Summary form and fill the labels there.

' In SummaryForm.
Private Sub SummaryForm_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
' Retrieve the summary values.

With Me
.countLabel.Text = Payroll.NumberProcessed.ToString()
.overtimeLabel.Text = Payroll.OvertimeHours.ToString("N1")
.totalPayLabel.Text = Payroll.TotalPay.ToString("C")

End With
End Sub

Although both of these techniques work perfectly well, the second method
is preferable for encapsulating the forms’ data. Each of the forms in the project
can access the shared properties, which is preferable to having PayrollForm ac-
cess the controls on SummaryForm.

bra17178_ch02_51-108 3/13/06 13:30 Page 75

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

76 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

➤ Feedback 2.2

1. What is the purpose of property procedures?
2. Why should the variables for the properties of a class be declared as

Private?
3. You want to create a new class called Student that inherits from Person.

Properties required to create an instance of the class are LastName,
FirstName, and BirthDate. Write a parameterized constructor for the
class.

4. Write the statement(s) to create an instance of the Student class defined
in the previous question. Supply the arguments for the parameterized
constructor.

5. An error occurs in a class written for the business tier. Explain how to
handle the error condition and how the user should be notified.

Namespaces, Scope, and Accessibility
This section is intended as a review of the topics of scope and visibility of
variables, constants, and classes. You may want to skip this section if you feel
comfortable with declaring and using namespaces, scope, lifetime, and acces-
sibility domains such as Public, Private, Protected, and Friend.

Namespaces

Namespaces are used for grouping and referring to classes and structures. A
name must be unique in any one namespace. You can think of namespaces like
telephone area codes; a given phone number can exist only once in a single
area, but that number may appear in many different area codes.

The classes in a namespace do not have to be in a single file. In fact, most
of the classes in the .NET framework are in the System namespace, which is
stored in many files.

You can declare namespaces in your VB projects. In fact, by default each
project has a namespace that matches the project name. If you display the
Project Designer for any project, you will see an entry titled Root Namespace.
However, if you change the project name in the Solution Explorer, the root
namespace does not change automatically. Declare namespaces within your
project using the Namespace / End Namespace construct:

Namespace RnRApplications
' Classes and structures in the namespace can appear here.

End Namespace

You can place the same Namespace statement in more than one project.
For most projects, there is no advantage in declaring a namespace. A com-

pany might choose to group applications by using namespaces.

Scope

The scope of a variable or constant refers to the area of the program that can
“see” and reference it. For simplicity and clarity, we use the term variable,

bra17178_ch02_51-108 3/13/06 13:30 Page 76

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

C H A P T E R 2 77

but each of the following examples applies to named constants as well as
variables.

You determine the scope of a variable by the location of the declaration and
the accessibility modifier (Public or Private). The choices for scope, from the
widest to the narrowest, are namespace, module level, procedure level, and
block level.

Namespace
Any variable, constant, class, or structure declared with the Public modifier
has namespace scope. You can refer to the identifier anywhere within the
namespace. Because each project is in its own namespace by default, generally
namespace scope also means project scope. However, as you know, you can struc-
ture your own namespaces to contain multiple projects.

You usually need to declare classes and structures as Public, but not vari-
ables and constants. It is considered poor OOP programming to declare
variables with namespace scope because it violates the rules of encapsulation.
Each class should be in charge of its own data and share variables only by
using Property Set and Get procedures.

Note: Earlier versions of VB, as well as many other programming lan-
guages, refer to variables that can be referenced from any location in a project
as global variables. VB has dropped this terminology.

Module Level
Module-level scope is sometimes also called class-level scope. A module-
level variable is a Private variable that is declared inside any class, structure,
or module but outside of any sub procedure or function. By convention, you
should declare module-level variables at the top of the class, but the variables
can actually be declared anywhere inside the class that is outside of a procedure
or function.

Private totalDecimal As Decimal

Note: If you leave off the accessibility modifier (Public or Private), the
variable is Private by default.

In some previous versions of Visual Basic, each file was called a module,
so any variable declared as Private at the top of the file (not inside a sub
procedure or function) was a module-level variable. The terminology carries
through to the current version of VB, even though the language now has a
Module / End Module construct, which can contain miscellaneous procedures
and functions that are not included in a class.

Procedure Level
Any variable that you declare inside a procedure or function, but not within a
block, has procedure-level scope, also called local scope. You can reference
the variable anywhere inside the procedure but not in other procedures. Note
that the Public keyword is not legal inside a procedure; all procedure-level
variables are private and are declared with the Dim keyword.

Block Level
If you declare a variable inside a code block, the variable has block-level
scope. That is, the variable can be referenced only inside that block. Code
blocks include

bra17178_ch02_51-108 3/13/06 13:30 Page 77

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

78 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

Try
' Declare a block-level variable.
' Bad idea, since it cannot be referenced outside of this Try block.
Dim amountDecimal As Decimal = Decimal.Parse(Me.amountTextBox.Text)

Catch Err As InvalidCastException
' Err is a block-level variable valid only inside this Catch block.
MessageBox.Show(Err.Message, "Invalid Input Data.")

Catch Err As Exception
' Err is a block-level variable valid only inside this Catch block.
MessageBox.Show(Err.Message, "Unknown Error.")

Finally
' Any variable declared here is valid only inside this Finally block.

End Try

If / End If
Do / Loop
For / Next
Select Case / End Select
Try / Catch / Finally / End Try

The blocks that are likely to cause confusion are the Try / Catch /
Finally / End Try. The Try is one block; each Catch is a separate block;
and the Finally is a separate block. This means that you cannot declare a
variable in the Try and reference it in the Catch or the Finally blocks. It also
means that you can declare the same variable name for each Catch since the
scope of each is only that Catch block.

When you instantiate objects, if there is any chance the creation will fail,
you should create the new object inside a Try/Catch block. But if you declare
the variable inside the Try block, the variable goes out of scope when the Try
block completes. Therefore, most of the time you will declare the object vari-
able at the module level or procedure level and instantiate the object inside the
Try block.

' Declare the object variable at the module level.
Private payObject As Payroll

Private Sub calculateButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles calculateButton.Click
' Create a Payroll object to connect to the business tier.

Try
' Instantiate the object in the Try block.
payObject = New Payroll(Decimal.Parse(Me.hoursTextBox.Text), _
Decimal.Parse(Me.rateTextBox.Text))

Catch . . .

