C CHhveAt BpuT

E R

Introduction to
Programming an

Visual (

events.

Describe the various files that make up a

Look up C# topics in Help.

2000

at the completion of this chapter, you will be able to . ..

Describe the process of visual program design and development.
Explain the term object-oriented programming.

Explain the concepts of classes, objects, properties, methods, and

List and describe the three steps for writing a C# program.

C# project.

Identify the elements in the Visual Studio environment.
Define design time, run time, and debug time.
Write, run, save, print, and modify your first C# program.

Identify syntax errors, run-time errors, and logic errors.

2 vV 1T 8 U A L C# Introduction to Programming and Visual C# 2008

Writing Windows Applications with Visual C#

Using this text, you will learn to write computer programs that run in the
Microsoft Windows environment. Your projects will look and act like standard
Windows programs. You will use the tools in C# (C sharp) and Windows Forms
to create windows with familiar elements such as labels, text boxes, buttons,
radio buttons, check boxes, list boxes, menus, and scroll bars. Figure 1.1 shows
some sample Windows user interfaces.
Figure 1.1

—_— Graphical user interfaces for
a-l Message Forma_ E@g

application programs designed
with C# and Windows Forms.

Labels —> MName: | Text boxes
™~ Message:
Color Check box
© Bed Message Visible
Radio
buttons
Picture Buttons
box
Click Picture
Labels
Menu bar Ele Edit Help

Select Coffees and Syrup
Coffee Flavor Symup Flavor

Y = Chocolate
Hazelnut

Irish Creme
Orangs

Group box

Drop-down list

List box

Beginning in Chapter 9 you will create programs using Web Forms and
Visual Web Developer. You can run Web applications in a browser such as
Internet Explorer or Mozilla FireFox, on the Internet, or on a company intranet.
Figure 1.2 shows a Web Forms application.

You also will become acquainted with Microsoft’s new screen design tech-
nology, Windows Presentation Foundation (WPF), which is covered in Chapter
14. WPF uses its own designer and design elements, which are different from
those used for Windows forms.

C H A P T E R 1

Figure 1.2

(& Look Sharp Promotions - Windows Internet Explorer ISHICHL X

(I~ [& npsfiocalnost50292/ChogHandson/ =42 x| [Goagee o+

— a
o [@ Look Sharp Promotions I I %y v B v ® v [Page = {3 Tools =

ook Sharp _Litness Center

Come for a visit.

Name
Email Address
Promotion Code (optional)
Contact Us
#100% ~

Dene €D Internet | Protected Mede: On

The Windows Graphical User Interface

Microsoft Windows uses a graphical user interface, or GUI (pronounced
“g00ey”). The Windows GUI defines how the various elements look and
function. As a C# programmer, you have available a toolbox of these ele-
ments. You will create new windows, called forms. Then you will use the
toolbox to add the various elements, called controls. The projects that you
will write follow a programming technique called object-oriented pro-
gramming (OOP).

Programming Languages—Procedural,

Event Driven, and Object Oriented

There are literally hundreds of programming languages. Each was developed to
solve a particular type of problem. Most traditional languages, such as BASIC,
C, COBOL, FORTRAN, PL/1, and Pascal, are considered procedural lan-
guages. That is, the program specifies the exact sequence of all operations.
Program logic determines the next instruction to execute in response to condi-
tions and user requests.

The newer programming languages such as C#, Java, and Visual Basic
(VB) use a different approach: objeci-oriented programming (OOP).

In the OOP model, programs are no longer procedural. They do not follow
a sequential logic. You, as the programmer, do not take control and determine
the sequence of execution. Instead, the user can press keys and click various
buttons and boxes in a window. Each user action can cause an event to occur,
which triggers a method (a set of programming statements) that you have writ-
ten. For example, the user clicks on a button labeled Calculate. The clicking
causes the button’s Click event to occur, and the program automatically jumps
to a method you have written to do the calculation.

A Web Forms application
running in a browser.

4 V I § U A L C#

The Object Model

In C# you will work with objects, which have properties, methods, and events.
Each object is based on a class.

Objects

Think of an object as a thing, or a noun. Examples of objects are forms and
controls. Forms are the windows and dialog boxes you place on the screen;
controls are the components you place inside a form, such as text boxes, but-
tons, and list boxes.

Properties

Properties tell something about or control the behavior of an object such as
its name, color, size, or location. You can think of properties as adjectives that
describe objects.

When you refer to a property, you first name the object, add a period, and
then name the property. For example, refer to the Text property of a form called
SalesForm as SalesForm.Text (pronounced “sales form dot text”).

Methods

Actions associated with objects are called methods. Methods are the verbs of
object-oriented programming. Some typical methods are Close, Show, and
Clear. Each of the predefined objects has a set of methods that you can
use. You will learn to write additional methods to perform actions in your
programs.

You refer to methods as Object.Method (“object dot method”). For exam-
ple, a Show method can apply to different objects: BillingForm.Show shows
the form object called BillingForm; exitButton.Show shows the button object
called exitButton.

Events

You can write methods that execute when a particular event occurs. An event
occurs when the user takes an action such as clicking a button, pressing a key,
scrolling, or closing a window. Events also can be triggered by actions of other
objects, such as repainting a form or a timer reaching a preset point.

Classes

A class is a template or blueprint used to create a new object. Classes contain
the definition of all available properties, methods, and events.

Each time that you create a new object, it must be based on a class. For
example, you may decide to place three buttons on your form. Each button is
based on the Button class and is considered one object, called an instance of the
class. Each button (or instance) has its own set of properties, methods, and
events. One button may be labeled “OK”, one “Cancel”, and one “Exit”. When
the user clicks the OK button, that button’s Click event occurs; if the user clicks
on the Exit button, that button’s Click event occurs. And, of course, you have
written different program instructions for each of the button’s Click events.

An Analogy

If the concepts of classes, objects, properties, methods, and events are still a
little unclear, maybe an analogy will help. Consider an Automobile class. When

Introduction to Programming and Visual C# 2008

MTIP

The term members is used to refer to
both properties and methods. =

C H A P T E R 1

we say automobile, we are not referring to a particular auto, but we know that
an automobile has a make and model, a color, an engine, and a number of
doors. These elements are the properties of the Automobile class.

Each individual auto is an object, or an instance of the Automobile class.
Each Automobile object has its own settings for the available properties. For
example, each Automobile object has a Color property, such as myAuto.Color =
Blue and yourAuto.Color = Red.

The methods, or actions, of the Automobile class might be Start, SpeedUp,
SlowDown, and Stop. To refer to the methods of a specific object of the class,
use myAuto.Start and yourAuto.Stop.

The events of an Automobile class could be Arrive or Crash. In a C# pro-
gram, you write event-handling methods that specify the actions you want to
take when a particular event occurs for an object. For example, you might write
a method to handle the yourAuto.Crash event.

Note: Chapter 12 presents object-oriented programming in greater depth.

Microsoft’s Visual Studio

The latest version of Microsoft’s Visual Studio, called Visual Studio 2008, in-
cludes C#, Visual C++, Visual Basic, and the .NET 3.5 Framework.

The .NET Framework

The programming languages in Visual Studio run in the .NET Framework. The
Framework provides for easier development of Web-based and Windows-based
applications, allows objects from different languages to operate together, and
standardizes how the languages refer to data and objects. Several third-party
vendors have produced versions of other programming languages to run in the
NET Framework, including .NET versions of APL by Dyalog, FORTRAN by
Lahey Computer Systems, COBOL by Fujitsu Software Corporation, Pascal by
the Queensland University of Technology (free), PERL by ActiveState, RPG by
ASNA, and Java, known as IKVM.NET.

The .NET languages all compile to (are translated to) a common machine
language, called Microsoft Intermediate Language (MSIL). The MSIL code,
called managed code, runs in the Common Language Runtime (CLR), which is
part of the .NET Framework.

C#

Microsoft C# is a part of Visual Studio. You also can purchase C# by itself
(without the other languages but with the .NET Framework). C# is available in
an Express Edition, a Standard Edition, a Professional Edition, and four
specialized versions of Team System Editions for large enterprise application
development. You can find a matrix showing the features of each edition in
Help. Anyone planning to do professional application development that in-
cludes the advanced features of database management should use the Profes-
sional Edition or the Team System Database version. The full Professional
Edition is available to educational institutions through the Microsoft Academic
Alliance program and is the best possible deal. When a campus department
purchases the Academic Alliance, the school can install Visual Studio on all
classroom and lab computers and provide the software to all students and fac-
ulty at no additional charge. For more information, have your instructor visit:
http://msdn.microsoft.com/en-us/academic/default.aspx

6 \ I § U A L C# Introduction to Programming and Visual C# 2008

Microsoft provides an Express Edition of each of the programming lan-
guages, which you can download for free (www.microsoft.com/express/down-
load/). You can use Visual C# Express for Windows development and Visual
Web Developer Express for the Web applications in Chapters 9 and 10.

This text is based on the Professional Edition of Visual Studio 2008, the
current version. You cannot run the projects in this text in any earlier version

of C#.

Writing C# Programs

When you write a C# application, you follow a three-step process for planning
the project and then repeat the three-step process for creating the project. The
three steps involve setting up the user interface, defining the properties, and
then creating the code.

The Three-Step Process

Planning

1. Design the user interface. When you plan the user interface, you draw
a sketch of the screens the user will see when running your project. On
your sketch, show the forms and all the controls that you plan to use.
Indicate the names that you plan to give the form and each of the objects
on the form. Refer to Figure 1.1 for examples of user interfaces.

Before you proceed with any more steps, consult with your user and
make sure that you both agree on the look and feel of the project.

2. Plan the properties. For each object, write down the properties that you
plan to set or change during the design of the form.

3. Plan the C# code. In this step you plan the classes and methods that
will execute when your project runs. You will determine which events
require action to be taken and then make a step-by-step plan for those
actions.

Later, when you actually write the C# code, you must follow the
language syntax rules. But during the planning stage, you will write out
the actions using pseudocode, which is an English expression or
comment that describes the action. For example, you must plan for
the event that occurs when the user clicks on the Exit button. The
pseudocode for the event could be End the project or Quit.

Programming
After you have completed the planning steps and have approval from your user,

you are ready to begin the actual construction of the project. Use the same
three-step process that you used for planning.

1. Define the user interface. When you define the user interface, you create
the forms and controls that you designed in the planning stage.
Think of this step as defining the objects you will use in your
application.