Lifetime

The lifetime of a variable, including object variables, is as long as the vari-
able remains in scope. The lifetime of a namespace-level variable is as long
as the program is running. The lifetime of a module-level variable is as long
as any reference to the class remains, which is generally as long as the
program runs.

bra17178_ch02_51-108 3/13/06 13:30 Page 78

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

C H A P T E R 2 79

The lifetime of a procedure-level variable is one execution of the proce-
dure. Each time the procedure is executed, a new variable is established and
initialized. For this reason, you cannot use procedure-level variables to main-
tain running totals or counts unless you declare them with the Static keyword,
which changes the lifetime of a procedure-level variable to the life of the class
or module.

Accessibility Domains

You have already declared variables and classes with the Public and Private
keywords. You also can use Protected, Friend, and Protected Friend
(Table 2.1). Each of these keywords defines the accessibility of the variable or
class.

Keywords to Declare Accessibility Domains T a b l e 2 . 1

Keyword Description

Public Accessible from anywhere in the program or from any
other program that references this one.

Private Accessible from anywhere inside this class.

Protected Accessible from anywhere inside this class or in any
class that inherits from this class.

Friend Accessible from anywhere inside this program.

Protected Friend A combination of Protected and Friend.
Accessible from anywhere inside this program and in
any class that inherits from this class, even though the
derived class is in a different program.

Creating Inherited Classes
To create an inherited class in a project, you should first add a new class. Al-
though a single file can hold multiple class definitions, the recommended ap-
proach is to create a new file for each Public class and make the name of the
file match the class name. The only exceptions are small “helper classes” that
would never be used by any other application. These helper classes should be
declared with the Friend keyword, because they are used only in the current
program.

Adding a New Class File

You can add a new file for a class by selecting Project / Add Class or Add Com-

ponent. The difference between the two is that a component has a visual de-
signer and a class file does not. In Chapter 3 you will use the component to add
database elements to a new class. In this chapter, select Add Class. Both options
create a new file with the extension .vb. Make sure to give the class the name
that you want to use; the file will be named correctly and the solution and proj-
ect will be set up with the correct name.

bra17178_ch02_51-108 3/13/06 13:30 Page 79

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

80 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

The newly added class will have the first and last lines of code:

MyBase.New(hoursDecimal, rateDecimal)

MyBase.New()

Public Class PersonSalaried
End Class

Add the Inherits clause on the first line following the Class declaration and
add comments above the Class statement.

Creating a Constructor

A subclass must have its own constructor because constructors are not inher-
ited. However, if you do not create a constructor (a Sub New), VS creates an
implicit empty constructor.

The first statement in a constructor of an inherited class should call the
constructor of the base class using the MyBase keyword:

If the base class has only a parameterized constructor, you must pass argu-
ments to the constructor.

And just like the base class, you can have several overloaded New con-
structors, one for each signature that the base class has.

Inheriting Variables and Methods

As you know, when you derive a new class from an existing class, all Public
and Protected variables and methods are inherited, with the exception of the
base class’s constructors.

Shadowing and Overriding Methods
An inherited class can have a method with the same name as a method in its
base class. Depending on how it is declared, the new method may shadow or
override the base class method.

Overriding To override a method in the base class, the method must be de-
clared as overridable:

'Project: Ch02PayrollInheritance
'Module: PayrollSalaried Class
'Programmer: Bradley/Millspaugh
'Date: June 2006
'Description: A class in the business tier for payroll calculation:
' validates input data and calculates the pay for
' salaried employees.

Public Class PayrollSalaried
Inherits Payroll

End Class

' Base Class.
Public|Protected Overridable Sub doSomething()

bra17178_ch02_51-108 3/13/06 13:30 Page 80

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

C H A P T E R 2 81

' Base class.
Public Function findPay()

' Code to calculate the pay.
End Function

' Sub class.
' Call the findPay function from the base class.
findPay()

' Derived Class.
Public|Protected Shadows Sub doSomething()

' Base Class.
Public|Protected [Overridable] Sub doSomething()

' Derived Class.
Public|Protected Overrides Sub doSomething()

In the derived class, you must use the Overrides keyword and have the
same accessibility (Public|Private) the base class has:

If the base-class method has more than one signature (overloaded meth-
ods), the override applies only to the base-class method with the identical sig-
nature. You must write separate methods to override each version (signature) of
the base-class method.

Shadowing A method in a derived class can shadow a method in the base
class. The new (shadowing) method replaces the base-class method in the de-
rived class but not in any new classes derived from that class. The shadowing
method “hides” all signatures (overloaded methods) with the same name in the
base class.

In the derived class, you can use the Shadows keyword:

If you do not use either the Overrides or Shadows keyword, Shadows is as-
sumed. And if you use the Overrides or Shadows keyword for one method
of a group, you must include the keyword for all overridden or shadowed
methods.

Using Properties and Methods of the Base Class

You can reference any Public property or method of the base class from the
subclass. If the base-class method has not been overridden or shadowed in the
subclass, you can call the method directly:

If the subclass also has a findPay function, you can call the function in the
base class by including the MyBase keyword:

MyBase.findPay()

bra17178_ch02_51-108 3/13/06 13:30 Page 81

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

82 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

It is legal to use the MyBase keyword even when it isn’t required, which
can make your program more understandable. For example, assuming that the
subclass does not have a findPay function, you can still call the base-class
function with

MyBase.findPay()

You can use the same rules for accessing Public properties of the base
class. You can reference the property directly or add the MyBase keyword,
which aids in readability.

' Assign a value to a read/write Public property of the base class.
Hours = hoursDecimal

or

MyBase.Hours = hoursDecimal

You can use the Me keyword to refer to a property or method of the current class
to clarify the code.

' Sub class.

Sub New(ByVal levelInteger As Integer)
' Constructor of the sub class.

MyBase.New()
Me.SalaryLevel = levelInteger
Me.findPay()
MyBase.addEmployee()

End Sub

Note: You can find the complete inheritance example on the text CD as
Ch02PayrollWithInheritance.

Passing Control Properties to a Component
So far in this chapter, all examples pass the Text property of text boxes to the
business tier component. But often you need to pass data from check boxes, ra-
dio buttons, or list boxes. How you pass the data depends on how the properties
are declared in the business class.

The examples in this section are based on a two-tier application to calcu-
late prices for theater tickets (Figure 2.8). Seat prices vary by the section: Gen-
eral, Balcony, or Box Seats. Seniors and students receive a $5.00 discount from
the ticket price.

bra17178_ch02_51-108 3/13/06 13:30 Page 82

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

C H A P T E R 2 83

The business tier needs to know the section, the number of tickets, and
whether a discount is to be given. Therefore, the constructor will receive three
values:

F i g u r e 2 . 8

In the user interface, the user
makes selections in radio but-
tons and a check box, which
must be used to set properties
in the business-tier component.

Sub New(ByVal quantityInteger As Integer, ByVal sectionInteger As Integer, _
ByVal discountBoolean As Boolean)

Notice that there are three values: the quantity, the section, and a boolean
value for the discount. Passing the quantity is straightforward; you can convert
the text box value to integer: Integer.Parse(Quantity.Text) . And you can
easily pass the Checked property of a check box to a Boolean property:

Dim ticketObject As New TicketPrice(Integer.Parse(Me.quantityTextBox.Text), _
sectionInteger, Me.discountCheckBox.Checked)

Setting a property based on a selection in radio buttons or a list box pres-
ents an additional challenge, both in determining the best way to set up the
property in the business-tier component and in setting the correct value in the
user interface. Notice that the Section property is declared as integer. Although
you could set up the property as string, there is a real advantage in using
integer—you can create an enumeration for the available choices.

Creating an Enumeration

Whenever you have a list of choices for a property, it’s because someone set up
an enumeration that lists the choices. For example, selecting Color.Red,

Color.Blue, or Color.Yellow is choosing one of the elements from the Color
enumeration. When you choose one of the elements of the Color enumeration,
the VB compiler actually substitutes the numeric value of the element. This
saves you, the developer, from having to remember either the color names or
the color numbers. You just type the name of the enumeration and a period, and
the possible choices pop up in IntelliSense.

bra17178_ch02_51-108 3/13/06 13:30 Page 83

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

84 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

You can create your own enumeration, which is called an enum (“E-noom”).
An enum is a list of named constants. The data type of the constants must be
one of the integer types (integer, short, long, or byte). Whenever you create
a reusable component class that has a list of possible choices for a property,
consider setting up an enum.

The Enum Statement—General Form

G
eneral

F
orm Enum EnumName

ConstantName1[ConstantValue]
ConstantName2[ConstantValue]
. . .

End Enum

The Enum statement belongs at the namespace level or class level, which means
that it cannot appear inside a procedure. By default, an Enum is public, but you
can declare it to be private, friend, or protected, if you wish.

The Enum Statement—Examples

Public Enum SectionType
General
Balcony
Box

End Enum

Enum ReportType
BooksBySubject 10
BooksByAuthor

End Enum

Enum EvenNumbers
Two 2
Four 4
Six 6
Eight 8

End Enum

E
xam

ples

When you don’t assign a constant value to the element, VB automatically as-
signs the first element a value of zero, and each following element one greater
than the last. So, in the first of the examples above, General has a constant
value of 0, Balcony has a value of 1, and Box has a value of 2. If you assign one
element, as in the second example above for ReportType, each following ele-
ment is assigned one greater than the last. So, in the ReportType example,
BooksBySubject has a constant value of 10, which you assigned, and Books-
ByAuthor has a value of 11.

In the business-tier component for the program example, which you can
see in Ch02EnumRadioButtons, the Section property is set up as an integer
with an enum. In the CalculatePrice procedure, use the enum values in a
Select Case to determine the correct constant to use for the price.

bra17178_ch02_51-108 3/13/06 13:30 Page 84

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

C H A P T E R 2 85

Use the following code in the form’s calculateButton.Click event handler to
use the enum. Note that if you declare the enum inside the class in the business-
tier component, you also must specify the class name when using the enum
(TicketPrice.SectionType.General).

' Enum declared at the namespace level, above the class declaration.
Public Enum SectionType

General
Balcony
Box

End Enum

Public Class TicketPrice

' Private variable for Section property.
Private sectionInteger As Integer
' Alternate declaration:
' Private sectionInteger As SectionType

' . . .Omitted code for class.

Private Sub calculatePrice()
' Determine the amount due.
Dim priceDecimal As Decimal
Select Case sectionInteger

Case SectionType.General
priceDecimal = GENERAL_Decimal

Case SectionType.Balcony
priceDecimal = BALCONY_Decimal

Case SectionType.Box
priceDecimal = BOX_Decimal

End Select
If discountBoolean Then

priceDecimal �= DISCOUNT_Decimal
End If
amountDueDecimal = priceDecimal * quantityInteger

End Sub
End Class

Private Sub calculateButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles calculateButton.Click
' Find price by passing data input on the presentation tier
' to the business tier using a TicketPrice object.
Dim sectionInteger As Integer

With Me
' Determine the section from radio buttons.
If .balconyRadioButton.Checked Then

sectionInteger = SectionType.Balcony
ElseIf .boxRadioButton.Checked Then

sectionInteger = SectionType.Box
Else

sectionInteger = SectionType.General ' Default to General.
End If

Try
Dim ticketObject As New TicketPrice(_
Integer.Parse(.quantityTextBox.Text), sectionInteger, _
.discountCheckBox.Checked)

bra17178_ch02_51-108 03/13/06 20:16 Page 85

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

86 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

.amountTextBox.Text = ticketObject.AmountDue.ToString("C")

.ErrorProvider1.Clear()
Catch

.ErrorProvider1.SetError(Me.quantityTextBox, _
"Quantity must be numeric.")

End Try
End With

End Sub

➤

This example comes from Ch02EnumRadioButtons. To see an example of se-
lecting from a combo box rather than radio buttons, see Ch02EnumComboBox.

Garbage Collection
The .NET Framework destroys unused objects and reclaims memory in a
process called garbage collection. The garbage collector runs periodically
and destroys any objects and variables that no longer have any active reference.
You have no way of knowing when the garbage collection will occur. In previ-
ous versions of VB, you were advised to set object variables to Nothing and to
write Finalize procedures for your classes. For the .NET version of VB, Mi-
crosoft recommends that you just allow object variables to go out of scope when
you are finished with them.

Feedback 2.3

Use this declaration to answer questions 1–4.

Private variableInteger As Integer

1. What is the scope of variableInteger if it is declared inside a class but
not inside a procedure?

2. What is its lifetime?
3. What is its accessibility?
4. If the class in which variableInteger is declared is used as a base class

for inheritance, will the derived class have access to the variable?

Your Hands-On Programming Example
R ’n R—For Reading and Refreshment needs an application to calculate payroll.
Create a multiple-form project that includes an MDI parent form, a Payroll form,
a Summary form, and an About form. The Payroll form, Summary form, and
About form should be child forms of the parent form. If you completed the hands-
on project for Chapter 1, you will now complete the Payroll and Summary forms.

The parent form should have the following menu:

File View Window Help
Exit Payroll Tile Vertical About

Summary Tile Horizontal
Cascade

This should be a multitier project, with the business rules and calculations
in a class separate from the user interface.

bra17178_ch02_51-108 03/13/06 20:16 Page 86

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

C H A P T E R 2 87

Use attributes to display the company name and copyright information on
the About form.