C H A P T E R 1

2. Set the properties. When you set the properties of the objects, you give
each object a name and define such attributes as the contents of a label,
the size of the text, and the words that appear on top of a button and in
the form’s title bar.

You might think of this step as describing each object.

3. Write the code. You will use C# programming statements (called C#
code) to carry out the actions needed by your program. You will be sur-
prised and pleased by how few statements you need to create a powerful
Windows program.

You can think of this third step as defining the actions of your
program.

C# Application Files

A C# application, called a solution, can consist of one or more projects. Since
all of the solutions in this text have only one project, you can think of one
solution = one project. Each project can contain one or more form files. In
Chapters 1 through 5, all projects have only one form, so you can think of one
project = one form. Starting in Chapter 6, your projects will contain multiple
forms and additional files. As an example, the HelloWorld application that you
will create later in this chapter creates the following files:

File Name File Icon Desecription

The solution file. A text file that holds
information about the solution and the projects
it contains. This is the primary file for the

HelloWorld.sln

solution—the one that you open to work on or
run your project. Note the “9” on the icon,
which refers to Visual Studio version 9.

HelloWorld.suo Solution user options file. Stores information
about the state of the integrated development
environment (IDE) so that all customizations
can be restored each time you open the
solution.

HelloForm.cs N A .cs (C#) file that holds the code methods that
C# you write. This is a text file that you can open
in any editor. Warning: You should not modify
this file unless you are using the editor in the
Visual Studio environment.

i A .cs (C#) file created by the Form Designer
C# n. that holds the definition of the form and its
controls. You should not modify this file
directly, but instead make changes in the
Designer and allow it to update the file.

HelloForm.Designer.cs

A resource file for the form. This text file
defines all resources used by the form,

HelloForm.resx

including strings of text, numbers, and any

graphics.

8 \ I § U A L C# Introduction to Programming and Visual C# 2008

File Name File Icon Description

HelloWorld.csproj s | The project file that describes the project and
‘l cﬁ lists the files that are included in the project.

The project user options file. This text file
holds IDE option settings so that the next time

HelloWorld.csproj.user

you open the project, all customizations will be

restored.

A .cs (C#) file that contains automatically

Program.cs N
C# generated code that runs first when you execute

your application.

Note: You can display file extensions. In Windows Vista, open the Explorer and
select Organize / Folders and Search Options, click on the View tab and deselect
the check box for Hide extensions for known file types. In Windows XP, in the My
Computer Tools menu, select Folder Options and the View tab. Deselect the
check box for Hide extensions for known file types. If you do not display the
extensions, you can identify the file types by their icons.

After you run your project, you will find several more files created by the
system. The only file that you open directly is the .sln, or solution file.

The Visual Studio Environment

The Visual Studio environment is where you create and test your projects.
A development environment such as Visual Studio is called an integrated
development environmeni (IDE). The IDE consists of various tools, includ-
ing a form designer, which allows you to visually create a form; an editor, for
entering and modifying program code; a compiler, for translating the C# state-
ments into the intermediate machine code; a debugger, to help locate and cor-
rect program errors; an object browser, to view the available classes, objects,
properties, methods, and events; and a Help facility.

In versions of Visual Studio prior to .NET, each language had its own IDE.
For example, to create a Visual Basic project you would use the Visual Basic
IDE, and to create a C++ project you would use the C++ IDE. But in Visual
Studio, you use the one IDE to create projects in any of the supported
languages.

Default Environment Settings

The full version of Visual Studio 2008 provides an option that allows the
programmer to select the default profile for the IDE. The first time you open
Visual Studio, you are presented with the Choose Default Environment Settings
dialog box (Figure 1.3), where you can choose Visual C# Development Settings.
This text uses the Visual C# settings.

C H A P T E R 1

Figure 1.3

W5 Choose Default Environment Settings @

M:UPVJ"' "
* o Visual Studio 2008

EBefore you begin using Visual Studio for the first time, you need to specify the type of development
activity you engage in the most, such as Visual Basic or Visual C#, Visual Studic uses this information
to apply a predefined collection of settings to the development envirenment that is designed for your
development activity.

You can choose to use a different collection of settings at any time. From the Tools menu, choose
Import and Export Settings and then choose Reset all settings.

| Allow Visual Studio to download and display online RS5 content
play
Choose your default environment settings:

General Development Settings Description:

Visual Basic Development Settings Customizes the environment to maximize code editor
screen space and improve the visibility of commands
Web Development Settings specific to C#. Increases productivity with keyboard

shortcuts that are designed to be easy te learn and
use.

Start Visual Studio | [Exit Visual Studio

Note: If you plan to develop in more than one language, such as VB and
C#, you can save each group of settings and switch back and forth between the
two. Select Tools / Import and Export Settings and choose to Reset all settings.

The IDE Initial Sereen

When you open the Visual Studio IDE, you generally see an empty environ-
ment with a Start Page (Figure 1.4). However, it’s easy to customize the envi-
ronment, so you may see a different view. In the step-by-step exercise later in
this chapter, you will learn to reset the IDE layout to its default view.

The contents of the Start Page vary, depending on whether you are con-
nected to the Internet. Microsoft has included links that can be updated, so you
may find new and interesting information on the Start Page each time you open
it. To display or hide the Start Page, select View / Other Windows / Start Page.

You can open an existing project or begin a new project using the Start
Page or the File menu. The examples in this text use the menus.

The New Project Dialog

You will create your first C# projects by selecting File / New Project, which
opens the New Project dialog (Figure 1.5). In the New Project dialog, you may
need to expand the node for Other Languages, depending on your installation.
Under Visual C#, select Windows, and in the Templates pane, select Windows
Forms Application. You also give the project a name in this dialog. Deselect the
check box for Create directory for solution, which creates an extra level of folders
for our single-project solutions.

The first time you open the
Visual Studio IDE, you must
select the default environment
settings for Visual C#
development.

10 Vv 1 8§ U A L C# Introduction to Programming and Visual C# 2008

Figure 1.4

The Visual Studio IDE with the Start Page open, as it first appears in Windows Vista, without an open project. You can close
the Start Page by clicking on its Close button.

Close button for

Start Page
[& Start Page - Microsoft Visual Studio / =
File Edit View Tools Test Window Help
ok Rar=AE N- RN R R =R =N | - || || E
Start Page Solution Explorer + & X |

Mic

Visual Studio -

|xuqmu_|_§(_|

The current news channel might not be a valid RS5 feed, or your
internet connection might be unavailable. To change the news
channel, on the Tools menu, click Options, then expand
Environment and click Startup.

m

Open: Project...
Create: Project...

Getting Started

What's new in Visual C#?
Create Your First Application
How Dol..?

Learn Visual C#

Download Additional Content

MSDN Forums -

Figure 1.5

Select the Windows Forms Begin a new C# Windows
Application template project using the Windows

Forms Application template.
Mew Project PP P

Project types: Templates: NET Framework 3.5 -

Visual C# Visual Studio installed tEmpIates

Windews [FAWindows Forms Application (S Class Library
[WPF Application [’2# WPF Browser Application
@ConsoleAppllcatlon = Empty Project
Database ,@Wmdow; Service & WPF Custom Control Library
Reporting (¥ WPF User Control Library | Windows Forms Cantral Library
Test My Templates

WCF (5earch Online Templates...
Workflow

Other Languages

Office

Other Project Types
Test Projects

A project for creating an applicati D\W\th a Windows Forms user interface (.MET Framework 3.5)

Name: WindowsFormadpplicationl

Location: ChUserst)C B\DONm ents\V\;\al Studio 2008\Projects

Solution Mame: WindowsFormsAppicationl \ | DCyEategirectoryfor solution
\ \

Enter the project name

Select Visual C# Windows

C H A P T E R 1

The IDE Main Window

Figure 1.6 shows the Visual Studio environment’s main window and its various
child windows. Note that each window can be moved, resized, opened, closed, and
customized. Some windows have tabs that allow you to display different contents.
Your screen may not look exactly like Figure 1.6; in all likelihood, you will want
to customize the placement of the various windows. The Designer and Editor win-
dows are generally displayed in tabs in the center of the screen (the Document
window), and the various tool windows are docked along the edges and bottom of
the IDE, but the locations and the docking behavior are all customizable.

The IDE main window holds the Visual Studio menu bar and the toolbars.
You can display or hide the various windows from the View menu.

Figure 1.6

The Visual Studio environment. Each window can be moved, resized, closed, or customized.

File Edit View Project Build Debug Data Tools Test Window Help

- S e @ % a9 -~ BB b Debug « Any CPU - | @
PO |02 & 3| TF e | 5330 FER R oo M o @ | & &2 24 x| (][] 6 % | E] 20

" MyFirstProject - Microsoft Visual Studia \El@lg

m Form1.cs [Design] ~ » | Solution Explorer - MyFirstProject

@ HEEEAL

ol Forml (= @]

*0Q|00L 3,

£ [MyFirstProject
[=d| Properties
|«3] References

: -=| Ferml.cs

..] Program.cs

[[5 Solution 'MyFirstProject’ (1 project)

Properties

k=7 13

Form1 System.Windows.Forms.Form

(Application5ettings)

(DataBindings)
(Mame)
AcceptButton
AccessibleDescriptior

AccessibleMName

(Name)
Indicates the name used in code to identify the
object.

The Toolbars

You can use the buttons on the toolbars as shortcuts for frequently used opera-
tions. Each button represents a command that also can be selected from a menu.
Figure 1.7a shows the toolbar buttons on the Standard toolbar for the Profes-
sional Edition, which displays in the main window of the IDE; Figure 1.7b shows
the Layout toolbar, which is useful for designing forms in the Form Designer; and
Figure 1.7¢ shows the Text Editor toolbar, which contains buttons to use in the
Editor window. Select View / Toolbars to display or hide these and other toolbars.