Make sure to validate the input data. Display a meaningful message to the
user and select the field in error when the user enters bad data.

Include a toolbar and a status bar on the main form.

Planning the Project
Sketch the five forms for the application (Figure 2.9). Your users must sign off
the sketches as meeting their needs before you begin programming.

F i g u r e 2 . 9

Sketch the forms for the R ’n R Payroll project; a. Main form (parent), b. Payroll form; c. Summary form; d. About form; and
e. Splash form.

ToolStrip1

StatusStrip1mm/dd/yyyy

File View Window Help

payTextBox

calculateButton

clearButton

closeButton

rateTextBox

hoursTextBox

nameTextBoxName

Hours

Rate

Pay

Calculate

Clear

Close

closeButton

totalPayTextBox

overtimeTextBox

countTextBoxEmployees Processed

Overtime Hours

Total Payroll

Close

OK okButton

Labels

G
ra

p
h
ic

Graphic

Title

Version

Copyright

a.

b.

d.c.

e.

bra17178_ch02_51-108 03/13/06 20:16 Page 87

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

88 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

Plan the Objects, Properties, and Methods Plan the classes for the two tiers.
Determine the objects and property settings for the forms and controls and for
the business tier. Figure 2.10 shows the diagram of the program classes.

F i g u r e 2 . 1 0

The class diagram for the hands-on programming example.

Presentation Tier

MainForm

Object Property Setting

MainForm Text R ’n R For Reading and Refreshment
IsMdiContainer True

MenuStrip1 Items Collection (drop-down items)
FileToolStripMenuItem ExitToolStripMenuItem
ViewToolStripMenuItem PayrollFormToolStripMenuItem

SummaryToolStripMenuItem
WindowToolStripMenuItem TileHorizontalToolStripMenuItem

TileVerticalToolStripMenuItem
CascadeToolStripMenuItem

HelpToolStripMenuItem AboutToolStripMenuItem

ContextMenuStrip1 ItemsCollection PayrollToolStripMenuItem
SummaryToolStripMenuItem1

bra17178_ch02_51-108 03/13/06 20:16 Page 88

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

C H A P T E R 2 89

Procedure Actions—Pseudocode

MainForm.Load Retrieve the date and time for the status bar.

ExitToolStripMenuItem.Click Close the form.

AboutToolStripMenuItem.Click Create an instance of the About form.
aboutToolStripButton.Click Set the MdiParent property.

Show the form.

PayrollFormToolStripMenuItem.Click Create an instance of the Payroll form.
payrollToolStripButton.Click Set the MdiParent property.
PayrollToolStripMenuItem.Click Show the form.

Set the focus on the form.

SummaryToolStripMenuItem.Click Create an instance of the Summary form.
summaryToolStripButton.Click Set the MdiParent property.
SummaryToolStripMenuItem1.Click Show the form.

Set the focus on the form.

CascadeToolStripMenuItem.Click Set MDI layout to Cascade.

TileHorizontalToolStripMenuItem.Click Set MDI layout to Tile Horizontal.

TileVerticalToolStripMenuItem.Click Set MDI layout to Tile Vertical.

clockTimer.Tick Update the date and time.

PayrollForm

Object Property Setting

PayrollForm AcceptButton calculateButton
CancelButton clearButton
Text Payroll
WindowState Maximized

Label1 Text &Name

nameTextBox Text (blank)

Label2 Text &Hours

hoursTextBox Text (blank)

Label3 Text &Rate

rateTextBox Text (blank)

Object Property Setting

ToolStrip1 Items collection payrollToolStripButton
summaryToolStripButton
aboutToolStripButton

StatusStrip1 Items collection Add labels for the date and time.

bra17178_ch02_51-108 03/13/06 20:51 Page 89

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

90 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

Procedure Actions—Pseudocode

Instance property Get If an instance doesn’t exist
Declare a new instance.

calculateButton.Click Clear the error provider.
Convert the hours to decimal.
If hours convert successfully
Convert the rate to decimal.
If rate converts successfully
Try
Instantiate a Payroll object, passing the input values.
Display the Pay formatted in a label.

Catch
Display the error message.
Select the control in error.

Else
Display error for rate.
Select the control in error.

Else
Display error for hours.
Select the control in error.

clearButton.Click Clear all input fields on the screen.
Set the focus in nameTextBox.

closeButton.Click Close the form.

hoursTextBox.Validating If not valid
Display the error message.
Cancel the Validating event handler.
Select the control in error.

Else
Clear the error message.

rateTextBox.Validating If not valid
Display the error message.
Cancel the Validating event handler.
Select the control in error.

Else
Clear the error message.

PayrollForm.FormClosing Set e.Cancel � False.
Set anInstance � Nothing.

SelectControlInError(ControlName) Select text.
Set the focus.

Object Property Setting

Label4 Text Pay

payTextBox Text (blank)
ReadOnly True

calculateButton Text &Calculate

clearButton Text Cl&ear

closeButton Text C&lose

bra17178_ch02_51-108 03/13/06 20:16 Page 90

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

C H A P T E R 2 91

SummaryForm

Object Property Setting

SummaryForm AcceptButton closeButton
WindowState Maximized
Text Payroll Summary

Label1 Text Employees Processed

employeeCountTextBox Text (blank)
ReadOnly True

Label2 Text Overtime Hours

overtimeHoursTextBox Text (blank)
ReadOnly True

Label3 Text Total Payroll

totalPayrollTextBox Text (blank)
ReadOnly True

closeButton Text &Close

Procedure Actions—Pseudocode

Instance property Get If an instance doesn’t exist
Declare a new instance.

SummaryForm.Activated Format and display the 3 summary properties in labels.

closeButton.Click Close the form.

SummaryForm.FormClosing Set anInstance � Nothing.

AboutBox

Object Property Setting

AboutBox1 FormBorderStyle FixedDialog
StartPosition CenterParent
Text About This Application (Changes at run time.)
AcceptButton okButton

OKButton Text &OK

Procedure Actions—Pseudocode

AboutBox1.Load Retrieve the attributes and set up the labels.
(Code already in template file.)

bra17178_ch02_51-108 3/13/06 13:30 Page 91

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

92 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

SplashScreen Include a graphic and labels identifying the company and appli-
cation. You can use the Splash Screen template and replace the graphic. Add
code to hold the form on the screen for a few seconds.

The Business Tier
Payroll Class

Properties Data Type Property Type Accessibility

Hours Decimal Instance Read / Write

Rate Decimal Instance Read / Write

Pay Decimal Instance Read Only

NumberProcessed Decimal Shared Read Only

TotalPay Decimal Shared Read Only

OverTimeHours Decimal Shared Read Only

Constants Data Type Initial Value

MINIMUM_WAGE_Decimal Decimal 6.25D

MAXIMUM_WAGE_Decimal Decimal 50D

MINIMUM_HOURS_Decimal Decimal 0D

MAXIMUM_HOURS_Decimal Decimal 60D

REGULAR_HOURS_Decimal Decimal 40D

OVERTIME_RATE_Decimal Decimal 1.5D

Methods

New(ByVal hoursDecimalAs Decimal, ByVal rateDecimal As Decimal) (Parameterized constructor)
Assign parameters to properties.
Call findPay.

findPay
If hours �� regular hours

pay � hours * rate
overtime hours � 0

Else
overtime hours � hours - regular hours
pay � (hours * rate) � (overtime hours * overtime rate)

Add overtime hours to total.
Add pay to total.
Add 1 to number processed.

Write the Project Following the sketches in Figure 2.9, create the forms. Fig-
ure 2.11 shows the completed forms.

• Set the properties of each of the objects, as you have planned.

bra17178_ch02_51-108 03/13/06 20:16 Page 92

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

C H A P T E R 2 93

F i g u r e 2 . 1 1

The forms for the R ’n R Payroll project; a. Main form (parent), b. Payroll form; c. Summary form; d. About form; and e. Splash form.

• Write the code for the business tier class, referring to your planning
document.

• Write the code for the forms. Working from the pseudocode, write each
procedure.

• When you complete the code, use a variety of test data to thoroughly test
the project.

a.

b.

c.

d.

e.

bra17178_ch02_51-108 03/13/06 20:16 Page 93

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

The Project Coding Solution
MainForm

'Program: Ch02HandsOn
'Programmer: Bradley/Millspaugh
'Form: MainForm
'Date: June 2006
'Description: MDI parent form; contains the menu and displays
' the various forms for the R ‘n R Payroll application.

Public Class MainForm

Private Sub mainForm_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
' Display the date and time in the status bar.

Me.dateToolStripStatusLabel.Text = Now.ToShortDateString
Me.timeToolStripStatusLabel.Text = Now.ToLongTimeString()

End Sub

Private Sub TileVerticalToolStripMenuItem_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles TileVerticalToolStripMenuItem.Click
' Display the open windows tiled vertically.

Me.LayoutMdi(MdiLayout.TileVertical)
End Sub

Private Sub TileHorizontalToolStripMenuItem_Click(_
ByVal sender As Object, ByVal e As System.EventArgs) _
Handles TileHorizontalToolStripMenuItem.Click
' Display the open windows tiled horizontally.

Me.LayoutMdi(MdiLayout.TileHorizontal)
End Sub

Private Sub CascadeToolStripMenuItem_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles CascadeToolStripMenuItem.Click
' Cascade the open windows.

Me.LayoutMdi(MdiLayout.Cascade)
End Sub

Private Sub PayrollFormToolStripMenuItem_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles PayrollFormToolStripMenuItem.Click, _
payrollToolStripButton.Click, PayrollToolStripMenuItem.Click
' Create an instance of the payroll form.
Dim aPayrollForm As PayrollForm = PayrollForm.Instance

With aPayrollForm
.MdiParent = Me
.Show()
.Focus()

End With
End Sub

94 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

bra17178_ch02_51-108 03/13/06 20:16 Page 94

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

'Project: Ch02HandsOn
'Module: PayrollForm
'Programmer: Bradley/Millspaugh
'Date: June 2006
'Description: User interface for payroll application.
' Provides data entry and validates for nonnumeric data.
' Uses the singleton design pattern to ensure that only one
' instance of the form can be created.

Public Class PayrollForm
Private Shared anInstance As PayrollForm

Public Shared ReadOnly Property Instance() As PayrollForm
Get

If anInstance Is Nothing Then
anInstance = New PayrollForm

End If

Private Sub SummaryToolStripMenuItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles SummaryToolStripMenuItem.Click,
summaryToolStripButton.Click, _
SummaryFormToolStripMenuItem.Click
' Create an instance of the summary form.
Dim aSummaryForm As SummaryForm = SummaryForm.Instance

With aSummaryForm
.MdiParent = Me
.Show()
.Focus()

End With
End Sub

Private Sub ExitToolStripMenuItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ExitToolStripMenuItem.Click
' Terminate the program.
' Closing the startup form ends the program.

Me.Close()
End Sub

Private Sub AboutToolStripMenuItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles AboutToolStripMenuItem.Click, aboutToolStripButton.Click
' Display the About Box form with attribute information.

AboutBox1.ShowDialog()
End Sub

Private Sub clockTimer_Tick(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Timer1.Tick
' Update the date and time in the status bar.
' Interval = 1000 milliseconds (one second).

Me.dateToolStripStatusLabel.Text = Now.ToShortDateString
Me.timeToolStripStatusLabel.Text = Now.ToLongTimeString()

End Sub
End Class

PayrollForm

C H A P T E R 2 95

bra17178_ch02_51-108 03/13/06 20:16 Page 95

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

Return anInstance
End Get

End Property

Private Sub calculateButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles calculateButton.Click
' Create a Payroll object to connect to the business tier.
Dim hoursDecimal As Decimal
Dim rateDecimal As Decimal

With Me
' Check for valid input data.
.ErrorProvider1.Clear()
Decimal.TryParse(.hoursTextBox.Text, hoursDecimal)
If hoursDecimal > 0 Then

Decimal.TryParse(.rateTextBox.Text, rateDecimal)
If rateDecimal > 0 Then

' Both values converted successfully.
Try

Dim payObject As New Payroll(hoursDecimal, rateDecimal)
.payTextBox.Text = payObject.Pay.ToString("C")

Catch Err As ApplicationException
' Catch exceptions from the Payroll class.
Select Case Err.Source

Case "Hours"
.ErrorProvider1.SetError(.hoursTextBox, _
Err.Message)

SelectControlInError(.hoursTextBox)
Case "Rate"

.ErrorProvider1.SetError(.rateTextBox, _
Err.Message)

SelectControlInError(.rateTextBox)
End Select

End Try
Else

' Rate did not pass validation.
Me.ErrorProvider1.SetError(Me.rateTextBox, _
"The rate must be numeric.")

SelectControlInError(.rateTextBox)
End If

Else
' Hours did not pass validation.
Me.ErrorProvider1.SetError(Me.hoursTextBox, _
"The hours must be numeric.")

SelectControlInError(.hoursTextBox)
End If

End With
End Sub

Private Sub clearButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles clearButton.Click
' Clear the screen fields.