12 \ [| S U A L C# Introduction to Programming and Visual C# 2008

Figure 1.7

The Visual Studio toolbars contain buttons that are shortcuts for menu commands. You can display or hide each of the
toolbars: a. the Standard toolbar; b. the Layout toolbar; and c. the Text Editor toolbar.

ol SHd 4 B9 -&- b Debug - Any CPU - | % | HEBEEE Y
SO N A A A A A A A A i | ?if;f
%, T %%, 4G, e, T T Yy, % % o %%,
g W e e C BT T T T Yy, %, 4 U Dl 4,
% @,k/«?% wly %, (9@,& 000 “%,, % é?’%/ 6;0* %
v %, Y, %, Y, U,
", %, O”/) @i, op
Q,Q,r}' z;%. % EAN
(@) %
EIEEEENME I TR YT PRI
TTTTTTTTTT}T}gTT}gTTT2£T;
4{500 (y/gaz;y/é&;y%z (Y/g“z)(y/g‘/) /{500 %'f%f %4 /e@ %e{ OO&@ GO,.(?@@ %4 éozé @0,.(%0, Cé@[%‘7/ /}/; O/)Q,J?@g; %)
g, e T,) Y Yy G S, B 4, e e e P 5 8 Py
G, G o Sy, Ny 4, % Y, Y, %, G Y S0 Ty L, T L Y, T, Pl T8 Ty,
k> 6,& % 0%3 OO;& OQO&O&- % "éoé oz},(%’. Oz}e, /o(?/ 6’,&. Y @1}}, ’)eo /}(; foo '904 %
LK S : % 3
Uy g, Y, W s Yy G
- *2@ '9/&{9/ “ ‘9(,}) %Q 8, 0, (2
0’060 (OQO % 3, (.OQC'/ &@ O”) QO/@‘ O/o&x
& G, G G P T
%, S % s Ty
(b) Sy
B % b e |EE(= 20O 103 & B G)
0’& 0’& 0’4 0’& 05‘0 6}0. %, 0’?.;}%%%»4?%4?%47%47%%»0@
R R AR A I A R R AP CICICICINT
G S e, R 2 0 0
0{5/ . 0(/, %»@/4 QVIO % 004(3*@ 4@ '9'@ « '9’@ S O‘{@
@o,‘?’z‘; INA %, (7] AN «1705 %{@gm@ s,
% /@fé Y G0 0000& %, % %, %
0 %, Sk, %, %, 0, %,
€. o %,) 0‘60, 0«6& Uy %, ey %, %,
(,- % v, . %, 90, 4y Yo, 4
Sy <, % % @ % %
i % % %
& " })C” s, })C’ %,
Ut 50
/)[(QO/O)/)[<.
o) oo(”«y
% 4,
, w,
() 4

The Document Window

The largest window in the center of the screen is the Document window. - TIP

Notice the tabs across the top of the window, which allow you to switch between yse Cirl + Tab to switch to another
open documents. The items that display in the Document window include the
Form Designer, the Code Editor, the Project Designer, the Database Designer,
and the Object Browser.

You can switch from one tab to another, or close any of the documents
using its Close button.

open document in the Document
window. m

The Form Designer

The Form Designer is where you design a form that makes up your user in-
terface. In Figure 1.6, the Form Designer for Forml is currently displaying.

You can drag the form’s sizing handles or selection border to change the size of
the form.

C H A P T E R 1

When you begin a new C# Windows application, a new form is added to
the project with the default name Form1. In the step-by-step exercise later in
the chapter, you will learn to change the form’s name.

The Solution Explorer Window

The Solution Explorer window holds the filenames for the files included in
your project and a list of the classes it references. The Solution Explorer window
and the environment’s title bar hold the name of your solution (.sIn) file, which is
WindowsFormsApplication] by default unless you give it a new value in the New
Project dialog box. In Figure 1.6, the name of the solution is MyFirstProject.

The Properties Window

You use the Properties window to set the properties for the objects in your
project. See “Set Properties™ later in this chapter for instructions on changing
properties.

The Toolbox

The toolbox holds the tools you use to place controls on a form. You may have
more or different tools in your toolbox, depending on the edition of C# you are
using (Express, Standard, Professional, or Team System). Figure 1.8 shows the
toolbox.

13

MTIP

You can sort the properties in the

window either alphabetically or by
categories. Use the buttons on the

Properties window. m

Figure 1.8

>~ 1 X

+ All Windows Forms -

Toolbox

- Common Controls Common controls for

Painter Windows Forms
Button
CheckBox
CheckedLiztBox
ComboBox
DateTimePicker
Lakel

LinkLakel
ListBox

22 ListView
MazkedTextBox
MaonthCalendar
Metifylcon

MurnericUpDown

(5 #

pog
<

!

1
4

i | : } .L
u [
o e 1

#
1

H]

4w

o]

PictureBox
ProgressBar
RadicButton

RichTextBox
abll TextBox = [« Scroll to see more

RO NEN"

controls

The toolbox for Visual Studio
Windows Forms. Your toolbox
may have more or fewer tools,
depending on the edition you
are using.

MTIP

You can sort the tools in the tool-

box: Right-click the toolbox and se-
lect Sort Items Alphabetically from
the context menu (the shortcut

menu). ®

14 V I § U A L C#

Help

Visual Studio has an extensive Help feature, which includes the Microsoft
Developer Network library (MSDN). You can find reference materials for C#,
C++, VB, and Visual Studio; several books; technical articles; and the Micro-
soft Knowledge Base, a database of frequently asked questions and their
answers.

Help includes the entire reference manual, as well as many coding exam-
ples. See the topic “Visual Studio Help” later in this chapter for help on
Help.

When you make a selection from the Help menu, the requested item ap-
pears in a new window that floats on top of the IDE window (Figure 1.9), so you
can keep both open at the same time. It’s a good idea to set the Filtered By entry
to Visual C#.

Introduction to Programming and Visual C# 2008

Figure 1.9

Help displays in a new window, independent of the Visual Studio IDE window.

Help with Specific Tasks

Selected Topic
Help Search

@) Button Class - Microsoft Visual Studio 2}]68 Documentation - Micmmy/ﬁﬂcumem _ @@g

File Edit View Tools Windo Help

Index

Q@ Back &) [# & A7 | @ HowDol - Search | Jfndex 43 Conténts | 7] Help Favorites éf &) | %) MSDN Forums {4 =

Filtered by:
1 Visual C#
Flltel‘ + = Collapse all ¥ Code: all

Lock for: ET Frarmewo

Button class, about Button class Button Class
Members Example See Also Send Feedback

-

Button property [InkCollectorCursorButtonDown— I
Button preperty [InkCollectorCursorButtonUpEve c#
BUTTOM
Button class
about Button class

[ComVisibleAttribute (true)]

URL: ms-help://MSNVSCCAA0/MS.MSDNQTRI0.en/furef_system.windows.forms/htm|/48005cch-3639-17 ~

[ClassInterfacehtrribute (ClassTnterfaceType.hutoDispatch)]

public class Button : ButtonBase, IButtonControl

all members
constructor

declarative syntax

events < i

fields
methods
properties Title Location

Button control [Web Forms]
adding

Index Results - Button class, about Button class - 3 topics found

Button Class (Systemn.Web.ULWebControls) system.web

determining coordinates Button Class (System.Windows.Controls) presentaticnframework

events Button Class (System.Windows.Forms) system.windows.forms

L

3, Index |@Contants j Help Favorites

Help Favorites
Help Contents
Help Index

Index Results

Design Time, Run Time, and Debug Time

Visual Studio has three distinct modes. While you are designing the user inter-
face and writing code, you are in design time. When you are testing and run-
ning your project, you are in run time. If you get a run-time error or pause
program execution, you are in debug time. The IDE window title bar indicates
(Running) or (Debugging) to indicate that a project is no longer in design time.

C H A P T E R 1

15

Writing Your First C# Project

For your first C# project, you will create a form with three controls (see Fig-
ure 1.10). This simple project will display the message “Hello World” in a
label when the user clicks the Display button and will terminate when the
user clicks the Exit button.

Figure 1.10

.
& Hello World by‘r"ourNaie_- el (S

Set Up Your Workspace

Before you can begin a project, you must open the Visual Studio IDE. You also
may need to customize your workspace.

Run Visual Studio

These instructions assume that Visual Studio 2008 is installed in the default
location. If you are running in a classroom or lab, the program may be installed
in an alternate location, such as directly on the desktop.

STEP 1: Click the Windows Start button and move the mouse pointer to All
Programs.

STEP 2: Locate Microsoft Visual Studio 2008.

STEP 3: If a submenu appears, select Microsoft Visual Studio 2008 or Microsoft
Visual C# 2008 Express.

Visual Studio will start and display the Start Page (refer to Figure

1.4). If you are using Visual Studio Professional and this is the first
time that VS has been opened for this user, you will need to select
Visual C# Development Settings from the Choose Default Environment
Settings dialog box (refer to Figure 1.3).

Note: The VS IDE can be customized to not show the Start Page when it
opens.

Start a New Project

STEP 1: Select File / New / Project; the New Project dialog box opens (refer to
Figure 1.5). Make sure that Visual C# and Windows are selected for

The Hello World form. The
“Hello World” message will
appear in a label when the user
clicks on the Display button.
The label does not appear until
the button is pressed.

16

STEP 2:

vV I 8§ U A L C#

Project types and Windows Forms Application is selected for the template.
If you are using Visual C# Express, the dialog box differs slightly and
you don’t have to choose the language, but you can still choose a Win-
dows Forms Application.

Enter “HelloWorld” (without the quotes) for the name of the new proj-
ect (Figure 1.11) and click the OK button. The new project opens
(Figure 1.12). At this point, your project is stored in a temporary di-
rectory. You can specify a new location for the project later when you
save 1t.

Introduction to Programming and Visual C# 2008

Figure 1.11

Enter the name for the new project.

COu a2 22 e
Project types: Templates: -NET Framework 3.5 v

Visual C# Visual Studic installed templates
Windows FWindows Forms Application (¥ Class Library

Smart Device
Office
Database
Reporting
Test My Templates
WCF i Search Online Templates..,
Workflow
Other Languages

.;5Conso|eApp|ication EEmpty Project

Other Project Types
Test Projects

e @IWPFAppIication [&| WPF Browser Application

@Winduws Service & WPF Custom Control Library
@WPF User Control Library EWmdows Forms Control Library

A project for creating an application with a Windows Forms user interface (MNET Framework 3.5)
Mame: HelleWaorld

Location: ChUsers\JCB\Documents\Visual Studio 2008'\Projects

Seolution: Create new Solution V] || Create directory for selution

HelleWorld

- Browse...

Set Up Your Environment

In this section, you will customize the environment. For more information on
customizing windows, floating and docking windows, and altering the location
and contents of the various windows, see Appendix C.