With Me
.ErrorProvider1.Clear()

96 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

bra17178_ch02_51-108 03/13/06 20:16 Page 96

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

With .nameTextBox
.Clear()
.Focus()

End With
.hoursTextBox.Clear()
.rateTextBox.Clear()
.payTextBox.Clear()

End With
End Sub

Private Sub closeButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles closeButton.Click
' Close this form.

Me.Close()
End Sub

Private Sub hoursTextBox_Validating(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) _
Handles hoursTextBox.Validating
' Test the hours for numeric.
Dim hoursDecimal As Decimal

With Me
Decimal.TryParse(.hoursTextBox.Text, hoursDecimal)
If hoursDecimal = 0 Then

.ErrorProvider1.SetError(.hoursTextBox, _
"The hours must be numeric.")

SelectControlInError(.hoursTextBox)
Else

.ErrorProvider1.Clear()
End If

End With
End Sub

Private Sub rateTextBox_Validating(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) _
Handles rateTextBox.Validating
' Test pay rate for numeric.
Dim rateDecimal As Decimal

With Me
Decimal.TryParse(.rateTextBox.Text, rateDecimal)
If rateDecimal = 0 Then

.ErrorProvider1.SetError(.rateTextBox, _
"The rate must be numeric.")

SelectControlInError(.rateTextBox)
Else

.ErrorProvider1.Clear()
End If

End With
End Sub

Private Sub payrollForm_FormClosing(ByVal sender As Object, _
ByVal e As System.Windows.Forms.FormClosingEventArgs) _
Handles Me.FormClosing
' Do not allow validation to cancel the form's closing.

e.Cancel = False
' Release the instance of this form.
anInstance = Nothing

End Sub

C H A P T E R 2 97

bra17178_ch02_51-108 03/13/06 17:10 Page 97

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

'Program: Ch02HandsOn
'Programmer: Bradley/Millspaugh
'Form: SummaryForm
'Date: June 2006
'Description: Summary form for the chapter hands-on MDI application.
' Displays summary information for multiple transactions.
' Uses the singleton design pattern to ensure that only one
' instance of the form can be created.

Public Class SummaryForm
Private Shared anInstance As SummaryForm

Public Shared ReadOnly Property Instance() As SummaryForm
Get

If anInstance Is Nothing Then
anInstance = New SummaryForm

End If
Return anInstance

End Get
End Property

Private Sub SummaryForm_Activated(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Activated
' Retrieve and display the summary values.

With Me
.employeeCountTextBox.Text = Payroll.NumberProcessed.ToString()
.overtimeHoursTextBox.Text = Payroll.OvertimeHours.ToString("N1")
.totalPayrollTextBox.Text = Payroll.TotalPay.ToString("C")

End With
End Sub

Private Sub closeButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles closeButton.Click
' Close this form.

Me.Close()
End Sub

Private Sub SummaryForm_FormClosing(ByVal sender As Object, _
ByVal e As System.Windows.Forms.FormClosingEventArgs) _
Handles Me.FormClosing
' Release the form's instance.

anInstance = Nothing
End Sub

End Class

Private Sub SelectControlInError(ByVal errorTextBox As TextBox)
' Select the control in error.

With errorTextBox
.SelectAll()
.Focus()

End With
End Sub

End Class

SummaryForm

98 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

bra17178_ch02_51-108 03/13/06 17:10 Page 98

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

'Project: Ch02HandsOn
'Module: Payroll Class
'Programmer: Bradley/Millspaugh
'Date: June 2006
'Description: Business tier for payroll calculation: validates input data
' and calculates the pay, with overtime, regular, and summary
' data.

Public Class Payroll

' Instance variables.
Private hoursDecimal As Decimal ' Hold the Hours property.
Private rateDecimal As Decimal ' Hold the Rate property.
Private payDecimal As Decimal ' Hold the Pay property.

' Shared variables.
' Hold the NumberProcessed shared property.
Private Shared numberEmployeesInteger As Integer
' Hold the TotalPay shared property.
Private Shared totalPayDecimal As Decimal
' Hold the OvertimeHours shared property.
Private Shared totalOvertimeHoursDecimal As Decimal

' Constants.
Private Const MINIMUM_WAGE_Decimal As Decimal = 6.25D
Private Const MAXIMUM_WAGE_Decimal As Decimal = 50D
Private Const MINIMUM_HOURS_Decimal As Decimal = 0D
Private Const MAXIMUM_HOURS_Decimal As Decimal = 60D
Private Const REGULAR_HOURS_Decimal As Decimal = 40D
Private Const OVERTIME_RATE_Decimal As Decimal = 1.5D

' Constructor.
Sub New(ByVal hoursDecimal As Decimal, ByVal rateDecimal As Decimal)

' Assign properties and calculate the pay.

Me.Hours = hoursDecimal
Me.Rate = rateDecimal
findPay()

End Sub

Private Sub findPay()
' Calculate the pay.
Dim overtimeHoursDecimal As Decimal

If hoursDecimal <= REGULAR_HOURS_Decimal Then ' No overtime.
payDecimal = hoursDecimal * rateDecimal
overtimeHoursDecimal = 0D

Else ' Overtime.
overtimeHoursDecimal = hoursDecimal � REGULAR_HOURS_Decimal
payDecimal = (REGULAR_HOURS_Decimal * rateDecimal) + _
(overtimeHoursDecimal * OVERTIME_RATE_Decimal * rateDecimal)

End If
totalOvertimeHoursDecimal += overtimeHoursDecimal
totalPayDecimal += payDecimal
numberEmployeesInteger += 1

End Sub

' Property procedures.

Payroll Class

C H A P T E R 2 99

bra17178_ch02_51-108 03/13/06 20:16 Page 99

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

Public Property Hours() As Decimal
Get

Return hoursDecimal
End Get
Set(ByVal Value As Decimal)

If Value >= MINIMUM_HOURS_Decimal And _
Value <= MAXIMUM_HOURS_Decimal Then
hoursDecimal = Value

Else
Dim Ex As New ApplicationException(_
"Hours are outside of the acceptable range.")

Ex.Source = "Hours"
Throw Ex

End If
End Set

End Property

Public Property Rate() As Decimal
Get

Return rateDecimal
End Get
Set(ByVal Value As Decimal)

If Value >= MINIMUM_WAGE_Decimal And _
Value <= MAXIMUM_WAGE_Decimal Then
rateDecimal = Value

Else
Dim Ex As New ApplicationException(_
"Pay rate is outside of the acceptable range.")