STEP 1:

STEP 2:

STEP 3:

Reset the IDE’s default layout by choosing Window / Reset Window
Layout and responding Yes. The IDE should now match Figure 1.12.
Point to the icon for the toolbox at the left of the IDE window. The
Toolbox window pops open. Notice the pushpin icon at the top of the
window (Figure 1.13); clicking this icon pins the window open rather
than allowing it to Auto Hide.

Click the Auto Hide pushpin icon for the Toolbox window; the toolbox
will remain open.

C H A P TE R 1 17

Figure 1.12

The Visual Studio IDE with the new HelloWorld C# project. Your screen may look significantly different from the figure since
the environment can be customized.

T e e ===
File Edit View Project Build Debug Data Format Tools Test Window Help
liiE-E- W@ # @9 -0-5-5]F Debuyg + Any CPU - | @ =
PR & S| T o | S ol| o one e o & | & o7 Bt et FH[P]| G %=1
Toolbox E/Fm ~ 3 | Solution Explorer - Solution .. « & X
1P E¥allEl=F
=3 ey 3 o
g LFoTml = E= E%IL:EL;?LLWMH (1 project)
[~ [=d] Properties
+)-- [«9] References
=] Forml.cs
i] Program.cs
Properties 3 X
Forml System.Windows.Forms.Form =
=
(ApplicationSetti o
7| (DataBindings) L
(Mame) Form1l
AcceptButten (none)
AccessibleDescri >
- (Name)
Indicates the name used in code to
/ identify the object.
Ready
Document window Solution Explorer
Properties window
Figure 1.13
Toolbox icon —>¢ || Teolbox - =X The Toolbox window.
Lo @ All Windows Forms N —
S | 5 Common Controls ushpin icon
2| & Pointer
Button
CheckBox
CheckedListBox =
=% ComboBox
T DateTimePicker
A Label
A LinkLabel
=3 ListBox T
23 ListView
Masked TextBox
E MonthCalendar
== Motifylcon
[1% MurnericUpDown
[8] PictureBox
) ProgressBar
(%) RadioButton
23 RichTextBox -

18 vV 1T 8 U A L C# Introduction to Programming and Visual C# 2008

STEP 4: Optional: Select Tools / Options. In the Options dialog box, select
Startup under Environment, drop down the At startup list and select
Show empty environment (Figure 1.14), and click OK. This selection
causes the Start Page to not appear and will make your environment
match the illustrations in this text. Note that you can show the Start
Page at any time by selecting View / Other Windows / Start Page.

Figure 1.14

Select Show empty environment for the environment’s Startup option in the Options dialog box.

Set this option so that the Start Page does not
appear at startup

Environment At startup:

General
Add-in/Macros Security Open Home Page

AutoRecover Load last loaded solution
Documents Show Open Project dialog box

Find and Replace Show MNew Project dialog box

T %}M
Help o n

Import and Export Settings
Internaticnal Settings
Keyboard

Startup

Task List

Web Browser

[Shﬂw empty environment

Projects and Selutions
Source Control

Text Editor

Database Tocls

Debuaaina

Cancel

Plan the Project

The first step in planning is to design the user interface. Figure 1.15 shows a
sketch of the form that includes a label and two buttons. You will refer to the
sketch as you create the project.

Figure 1.15

A sketch of the Hello World form for planning.

HelloForm —s| i Je———1 messagelLabel

A~

r Display displayButton

| Exit

~

exitButton

C H A P T E R 1

The next two steps, planning the properties and the code, have already
been done for this first sample project. You will be given the values in the steps
that follow.

Define the User Interface

Set Up the Form

Notice that the new form in the Document window has all the standard Windows
features, such as a title bar, maximize and minimize buttons, and a Close button.

STEP 1: Resize the form in the Document window: Drag the handle in the
lower-right corner down and to the right (Figure 1.16).

19

Figure 1.16

Form1l.cs [Design] - X

ol Forml [= [= |@

FJ

Drag handle to enlarge form

Place Controls on the Form

You are going to place three controls on the form: a label and two buttons.

STEP 1: Point to the Label tool in the toolbox and double-click; a Label
control appears on the form. Drag the label to the desired location
(Figure 1.17). Later you will adjust the label’s size.

As long as the label is selected, you can press the Delete key to
delete it, or drag it to a new location.

You can tell that a label is selected; it has a dotted border, as shown
in Figure 1.17, when the AutoSize property is true (the default) or
sizing handles if you set the AutoSize property to false.

STEP 2: Draw a button on the form: Click on the Button tool in the toolbox,
position the crosshair pointer for one corner of the button, and drag to
the diagonally opposite corner (Figure 1.18). When you release the
mouse button, the new button should appear selected and have

Make the form larger by
dragging its lower-right
handle diagonally. The
handles disappear as you
drag the corner of the form.

20 \ [| S U A L C# Introduction to Programming and Visual C# 2008

Figure 1.17

The newly created label appears outlined, indicating that it is selected. Notice that the contents of the label are set to the
control’s name (labell) by default.

Toolbox * 1 X Forml.cs [Design]* > X
+ All Windows Forms e

-I Common Controls
I Pointer

Button

[“] CheckBox

5% CheckedListBox
=4 ComboBox

7 DateTimePicker
A Label

A LinklLa

o Forrl o |[E]E=

m

« ListBox
337 ListView
#- MaskedTextB

- MonthCalendar
u| Motifylcon
17 MumericUpDown
-4 PictureBex
0 ProgressBar
%) RadicButton

&5 RichTextBox

Double-click the Label tool

Figure 1.18

Select the Button tool and
drag diagonally to create a
new Button control. The blue
snap lines help to align
controls.

a-l Farml [o|[E]

labell

Snap line

|: Draw the Button

control using the

crosshair pointer

resizing handles. The blue lines that appear are called snap lines,
which can help you align your controls.

While a control is selected, you can delete it or move it. If it has
resizing handles, you also can resize it. Refer to Table 1.1 for instruc-
tions for selecting, deleting, moving, and resizing controls. Click
outside of a control to deselect it.

C H A P

T E R 1

Selecting, Deleting, Moving, and Resizing Controls on a Form.

21

Table 1.1

Select a control

Delete a control

Move a control

Resize a control

Click on the control.
Select the control and then press the Delete key on the keyboard.

Select the control, point inside the control (not on a handle), press
the mouse button, and drag it to a new location.

Make sure the control is selected and has resizing handles; then
either point to one of the handles, press the mouse button, and drag
the handle; or drag the form’s bottom border to change the height or
the side border to change the width. Note that the default format for
labels does not allow resizing.

STEP 3: While the first button is still selected, point to the Button tool in the
toolbox and double-click. A new button of the default size will appear

on top of the last-drawn control (Figure 1.19).

Figure 1.19

STEP 4: Keep the new button selected, point anywhere inside the button (not on

ol Forml [= &5 ==

labell

a handle), and drag the button below your first button (Figure 1.20).

STEP 5: Select each control and move and resize the controls as necessary.
Make the two buttons the same size and line them up. Use the snap
lines to help with the size and alignment. Note that you can move but

not resize the label.

At this point you have designed the user interface and are ready to set the

properties.

Set Properties

Set the Name and Text Properties for the Label

STEP 1: Click on the label you placed on the form; a dotted outline appears
around the control. If the Properties window is not displaying, select
View / Properties Window or press the F4 key. Click on the title bar of

the Properties window to make it the active window (Figure 1.21).

Place a new button on the form
by double-clicking the Button
tool in the toolbox. The new
button appears on top of the
previously selected control.

22 \! [| S A L C# Introduction to Programming and Visual C# 2008
Figure 1.20
Drag the new button (button2)
o' Forml (=== below buttonl.

labell

‘ button

MTIP

If no control is selected when you
double-click a tool, the new control
is added to the upper-left corner of
the form. m

Figure 1.21

The currently selected control is shown in the Properties window.

Forml.cs [Design]®

- 3 | Solution Explorer - HelloWaorld >~ 4 x

2| @ E| EE R

ol Farml

button1 |

button2 |

] Solution 'HelloWarld' (1 praject)
5.] HelloWorld
+ | Properties
+ «J| References
— | Forml.cs
Pl] Forml.Designer.cs
o e '] Formiliresx
4] Program.cs

Properties «——— - 1@ % Properties
labell Systern.Windows Forms.Label window
abell System.Windows.Forms.Label = Namespace
SENIEEIE and class of

Tahlndesx 0 selt.fcted object

T Object box

ag

labell \E

T.E)Ctj\llgn . TD,pLEft =~ Settings box

Text

Name of selected object

The text associated with the contrel,

C H A P T E R 1

Notice that the Object box at the top of the Properties window is
showing /abel1 (the name of the object) and System.Windows.Forms.
Label as the class of the object. The actual class is Label; System.
Windows.Forms is called the namespace, or the hierarchy used to
locate the class.
STEP 2: In the Properties window, click on the Alphabetical button to make
sure the properties are sorted in alphabetic order. Then select the
Name property, which appears near the top of the list. Click on (Name)
and notice that the Settings box shows label1, the default name of the
label (Figure 1.22).

23

MTIP

If the Properties window is not visi-
ble, you can choose View / Proper-
ties Window or press the F4 key to
show it. m

Figure 1.22

Properties >4 x
Alphabeticalieu System. Windows.Forms,Label -
button :_” d

(ApplicationSettin o
(DataBindings)
[T et ————— Scuing
AccessibleDescripl box
AccessibleMame
AccessibleRole Default

AllowDrop False
(Name)
Indicates the name used in code to identify
the chject.

STEP 3: Type “messagel.abel” (without the quotation marks). See Figure 1.23.
As a shorteut, you may wish to delete the “1” from the end of “label1”,
press the Home key to get to the beginning of the word, and then type
“message”. Change the “I” for label to uppercase.

After you change the name of the control and press Enter or Tab,
you can see the new name in the Object box’s drop-down list.

The Properties window. Click
on the Name property to
change the value in the
Settings box.

Figure 1.23

Sort the Properties > 1 x
PI‘OpeI‘tl(%S list messagelabel Systern.Windows.Forms.Lz -
alphabetically —

(ApplicaticnSettin -
(DataBindings)

TR messgelabel —— The nen

AccessibleDescript name appears
AccessibleMame in the
AccessibleRole Default Settings box
AllowDrop False
W S i P [<Y ~

(Name)

Indicates the name used in code to identify

the ohject.

Type “messagelLabel” into the
Settings box for the Name

property.

2%

STEP 4:

STEP 5:

STEP 6:

C#

Select the AutoSize property and change the value to False. You can
easily change a property from True to False in several ways: (1) Click
in the word “True” and type only the letter “f”, and the value changes
automatically; (2) Double-click on either the property name (Auto-
Size) or the property value (True), and the value toggles each time you
double-click; or (3) Click on either the property name or the property
value, and a drop-down arrow appears at the right end of the Settings
box. Drop down the list and make your selection from the possible
values (True or False, in this case).

Click on the Text property to select it. (Scroll the Properties list if
necessary.)

The Text property of a control determines what will be displayed
on the form. Because nothing should display when the program be-
gins, you must delete the value of the Text property (as described in
the next two steps).

Double-click on /abel1 in the Settings box; the entry should appear
selected (highlighted). See Figure 1.24.

Introduction to Programming and Visual C# 2008

Figure 1.241

STEP 7:

Name of control

Properti - 0 x

messagelabel System Windows Forms.Lz -
Iablndex 0 /Value in
29 Settin,
gs
labell [=] | boxis
Textalign TopLeft
UseCompatibleTe: False

selected

UzeMnemonic True

UzeWaitCursor Falze

LI Y Torrm
Text
The text associated with the control.

Press the Delete key to delete the value of the Text property. Then
press Enter and notice that the label on the form appears empty.
Changes do not appear until you press Enter or move to another prop-
erty or control.

As an alternate technique, you can double-click on the property
name, which automatically selects the entry in the Settings box. Then
you can press the Delete key or just begin typing to change the entry.

All you see is a very small selection border (Figure 1.25), and if
you click anywhere else on the form, which deselects the label, you
cannot see it at all.

If you need to select the label after deselecting it, you can click in
the approximate spot on the form or use the Properties window: Drop
down the Object list at the top of the window; you can see a list of all
controls on the form and can make a selection (Figure 1.26).

Double-click in the Settings
box to select the entry.

MTIP

Don't confuse the Name property
with the Text property. You will use
the Name property to refer to the
control in your C# code. The Text
property determines what the user
will see on the form. C# sets both of
these properties to the same value
by default and it is easy to confuse
them. m

C H A P T E R 1

Figure 1.25

25

Delete the value for the Text property from the Settings box; the label on the form also appears empty.

Label is empty and selected

Forml.cs [Design]®

-

ot Forml

button

e |
button2

iy

—

Solution Explorer - Soluti., » 1 X

= 5 EEES
j'! Solution "HelleWoarld' (1 projec
~ 1] HelloWorld

1) = Properties

1) = References

+ -] Forml.cs

fe] Programucs
il L 3
Properties > I X

messagelabel Systemn Windows, -

==
Tablndesx 0 -
Tag

Textdlign

UseCompatibl Falke

UseMnernonic Trug
Text

The text associated with t
control,

Text deleted from the
Settings box

Figure 1.26

Lock the Controls

Properties

buttonl Systemn.Windows.Forms.Button
button2 Systern.Windows.Forms.Button
Forml Systermn.Windows.Forms.Form

messagelabel Systemn.Windows.Forms.Li

TextAlign Topleft
UseCompatibleTex False
UseMnemonic True

UseWaitCursor False

Afimilela b S

Text
The text associated with the control.

3

Drop down the Object box in
the Properties window to select
any control on the form.

STEP 1: Point anywhere on the form and click the right mouse button to
display a context menu. On the context menu, select Lock Controls
(Figure 1.27). Locking prevents you from accidentally moving the

26 V I § U A L C#

controls. When your controls are locked, a selected control has a
small lock icon in the upper-left corner instead of resizing handles
(Figure 1.28).

Note: You can unlock the controls at any time if you wish to rede-
sign the form. Just click again on Lock Controls on the context menu to
deselect it.

Introduction to Programming and Visual C# 2008

Figure 1.27

o=l Forml (o=@ ==

[Z] | View Code
@ Lock Conl}ols

‘ button 1 “ | Properties
)

After the controls are placed into
the desired location, lock them
in place by selecting Lock
Controls from the context menu.
Remember that context menus
differ depending on the current
operation and system setup.

Figure 1.28

a5 Forml [F=R[EcR=x3

|_— The Button
control is
selected

and locked

]

button

button2

;

Set the Name and Text Properties for the First Button
STEP 1: Click on the first button (buttonl) to select it and then look at the

Properties window. The Object box should show the name (button?)
and class (System.Windows.Forms.Button) of the button (Figure 1.29).

After you lock the controls on a
Jform, a selected control has a
lock icon instead of resizing

handles.

C H A P T E R 1

27

Figure 1.29

Properties > 3 x

buttonl System.Windows.Forms.Button<—— Object box

S

(ApplicationSetting -
(DataBindings)

m buttonl<— Enter a new Name

AccessibleDescript property value

AccessibleMame

AccessibleRole Default

AllowDrop False

P W o PPN Y T -
(Name)

Indicates the name used in code to identify
the chject.

Problem? If you should double-click and code appears in the Doc-
ument window, simply click on the Form1.cs [Design] tab at the top of
the window.

STEP 2: Change the Name property of the button to “displayButton” (without
the quotation marks).

Although the project would work fine without this step, we prefer to
give this button a meaningful name, rather than use button1, its de-
fault name. The guidelines for naming controls appear later in this
chapter in the section “Naming Rules and Conventions for Objects.”

STEP 3: Change the Text property to “Display” (without the quotation marks).
This step changes the words that appear on top of the button.

Set the Name and Text Properties for the Second Button

STEP 1: Select button2 and change its Name property to “exitButton.”
STEP 2: Change the Text property to “Exit.”

Change Properties of the Form

STEP 1: Click anywhere on the form, except on a control. The Properties win-
dow Object box should now show the form as the selected object
(Forml as the object’s name and System. Windows. Forms.Form as its
class).

STEP 2: Change the Text property to “Hello World by Your Name” (again, no
quotation marks and use your own name).

The Text property of a form determines the text that appears in the
title bar. Your screen should now look like Figure 1.30.

STEP 3: In the Properties window, click on the StartPosition property and no-
tice the arrow on the property setting, indicating a drop-down list.
Drop down the list and select CenterScreen. This will make your form
appear in the center of the screen when the program runs.

STEP 4: In the Solution Explorer, right-click on Forml.cs and choose Rename
from the context menu. Change the file name to “HelloForm.cs”, mak-
ing sure to retain the .cs extension. Press Enter when finished and
click Yes on the confirmation dialog box. This changes the name of the
file that saves to disk (Figure 1.31) as well as the name of the class.

Change the properties of the
first button.

MTIP

Always set the Name property of

controls before writing code. Al-
though the program will still work
if you reverse the order, the method
names won't match the control
names, which can cause confu-

sion. m

28 V I § U A L C#

Introduction to Programming and Visual C# 2008

Figure 1.30

The form’s Text property
appears in the title bar

&
o Hello World byVoﬁName [o ===

Dizplay

Change the form’s Text
property to set the text that
appears in the form’s title bar.

Figure 1.31

Solution Explorer - Selution 'HelloW... » 1 X

= | @R EEA

J Solution 'HelleWerld' (1 project)
5] HelloWorld

- [=d] Properties

t]- [«g] References

%] HelloForm.Designer.cs
% HelloForm.resx

#] Program.cs

Properties > 0 x

HelloForm.cs File Properties «————— Properties

= of the file
Build Acticn Compile

Copy to Output Dir Do not copy
Custom Tool

Custom Tool Name

File Mame HelloForm.cs
Full Path C:\Users\ JCB\Document
File Name

Mame of the file or folder.

STEP 5: Click on the form in the Document window, anywhere except on a
control. The name of the file appears on the tab at the top of the
Designer window and the Properties window shows properties for
the form’s class, not the file. The C# designer changed the name
of the form’s class to match the name of the file (Figure 1.32).

The Properties window shows
the file’s properties with the
new name for the file. You can
change the filename in the
Properties window or the
Solution Explorer.

C H A P TE R 1 29

Figure 1.32

The Properties window for the form. The form’s class name now matches the name of the form’s file.

The form is selected and locked

Name of the form’s file Filename

6rm.cs [Design] « » | Solution Explorer - Selution 'Hello.., ~ 1 X

= hE EE S
o5 Hello Warld by Your Name = euEa [Solution 'HelloWorld'

= 5 HelloWorld
+ =d| Properties
+ -2 References

= [Z] HelloForm.cs

%] HelloForm.Designer.cs

; “ﬁ HelloForm.resx

P #] Program.cs

project)

Properties > 1 X

HelloForm System.Windows.Forms.Ferm -

Display o=

— (ApplitationSetting: it
Exit (DataBindings)

HelloForm

(none)

AcceptButton

.

(Name)

Indicates the\nam¢ used in code to identify
the object.

Name of the form class

Write Code

C# Events TI p

While your project is running, the user can do many things, such as move the
mouse around; click either button; move, resize, or close your form’s window;

If you change the form's filename

. . . before changing the form’s class
or jump to another application. Each action by the user causes an event to oc- .
. . . .o name, the IDE automatically
cur in your C# project. Some events (like clicking on a button) you care about, ,
. . . . changes the form’s class name to

and some events (like moving the mouse and resizing the window) you do not

care about. If you write code for a particular event, then C# will respond to the
event and automatically execute your method. C# ignores events for which no
methods are written.

match the filename. It does not
make the change if you have
changed the form’s class name
yourself. m

C# Event Handlers

You write code in C# in methods. For now, each method will begin with the
words private void and the code will be enclosed in opening and closing
braces { }.

C# automatically names your event-handling methods (also called eveni
handlers). The name consists of the object name, an underscore (_), and the
name of the event. For example, the Click event for your button called display-
Button will be displayButton_Click. For the sample project you are writing,
you will have a displayButton_Click method and an exitButton_Click method.

soduwrexy

30 V I § U A L C#

C# Code Statements

This first project requires two C# statements: the comment and the assign-
ment statement. You also will execute a method of an object.

The Comment Statement

Comment statements, sometimes called remarks, are used for project documen-
tation only. They are not considered “executable” and have no effect when the
program runs. The purpose of comments is to make the project more readable
and understandable by the people who read it.

Good programming practices dictate that programmers include comments
to clarify their projects. Every method should begin with a comment that de-
scribes its purpose. Every project should have comments that explain the pur-
pose of the program and provide identifying information such as the name of
the programmer and the date the program was written and/or modified. In ad-
dition, it is a good idea to place comments within the logic of a project, espe-
cially if the purpose of any statements might be unclear.