Ex.Source = "Rate"
Throw Ex

End If
End Set

End Property

Public ReadOnly Property Pay() As Decimal
Get

Return payDecimal
End Get

End Property

Public Shared ReadOnly Property NumberProcessed() As Decimal
Get

Return numberEmployeesInteger
End Get

End Property

Public Shared ReadOnly Property TotalPay() As Decimal
Get

Return totalPayDecimal
End Get

End Property

Public Shared ReadOnly Property OvertimeHours() As Decimal
Get

Return totalOvertimeHoursDecimal
End Get

End Property
End Class

100 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

bra17178_ch02_51-108 03/13/06 17:10 Page 100

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

C H A P T E R 2 101

S u m m a r y

1. In VB, all programming is based on classes, which consist of properties,
methods, and events.

2. You can create a new class and use the class to create new objects.
3. Creating a new object is called instantiating the object; the object is called

an instance of the class.
4. In OOP terminology, abstraction means to create a model of an object.
5. Encapsulation refers to the combination of the characteristics and behav-

iors of an item into a single class definition.
6. Inheritance provides a means to derive a new object class based on an ex-

isting class. The existing class is called a base class, superclass, or parent
class. The inherited class is called a subclass, derived class, or child class.

7. An abstract class is a class designed strictly for inheritance; you cannot in-
stantiate an object of the class but must derive new classes from the class.

8. Polymorphism allows different classes of objects to have similarly named
methods that behave differently for that particular object.

9. One of biggest advantages of object-oriented programming is that objects
that you create for one application may be reused in other applications.

10. Multitier applications separate program functions into the presentation tier
(the user interface), the business tier (the logic of calculations and valida-
tion), and the data tier (access to stored data).

11. One advantage of using multitier development is that the business rules
can be changed without changing the interface or the interface can be
changed without changing the business tier.

12. The variables inside a class used to store the properties should be declared as
Private so that data values are accessible only by procedures within the class.

13. The way to make the properties of a class available to code outside the
class is to use Property procedures. The Get portion returns the value of
the property and the Set portion assigns a value to the property. Validation
is often performed in the Set portion.

14. You can create read-only and write-only properties.
15. A constructor is a method that executes automatically when an object is created.

In VB, the constructor must be named New and must be Public or Protected.
16. You can overload the New sub procedure to have more than one signature.

A New sub procedure that requires arguments is called a parameterized
constructor.

17. The public functions and sub procedures of a class module are its methods.
18. To instantiate an object of a class, you must use the New keyword on either

the declaration statement or an assignment statement. The location of the
New keyword determines when the object is created.

19. Your classes can throw an ApplicationException to indicate an error con-
dition.

20. A class can pass an exception up to the calling code by using the Throw
keyword.

21. Exceptions require substantial system resources and should be avoided for
situations that occur frequently, such as invalid user input.

22. The TryParse method of the numeric classes can convert strings to nu-
meric without throwing an exception for invalid data. Instead, the numeric
variable is set to zero for an invalid conversion.

bra17178_ch02_51-108 03/13/06 17:10 Page 101

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

102 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

23. The Validating event of a text box occurs as the user attempts to move to
another control that has its CausesValidation property set to True. The Val-
idating event handler is the preferred location to perform field-level vali-
dation. The Validating event can be canceled for invalid data, which holds
the focus in the field in error.

24. You can use an ErrorProvider component to display an error indicator and
message on a form, rather than use a message box.

25. Shared members (properties and methods) have one copy that can be used
by all objects of the class, generally used for totals and counts. Instance
members have one copy for each instance of the object. Declare shared
members with the Shared keyword. You can reference Public shared mem-
bers of a class without creating an instance of the class.

26. A namespace is an area used for grouping and referring to classes and
structures.

27. The scope of variables, constants, and objects, from the greatest to the
smallest: namespace, module level, procedure level, and block level.

28. The lifetime of a variable, constant, or object corresponds to its scope.
29. You can declare the accessibility of entities using the keywords Public,

Private, Protected, Friend, and Protected Friend.
30. A subclass inherits all public and protected properties and methods of its

base class, except for the constructor. An identically named method in a sub-
class will override or shadow the base-class method. Shadow is the default.

31. To override a method from a base class, the original method must be declared
as overridable, and the new method must use the Overrides keyword.

32. A class that has a predefined set of possible values for a property should
define the values in an enum. The enum structure can appear at the name-
space or class level and must define integer values.

33. The garbage collection feature periodically checks for unreferenced
objects, destroys the object references, and releases resources.

K e y T e r m s

abstract class 53
abstraction 52
accessibility 79
base class 53
block-level scope 77
business rules 55
business tier 56
child class 53
constructor 58
data tier 56
derived class 53
destructor 58
encapsulation 52
enum 84
enumeration 83
ErrorProvider component 67
garbage collection 86

inheritance 53
instance member 71
instance property 71
instance variable 71
lifetime 78
module-level scope 77
multitier application 55
namespace 76
namespace scope 77
overloading 59
overridable 80
override 54
parameterized constructor 59
parent class 53
polymorphism 54
presentation tier 55
procedure-level scope 77

bra17178_ch02_51-108 03/13/06 17:10 Page 102

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

C H A P T E R 2 103

R e v i e w Q u e s t i o n s

1. Define abstraction, encapsulation, inheritance, and polymorphism.
2. What is an abstract class and how is it used?
3. Why should properties of a class be declared as private?
4. What are property procedures and what is their purpose?
5. Explain how to create a new class and instantiate an object from that class.
6. What is a constructor, how is it created, and when is it triggered?
7. What is a parameterized constructor?
8. How can you write methods for a new class?
9. What is a shared member? What is its purpose? How is it created?

10. Explain the steps necessary to inherit a class from another class.
11. Differentiate between overriding and overloading.
12. What are the advantages of developing applications using multiple tiers?
13. Describe the steps necessary to perform validation in the business tier but

display the message to the user in the presentation tier.
14. Explain the differences between a namespace-level variable and a module-

level variable. How is each created and how is it used?
15. Explain the differences between a procedure-level variable and a block-

level variable. How is each created and how is it used?
16. What is the lifetime of a procedure-level variable? A block-level variable?

A module-level variable?
17. Explain the difference between overriding and shadowing methods.
18. What is the effect of using the Protected accessibility modifier? The

Friend modifier?
19. What is an advantage of using the TryParse methods rather than Parse?
20. What is an advantage of using an ErrorProvider component rather than a

message box?
21. What is the purpose of an enum? How is one created?
22. What is garbage collection? What does it do and when does it run?