When you try to read someone else’s code or your own after a period of
time, you will appreciate the generous use of comments.

C# comments begin with slashes. Most of the time, your comments will be
on a separate line. You also can add slashes and a comment to the right end of
a line of code.

The Comment Statement—Examples

Introduction to Programming and Visual C# 2008

// This project was written by Jonathon Edwards.
// Exit the project.

messagelLabel.Text = "Hello World"; // Assign the message to the Text property.

Multiline Comments You also can create multiline comments by placing /* at
the beginning and */ at the end. The enclosing symbols can be on lines by
themselves or on existing lines. As you type additional lines between the be-
ginning and ending symbols, the editor adds an asterisk at the start of each
line, indicating that it is a comment line. However, you do not need the * at the
beginning of each line. When you want to turn multiple lines of code into com-
ments, just add the opening /* and ending */.

/*

kJ Project: ChO1HandsOn

* Programmer: Bradley/Millspaugh

* Date: June 2009

* Description: This project displays a Hello World message
* using labels and buttons.

* -k/

/*Project: ChO1HandsOn

Programmer: Bradley/Millspaugh
Date: June 2009

Description: This project displays a Hello World message
using labels and buttons. */

1o,y
|EELUELg)

sojduwrexy

C H A P T E R 1

Ending a Statement

Most C# statements must be terminated by a semicolon (;). Comments and a
few other statements (which you will learn about later) do not end with a semi-
colon. A C# statement may extend over multiple lines; the semicolon indicates
that the statement is complete.

The Assignment Statement

The assignment statement assigns a value to a property or variable (you learn
about variables in Chapter 3). Assignment statements operate from right to left;
that is, the value that appears on the right side of the equal sign is assigned to
the property named on the left of the equal sign. It is often helpful to read the
equal sign as “is replaced by.” For example, the following assignment state-
ment would read “messagel.abel.Text is replaced by Hello World.”

messagelLabel.Text = "Hello World";

The Assignment Statement—General Form

31

Object.Property = value;

The value named on the right side of the equal sign is assigned to (or placed
into) the property named on the left.

The Assignment Statement—Examples

titleLabel.Text = "A Snazzy Program";
addressLabel.Text = "1234 South North Street";

messagelLabel.AutoSize = true;
numberInteger = 12;

Notice that when the value to assign is some actual text (called a literal), it is
enclosed in quotation marks. This convention allows you to type any combina-
tion of alpha and numeric characters. If the value is numeric, do not enclose it
in quotation marks. And do not place quotation marks around the terms irue
and false, which C# recognizes as special key terms.

Ending a Program by Executing a Method

To execute a method of an object, you write:

Object.Method() ;

Notice that methods always have parentheses. Although this might seem like a
bother, it’s helpful to distinguish between properties and methods: Methods
always have parentheses; properties don’t.

Examples

helloButton.Hide();
messagelabel.Show();

32 \ [| S U A L C# Introduction to Programming and Visual C# 2008

To execute a method of the current form, you use the this keyword for the
object. And the method that closes the form and terminates the project execu-
tion is Close.

this.Close();

In most cases, you will include this.Close() in the event-handling
method for an Exit button or an Exit menu choice.

Note: Remember, the keyword this refers to the current object. You can
omit this since a method without an object reference defaults to the current
object.

Code the Event-Handling Methods for Hello World

Code the Click Event Handler for the Display Button

STEP 1: Double-click the Display button. The Visual Studio editor opens
with the header line of your method already in place, with the

insertion point indented inside the opening and closing braces
(Figure 1.33).

Figure 1.33

The Editor window, showing the first line of the displayButton_Click event handler with the insertion point between the
opening and closing braces.

HelloForm.cs® " HelloForm.cs [Daign]*-; RS
“t% HelloWarld HelloFarm * a*displayButton_Click{cbject sender, EventArgs €) -
Eusing System; —

u=ging System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms:;

m

E namespace HelloWorld
i
public partial class HelloForm : Form
{
= public HelloForm()
i

InitializeComponent () ;

= private vold displayButton Clickiobject sender, Eventirgs e)

{

Insertion point

C H A P T E R 1

STEP 2:

STEP 3:

Type this comment statement:

// Display the Hello World message.

Notice that the editor automatically displays comments in green
(unless you or someone else has changed the color with an Environ-
ment option).

Follow good coding conventions and indent all lines between the
opening and closing braces. The smart editor attempts to help you
follow this convention. Also, always leave a blank line after the
comments at the top of a method.

Press Enter twice and then type this assignment statement:

messagelabel.Text = "Hello World";

Note: When you type the names of objects and properties, allow
IntelliSense to help you. When you type the first character of a name,
such as the “m” of “messagel.abel”, IntelliSense pops up a list of pos-
sible object names from your program (Figure 1.34). When several
items match the first letter, you can type additional characters until you
get a match, or use your keyboard down arrow or the mouse to highlight
the correct item. To accept the correct item when it is highlighted, press
the punctuation character that should follow the item, such as the
period, spacebar, equal sign, semicolon, Tab key, or Enter key, or
double-click the item with your mouse. For example, accept “message-
Label” by pressing the period and accept “Text” by pressing the space-
bar, since those are the characters that follow the selected items.

33

Figure 1.34

private woid displayButton Click(object =ender, Eventlrgs &)

{

// Display the Hello World message.

EI'.ESl

= MessageBoxEuttons »
= MessageBoxDefaultButton

= MessageBoxlcon

= MessageBoxOptions

|

Vg MethadfecessException
4 Methedinvoker
{} Microsoft
= MidpeintRounding
ﬁ:‘ MinimizeBox o

The assignment statement

messagelabel.Text = "Hello World";

assigns the literal “Hello World” to the Text property of the control
called messagelabel. Compare your screen to Figure 1.35.

IntelliSense pops up to help
you. Select the correct item
Jfrom the list and press the
period, spacebar, semicolon,
Tab key, or Enter key to accept
the text.

MTIP

Accept an entry from the IntelliSense

popup list by typing the punctuation
that follows the entry, by pressing
the spacebar, the Tab key, or the
Enter key. You also can scroll the list

and select with your mouse. ®

34 \ [| S U A L C# Introduction to Programming and Visual C# 2008

STEP 4: Return to the Form Designer (refer to Figure 1.32) by clicking on the
HelloForm.cs [Design] tab on the Document window (refer to Figure 1.35).

Figure 1.35

Editor tab _Form Designer tab Type the comment and
assignment statement for the
HelloForm.cs® " HelloForm.cs [Design]” - X d f‘ B Cl k f
isplayybutton icr evenlt
“I HelleWaorld, Farml * “displayButton_Clickiohject sender, EventArgs €) - oy -
= handler.

private void displayButton Click(object sender, Eventirgs e)
{
// Display the Hello World message.

messagelabel.Text = "Hello World":

Comment statement

Assignment statement TI p

Allow the Editor and IntelliSense to

help you. If the IntelliSense list does

STEP 1: Double-click the Exit button to open the editor for the exitButton_ not pop up, likely you misspelled
Click event handler. the name of the control. m

STEP 2: Type this comment:

Code the Click Event Handler for the Exit Button

// Exit the project.

STEP 3: Press Enter twice and type this C# statement:

this.Close();

STEP 4: Make sure your code looks like the code shown in Figure 1.36.

Figure 1.36

Type the code for the exitButton_Click event handler. Notice that an asterisk appears on the tab at the top of the window,
indicating that there are unsaved changes in the file.

Asterisk indicates unsaved changes

HelloForm.cs™ " HelloForrm.cs [Design]* - X
“B HelloWorld.Forml * g¥editButton_Click{object sender, EventArgs e -
J] =i
= private wvoid displayButton Click(object sender, Eventirgs e) i

{

/ Display the Hello World message.
messagelabel.Text = "Hello World™;
=] private void exitButton_Click(cbject sender, Eventhrgs e)
i

/{ Exit the project.

this.Close ()

m

C H A P TE R 1 35

Run the Project

After you have finished writing the code, you are ready to run the project. Use
one of these three techniques:

1. Open the Debug menu and choose Start Debugging.
2. Press the Start Debugging button on the toolbar.
3. Press F5, the shortcut key for the Start Debugging command.

Start the Project Running

STEP 1: Choose one of the three methods previously listed to start your project
running.
Problems? See “Finding and Fixing Errors” later in this chapter. TIP
You must correct any errors and restart the program.
If all went well, the form appears and the Visual Studio title bar
now indicates that you are in run time (Figure 1.37).

If your form disappears during run
time, click its button on the Windows
task bar. =

Figure 1.37

The form of the running application.

IDE title bar
indicates that the Running program, Running program,
program is in run time Editor tab is locked ~ Form Designer tab locked

{ 7
& HelloWorld (Running) - MichsMsual Studio

File Edit View Project est Window Help

4 |DE|‘:'JI:_| v||.-l|'|;_' CPU
® S <z

Form for the running application

36 V I § U A L C#

Click the Display Button

STEP 1: Click the Display button. Your “Hello World” message appears in the
label (Figure 1.38).

Introduction to Programming and Visual C# 2008

Figure 1.38

o-l Helle World by Your Mame =RREN X

Hello Waorld

Click the Exit Button

STEP 1: Click the Exitbutton. Your project terminates, and you return to design
time.

Save Your Work

Of course, you must always save your work often. Except for a very small proj-
ect such as this one, you will usually save your work as you go along. Unless
you (or someone else) have changed the setting in the IDE’s Options dialog box,
your files are automatically saved in a temporary location each time you build
(compile) or execute (run) your project. After you have performed a save to a
different location, files are automatically resaved each time you compile or
run. You also can save the files as you work.

Save the Files

STEP 1: Open the Visual Studio File menu and choose Save All. This option
will save the current form, project, and solution files.
Note: When saving a project, do not attempt to save a modified ver-
sion by giving the project a new name. If you want to move or rename
the project, it must be closed. See Appendix C for help.

Close the Project

STEP 1: Open the File menu and choose Close Solution. If you haven’t saved
since your last change, you will be prompted to save.

Open the Project

Now is the time to test your save operation by opening the project from disk.
You can choose one of three ways to open a saved project:

e Select Open Project from the Visual Studio File menu and browse to find
your .sln file, which has a small “9” as part of the file’s icon.

Click the Display button and
“Hello World” appears in the
label.

M TIP

Click the Save All toolbar button to
quickly save all of your work. m

C H A P T E R 1

* Choose the project from the File / Recent Projects menu item.

e Choose the project from Recent Projects (if available) on the Start Page
(View / Other Windows / Start Page).

Open the Project File

STEP 1:

Open your project by choosing one of the previously listed techniques.
Remember that the file to open is the .sln file.

If you do not see your form on the screen, check the Solution Ex-
plorer window—it should say HelloWorid for the project. Select the
icon for your form: HelloForm.cs. You can double-click the icon or
single-click and click on the View Designer button at the top of the
Solution Explorer (Figure 1.39); your form will appear in the Designer
window. Notice that you also can click on the View Code button to
display your form’s code in the Editor window.

37

Figure 1.39

View Code button
View Designer button
Solution Explorer - folytion 'HelloW., «» 1 X
= @ EE RS
.,;1. Solution 'HelloWorld' (1 project)
-] HelloWorld
+ =d| Properties

- [l References
5 T < Select

. %] HelloForm.Designer.cs the form
- %) HelloForm resx

e 4] Programcs

Modify the Project

Now it’s time to make some changes to the project. We’ll change the size of the
“Hello World” message, display the message in two different languages, and
display the programmer name (that’s you) on the form.

Change the Size and Alignment of the Message

STEP 1:

STEP 2:

STEP 3:

Right-click the form to display the context menu. If your controls are
currently locked, select Lock Controls to unlock the controls so that
you can make changes.
Drop down the Object list at the top of the Properties window and
select messagelabel, which will make the label appear selected.
Scroll to the Font property in the Properties window. The Font
property is actually a Font object that has a number of properties.
To see the Font properties, click on the small plus sign on the left
(Figure 1.40); the Font properties will appear showing the current
values (Figure 1.41).

You can change any of the Font properties in the Properties win-
dow, such as setting the Font’s Size, Bold, or Italic properties. You
also can display the Font dialog box and make changes there.

To display the form layout,
select the form name and click
on the View Designer button,
or double-click on the form
name. Click on the View Code
button to display the code in
the editor.

38

Introduction to Programming and Visual C# 2008

Figure 1.40

Properties ~ 1 X

messagelabel Systerm.Windows. Forms.Labe -

Click on the Font’s plus sign to
view the properties of the Font
object.

STEP 4:

AN
Click to FlatStyle Standlard -
expand the — Microseft Sans Ser...|
Font list oreColor Il controlText
GeneratebMember True
Image I:l (none)
Irmagellign MiddleCenter
Imagelndex |:| (none)
- s | — Y T
Font
The font used to display text in the contrel,
Figure 1.41
P -1 x You can change the individual

messagelabel Systermn.Windows.Forms.Labe -

==l Settings
FlatStyle Standard » box
=] Microsoft Sans Serl...|<—— Properties
(~ Mame Microsoft Sans S button
Size 8.25
Unit Point
Font Bold False 3
properties — GdiCharSet 0
GdiVerticalFent False
Italic Falze
Strikeout Falze
_ Underline False

ForeColar - ControlTexdt &

Font
The font used to display text in the control,

Click the Properties button for the font (the button with the ellipsis on
top) to display the Font dialog box (Figure 1.42). Select 12 point if it
is available. (If it isn’t available, choose another number larger than
the current setting.) Click OK to close the Font dialog box.

Select the TextAlign property. The Properties button that appears with
the down-pointing arrow indicates a drop-down list of choices. Drop
down the list (Figure 1.43) and choose the center box; the alignment
property changes to MiddleCenter.

Add a New Label for Your Name

STEP 1:

STEP 2:

Click on the Label tool in the toolbox and create a new label along the
bottom edge of your form (Figure 1.44). (You can resize the form if
necessary.)
Change the label’s Text property to “by Your Name.” (Use your name
and omit the quotation marks.)

Note: You do not need to rename this label because it will never be
referred to in the code.

properties of the Font object.

MTIP

When you change a property from
its default value, the property name
appears bolded; you can scan down
the property list and easily identify
the properties that are changed from
their default value. =

T~

‘ Digplay ‘

N

Enter your name in a label

C H A P T E R | 39
Figure 1.42
. Choose 12 point on the Font
Font [&J o P
dialog box.
Fort: Forit style: Size:
Reqular 12 oK
(] - 10 o) g
{) Microsoft Lighur talic 11 Cancel
) Microscft YaHei Bold = Select 12 point
() Microsoft i Bati Bold Halic 14
() MingLill 16
€ MingLil_HKSCS 18
) MingLill_HKSCS-ExtE ~ 20 5
Effects Sample
Strikeout
Underline AaBbeZZ
Script:
Westem -
Figure 1.43
Properties «1x Select the center box for the
messagelabel System \Windows.Forms.Labe = TextAhgn property.
== #
Tag -
Text P i
_— Properties
Topleft _E button
UEECDmpatibI&TED | | | |
UseMnemenic |~ — | _—Select
UseWaitCursor | L\:/|7| MiddleCenter
Visible |—| |—| |—| alignment
TextAlign
Determines the position of the text within the
label.
Figure 1.44
Add a new label for your name
1=l Hello Werld by ¥our Mame [= | = | f %

at the bottom of the form.

MTIP

You can change the Font property
of the form, which sets the default

Font for all objects on the form. m

40 V I § U A L C#

The Label’s AutoSize Property Earlier you changed the AutoSize property of
messagelabel to False, a step that allows you to set the size of the label your-
self. When AutoSize is set to True (the default), the label resizes automati-
cally to accommodate the Text property, which can be an advantage when the
text or font size may change. However, if you plan to delete the Text property,
as you did for messagel.abel, the label resizes to such a tiny size that it is
difficult to see.

Any time that you want to set the size of a label yourself, change the
AutoSize property to False. This setting also allows you to create taller labels
that allow a long Text property to wrap to multiple lines. If you set the Text
property to a very long value when AutoSize is set to True, the label will re-
size only to the edge of the form and cut off any excess text, but if AutoSize is
set to False and the label has been resized to a taller height, the long Text
property will wrap.

Change the Text of the Display Button

Because we plan to display the message in one of two languages, we’ll change
the text on the Display button to “English” and move the buttons to allow for
another button.

STEP 1: Select the Display button and change its Text property to “English.”
STEP 2: Move the English button and the Exit button to the right and leave
room for a Spanish button (Figure 1.45).

Introduction to Programming and Visual C# 2008

Figure 1.45

a-' Hello World by Your Name [= = =S
| English |
| Spanish |
| e |
By Your Name

Add a Spanish Button

STEP 1: Add a new button. Move and resize the buttons as necessary, referring
to Figure 1.45.

STEP 2: Change the Name property of the new button to spanishButton.

STEP 3: Change the Text property of the new button to “Spanish.”

Move the English and Exit
buttons and add a Spanish
button.

MTIP

An easy way to create multiple sim-
ilar controls is to copy an existing
control and paste it on the form. You
can paste multiple times to create
multiple controls. m

C H A P T E R 1

Add an Event Handler for the Spanish Button

STEP 1:

STEP 2:

STEP 3:

STEP 4:

Double-click on the Spanish button to open the editor for spanishBut-
ton_Click.

Add a comment:

// Display the Hello World message in Spanish.

Press Enter twice and type the following line of C# code.

messagelLabel.Text = "Hola Mundo";

Return to design view.

Lock the Controls

STEP 1:

When you are satisfied with the placement of the controls on the form,
display the context menu and select Lock Controls again.

Save and Run the Project

STEP 1:

STEP 2:

STEP 3:

Save your project again. You can use the File / Save All menu command
or the Save All toolbar button.
Run your project again. Try clicking on the English button and the
Spanish button.

Problems? See “Finding and Fixing Errors” later in this chapter.
Click the Exit button to end program execution.

Add Comments

Good documentation guidelines require some more comments in the project.
Always begin each method with comments that tell the purpose of the method.
In addition, each project file needs identifying comments at the top.

STEP 1:

STEP 2:

STEP 3:

Display the code in the editor and click in front of the first line
(using System;). Make sure that you have an insertion point; if
the entire first line is selected, press the left arrow to set the inser-
tion point.
Press Enter to create a blank line.

Warning: If you accidentally deleted the first line, click Undo (or
press Ctrl + Z) and try again.
Move the insertion point up to the blank line and type the following
comments, one per line (Figure 1.46):

4

MTIP

Press Ctrl + Home to quickly move

the insertion point to the top of the
file. m

/*

* Project: Hello World

* Programmer: Your Name (Use your own name here.)

* Date: (Fill in today’s date.)

* Description: This project will display a "Hello World"
* message in two different languages.

*/

42 V I § U A L C#

Introduction to Programming and Visual C# 2008

Figure 1.46

HelloForm.cs* HelloForm.cs [Design]® - X
@[3HEIIo‘f‘."orId.HeIIoForm - =@ HelloFarmi) -
o/* —
* Project: Hello World pii: |
* Programmer: Your Name (Use your own name here.)
* Date: {Fill in today's date.)
* Description: This project will display a "Hello World™
. message in two different languages. 3
L =y
Fusing System;

using System.Collections.Generic; =
using System.ComponentModel;
using Svstem.Data:
using System.Drawing;
using System.Ling;
using System.Text:
“using Svstem.Windows.Forms;

[namespace HelloWorld
{
public partial class HelloForm : Form
i
public HelloForm()
{
InitializeComponent () ;7
&

Finish Up
STEP 1: Run the project again. Test each language button multiple times; then
click the Exit button.

Print the Code

Select the Printing Options

STEP 1: Make sure that the Editor window is open and showing your form’s
code. The File / Print command is disabled unless the code is displaying
and its window selected.

STEP 2: Open the File menu and choose Print. Click OK.

View Event Handlers

You also can get to the event-handling methods for a control using the Proper-
ties window in design mode. With a button control selected, click on the Events
button (lightning bolt) in the Properties window; all of the events for that con-
trol display (Figure 1.47). If you’ve already written code for the Click event, the
method name appears bold in the Properties window. When you double-click
on the event, the editor takes you to the method in the code window.

To write an event-handling method for any of the available events of a con-
trol, double-click the event name. You will be transferred to the Code Editor
window with the insertion point inside the template for the new event handler.
You also can click in any event name in the Properties window and then drop
down a list of all previously written methods and select a method to assign as
the event handler.

Enter the comments at the top

of the form file.