P r o g r a m m i n g E x e r c i s e s

2.1 Tricia’s Travels: You can add to your Exercise 1.2 or just create the
main form.

Presentation Tier
Main Form
Include text boxes for the customer name, phone number, number travel-
ing, departure date, and credit card number. Include a list box for the

property procedure 57
ReadOnly 58
reusability 53
scope 76
shadow 81
shared member 71
shared property 71
shared variable 71

subclass 53
superclass 53
throw an exception 62
Throw statement 63
TryParse method 64
Validating event 65
Value keyword 57
WriteOnly 58

bra17178_ch02_51-108 03/13/06 17:10 Page 103

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

104 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

destinations: Caribbean, Mediterranean, and Alaska. Include radio but-
tons for 7-day or 14-day packages and a check box for first class. Validate
that the user has made an entry for all fields.

Summary Form

Display the total billing amount, the total number traveling, the number
for each destination, and the number of first-class fares.

Business Tier
Calculate the amount due based on the following schedule:

Days Destination Standard price First-class price

7 Caribbean 3250 5000

14 Caribbean 6000 9000

7 Mediterranean 4250 7999

14 Mediterranean 7999 11999

7 Alaska 3300 5250

14 Alaska 7200 10500

2.2 Kenna’s Kandles offers candles in various shapes, scents, and colors.
Write an MDI project that contains a Main form, an About form, and a
Summary form using a separate tier for the business rules.

Presentation Tier
Main Form

• Text boxes for customer information (name and credit card
number).

• Text box for quantity.

• Radio buttons or list box for candle style (tea light, votive, or pillar).

• Radio buttons or list box for color (Federal Blue, Sunflower Yellow,
Christmas Red, and Lily White).

• Check box for Scented.

• Label for the price of the item.

Summary Form

Display the subtotal for all candles, the tax of 8 percent, a shipping fee of
3 percent, and the total due.

Business Tier
Calculate the price for each candle based on the options selected. The
business tier also should accumulate the information for the total.

bra17178_ch02_51-108 03/13/06 17:10 Page 104

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

C H A P T E R 2 105

2.3 Create a project for maintaining a checkbook using multiple tiers.

Presentation Tier
Main Form

Use radio buttons or a drop-down list to indicate the transaction type:
check, deposit, interest, or service charge. Allow the user to enter the
amount in a text box for the amount and display the account balance in a
label or Read-Only text box. Display a message box for insufficient funds,
based on an appropriate exception generated by the business tier.

Summary Form

Display the total number and the total dollar amounts for deposits,
checks, interest, and service charges.

Business Tier
Validate that the balance can cover a check. If not, throw an exception and
deduct a service charge of $10; do not process the check. Process interest
and deposits by adding to the balance and checks and service charges by
reducing the balance.

Optional Extra
Create an MDI application that includes an About form, a toolbar, and a
status bar.

2.4 Piecework workers are paid by the piece. Workers who produce a greater
quantity of output are often paid at a higher rate.

Presentation Tier
The program should input the name and number of pieces (a required field)
and calculate the pay. Include a Calculate button and a Clear button. You can
include either a Summary button or menu item. The Summary option displays
the total number of pieces, the total pay, and the average pay per person on a
Summary form.

The name and number of pieces are required fields.

Business Tier
The number of pieces must be a positive number; throw an exception for
negative numbers. Calculate the pay using this schedule:

Style Base price Scented price (additional)

Tea lights 5.75 0.75

Votives 7.50 1.25

Pillar 12.25 1.75

Pieces completed Price paid per piece for all pieces

1–199 .50

200–399 .55

400–599 .60

600 or more .65

bra17178_ch02_51-108 03/13/06 17:10 Page 105

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

Modify your Claytor’s Cottages case study project from
Chapter 1. Complete the Reservations option using a
presentation tier and a business tier.

Presentation Tier
The form should have radio buttons for King, Queen,
or Double. Include text boxes for entering the cus-
tomer’s name, address, and phone number; the num-
ber of nights stayed; credit card type (use a list box or
combo box for Visa, Mastercard, and American Ex-
press); and credit card number. Name, nights stayed,
and credit card number are required fields. Use a
check box for weekend or weekday rate and a check
box for AARP or AAA members. Display the price in
a label or Read-Only text box.

Business Tier
Throw an exception if the number of days is not
greater than 0. Calculate the price using this table.
Add a room tax of 7 percent. AAA and AARP cus-

tomers receive a 10 percent discount rate, which is
calculated before the tax.

Case Studies
Claytor’s Cottages

106 A D VA N C E D P R O G R A M M I N G U S I N G V I S U A L B A S I C 2 0 0 5 Building Multitier Programs with Classes

Pieces completed Price paid per piece for all pieces

1–199 .20

200–399 .25

400–599 .30

600–799 .35

800 or more .40

Accumulate and return the summary totals for number of pieces, pay,
and average pay per person. Notice that you also must accumulate the
number of persons to calculate the average.

2.5 Add an inherited class to Exercise 2.4. This class calculates pay for senior
workers, who are paid on a different scale. You must add a check box to
the form for senior workers and use the inherited class for those workers.

Senior workers receive a base pay of $300 plus a per-piece pay using
this schedule:

Sunday through Weekend rate
Beds Thursday rate (Friday and Saturday)

King 95.00 105.00

Queen 85.00 95.00

Double 69.95 79.95

numberDaysInteger = _
endDate.Subtract (startDate).Days

Optional extra: Enter the date of arrival and date of
departure instead of the check boxes. You can use a
calendar object or text boxes to obtain the dates.
Use the methods of the DateTime structure to deter-
mine if the check-in dates are weekdays or weekend.
Increase the rates by 25 percent in May through
September.

bra17178_ch02_51-108 03/13/06 20:16 Page 106

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

C H A P T E R 2 107

Christian’s Car Rentals

Modify your Christian’s Car Rentals project from
Chapter 1. Code the Rentals form using a presentation
tier and a business tier.

Presentation Tier
The presentation tier should include data entry for the
size of car: Compact, Mid-size, or Luxury. Include text
boxes for entering the renter’s name, address, phone
number, license, credit card type, and credit card
number. A group box should include the number of
days rented, the beginning odometer reading, and the
ending odometer reading.

Validate that the ending odometer reading is
greater than the beginning odometer reading before al-
lowing the data to be sent to the business tier. Make
sure that an entry has been made for license and num-
ber of days rented.

Business Tier
Validate that the number of days rented is greater
than 0. There is no mileage charge if the number of

miles does not exceed an average of 100 miles per day
rented. Use the following rates:

Corporate and Insurance Accounts
(Inheritance)
Corporate accounts waive the mileage rate and have a
5 percent discount; insurance accounts have a 10 per-
cent discount on the daily rate.

Car size Daily rate Mileage rate

Compact 26.95 .12

Mid-size 32.95 .15

Luxury 50.95 .20

bra17178_ch02_51-108 03/13/06 17:10 Page 107

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

bra17178_ch02_51-108 03/13/06 17:10 Page 108

(866) 487-8889

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only