C H A P TE R 1 43

Figure 1.47

The Events button Click on the Events button to
see the available events for a

Properties > 1 X
selected control. Any event

Selected — displayButton Syttem.\Windows,Forms.Button =
handlers that are already

control 2= 81| B | F written appear in bold. Double-
CausesValidationChar 0 click an event to jump to the
ChangelllCues . . . Editor window inside the event
Selected —— . : d|splayButton_[I|c|z|<—Propertles handlerfor that method, or
event ClientSizeChanged button drov d i I
anthEnuStripCha p aown the list to select a
ControlAdded Event method to assign as the
ControlRemoved handler for handler for the event.
CursorChanged Click event
DockChanged T
Click

Oceurs when the compeonent is clicked.

A Sample Printout

This output is produced when you print the form’s code. An explanation of
some of the features of the code follows the listing.

C:\Users\. . .\ChO1HelloWorld\HelloForm.cs 1
/*
* Project: Hello World
* Programmer: Your Name (Use your own name here.)
* Date: (Fill in today’s date.)
* Description: This project will display a "Hello World"
* message in two different languages.
*

/

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace HelloWorld

{
public partial class HelloForm : Form
{
public HelloForm()
{
InitializeComponent();
}

private void displayButton Click(object sender, EventArgs e)

{
// Display the Hello World message.

44 V I § U A L C#

messageLabel.Text = "Hello World";

Introduction to Programming and Visual C# 2008

}

private void exitButton_Click(object sender, EventArgs e)

{ // Exit the project.
this.Close();

}

private void spanishButton Click(object sender, EventArgs e)

{ // Display the Hello World message in Spanish.
messagelLabel.Text = "Hola Mundo";

}

Automatically Generated Code

In the preceding code listing, you see many statements that you wrote, plus
some more that appeared “automatically.” Although a programmer could begin
a C# program by using a simple text editor and write all of the necessary state-
ments to make the program run, using the development tools of the Visual
Studio IDE is much quicker and more efficient. The IDE adds a group of state-
ments by default and sets up the files for the project to accommodate the ma-
jority of applications. Later, when your programs include database tables, you
will have to write additional using statements.

The Using Statements

The using statements appear at the top of the file after the comments that you
wrote. Using statements provide references to standard groups of classes from
the language library. For example, the statement using System.Windows.
Forms; allows your program to refer to all of the Windows controls that appear
in the toolbox. Without the using statement, each time that you wanted to refer
to a Label control, for example, you would have to specify the complete refer-
ence: System.Windows.Forms.Label.messageLabel. Instead, in the pro-
gram with the using statement, you can just refer to messageLabel.

The Namespace Statement

As mentioned earlier, a namespace provides a way to refer to programming
components by location or organization. In the Label example in the preceding
section, “Label” is the class and “System.Windows.Forms” is the namespace,
or library grouping where “Label” is found. You can think of a namespace as
similar to a telephone area code: In any one area code, a single phone number
can appear only once, but that same phone number can appear in any number
of other area codes.

Using the .NET Framework, every program component is required to
have a namespace. The VS IDE automatically adds a namespace statement
to your program. The default namespace is the name of your solution, but you
can use a different name if you wish. Many companies use the namespace to

C H A P T E R 1

organize applications such as the company name and functional organization,
LookSharpFitnessCenter.Payroll, for example.

In Visual Studio, one solution can contain multiple projects. All of the so-
lutions in this text contain only one project, so you can think of a solution and
a project as being equal.

The Class Statement

In object-oriented programming, code is organized into classes. A new class
can be based on (inherit from) another class, which gives the new class all of
the properties and methods of the original class (the base class).

When you create a new form, you declare a new class (HelloForm in the
earlier example). The new class inherits from the Form base class, which makes
your new form behave like a standard form, with a title bar, maximize and
minimize buttons, and resizable borders, among other behaviors.

A class may be split into multiple files. VS uses this feature, to place most
of the code automatically generated by the Form Designer in a separate file
that is part of the form’s class.

The automatically generated statement

public partial class HelloForm : Form

means that this is a new class called HelloForm that inherits from the Form
class. The new class is a partial class, so another file can exist that also con-
tains statements that are part of the HelloForm class. You will learn more about
classes and files in later chapters.

Finding and Fixing Errors

You already may have seen some errors as you entered the first sample project.
Programming errors come in three varieties: syntax errors, run-time errors, and
logic errors.

Syntax Errors

When you break C#’ rules for punctuation, format, or spelling, you generate a
syntax error. Fortunately, the smart editor finds most syntax errors and even
corrects many of them for you. The syntax errors that the editor cannot identify
are found and reported by the compiler as it attempts to convert the code into
intermediate machine language. A compiler-reported syntax error may be
referred to as a compile error.

The editor identifies syntax errors as you move off the offending line. A
red squiggly line appears under the part of the line that the editor cannot
interpret. You can view the error message by pausing the mouse pointer over
the error, which pops up a box that describes the error (Figure 1.48). You also
can display an Error List window, which appears at the bottom of the Editor
window and shows all error messages along with the line number of the state-
ment that caused the error. You can display line numbers on the source code
(Figure 1.49) with Tools / Options / Text Editor / C# / General / Display / Line
Numbers.

45

46 \ [| S U A L C# Introduction to Programming and Visual C# 2008

Figure 1.48

The editor identifies a syntax error with a squiggly red line; you can point to an error to pop up the error message.

HelloForm.cs® HelloForm.cs [Design]* - X

“ HelloWarld.HellaFarm * ?displayButton_Click(object sender, Eventirgs g) =

1

private wvold displayButton Clickiokject sender, e
messagelabel .Text | "Hgllo World™:

Figure 1.49

You can display the Error List window and line numbers in the source code to help locate the error lines.

HelloForm.cs® HelloForm.cs [Design]* - X
“IeHelloWaorld HelloFarm * _“displayButton_Click({chject sender, Eventirgs €) =
InitializeComponent(): 1
-
= private wvold displayButton Click(ocbject sender,
messagelabel.Text [THello World":

Es m 3

Error List -~ 3 X

& L Error| | 10 Warnings || i) 0 Messages

Description File Line Column Project

s

oJ

The quickest way to jump to an error line is to point to a message in the
Error List window and double-click. The line in error will display in the Editor
window with the error highlighted (Figure 1.50).

If a syntax error is found by the compiler, you will see the dialog box shown
in Figure 1.51. Click No and return to the editor, correct your errors, and run
the program again.

Run-Time Errors

If your project halts during execution, it is called a run-time error or an
exception. C# displays a dialog box and highlights the statement causing
the problem.

Statements that cannot execute correctly cause run-time errors. The state-
ments are correctly formed C# statements that pass the syntax checking; how-
ever, the statements fail to execute due to some serious issue. You can cause

C H A P T E R 1

47

Figure 1.50

Quickly jump to the line in error by double-clicking on the error message in the Error List window.

HelloForm.cs® HelloForm.cs [Design]* hilke
“IHelloWerld HelleFarm * o #displayButton_Clickiobject sender, Eventargs g) «
f—] rivate wvold displayButton Clicki(cbject szender, —1
. -~
messagelabel .Text H
= private vold exitButton Click(cbject sender,

Ed i 3

Error List ~ 1 X

1 Error 0 Warnings || i) 0 Messages
Description File Line Column

@1 ;r:xpr:ctﬁl HelloFerm.cs Eil 32

Double-click anywhere on
this line to jump to the error

Project
HelloWorld

Figure 1.51

Microzoft Visual Studio [i_E-J

There were build errors. Would you like to continue and run the last
successful build?

Yes

Do not show this dialog again

run-time errors by attempting to do impossible arithmetic operations, such as
calculate with nonnumeric data, divide by zero, or find the square root of a
negative number.

In Chapter 3 you will learn to catch exceptions so that the program does
not come to a halt when an error occurs.

Logic Errors

When your program contains logic errors, the program runs but produces
incorrect results. Perhaps the results of a calculation are incorrect or the wrong
text appears or the text is okay but appears in the wrong location.

Beginning programmers often overlook their logic errors. If the project
runs, it must be right—right? All too often, that statement is not correct. You
may need to use a calculator to check the output. Check all aspects of the proj-
ect output: computations, text, and spacing.

When the compiler identifies
syntax errors, it cannot
continue. Click No to return to
the editor and correct the error.

48 V I § U A L C#

For example, the Hello World project in this chapter has event-handling
methods for displaying “Hello World” in English and in Spanish. If the con-
tents of the two methods were switched, the program would work, but the re-
sults would be incorrect.

The following code does not give the proper instructions to display the
message in Spanish:

private void spanishButton_Click(object sender, EventArgs e)

{
// Display the Hello World message in Spanish.

messageLabel.Text = "Hello World";

Project Debugging

If you talk to any computer programmer, you will learn that programs don’t
have errors—programs get “bugs” in them. Finding and fixing these bugs is
called debugging.

For syntax errors and run-time errors, your job is easier. C# displays the
Editor window with the offending line highlighted. However, you must identify
and locate logic errors yourself.

C# also includes a very popular feature: edit-and-continue. If you are able
to identify the run-time error and fix it, you can continue project execution
from that location by clicking on the Start Debugging button, pressing F5, or
choosing Debug / Continue. You also can correct the error and restart from the
beginning.

The Visual Studio IDE has some very helpful tools to aid in debugging
your projects. The debugging tools are covered in Chapter 4.

A Clean Compile

When you start executing your program, the first step is called compiling,
which means that the C# statements are converted to Microsoft Intermediate
Language (MSIL). Your goal is to have no errors during the compile process: a
clean compile. Figure 1.52 shows the Error List window for a clean compile:
0 Errors; O Warnings; O Messages.

Introduction to Programming and Visual C# 2008

MTIP

If you get the message “There were
build errors. Continue?” always say
No. If you say Yes, the last cleanly
compiled version runs rather than

the current version. m

Figure 1.52

Zero errors, warnings, and messages mean that you have a clean compile.

Error List

|a] Errnrs| |_ﬂUWamings| | 1) 0 Messages

Descripticn File Line Column

Project

Modifying an Event Handler

When you double-click a Button control to begin writing an event-handling
method for the Click event, several things happen. As an example, say that you

C H A P T E R 1

have a button on your form called buttonl. If you double-click buttonl, the
Editor window opens with a template for the new method:

private void button1_Click(object sender, EventArgs e)

{
}

The insertion point appears between the opening and closing braces, where
you can begin typing your new method. But behind the scenes, VS also adds a
line to the (hidden) FormName.Designer.cs file that assigns this new method to
the Click event of the button.

As long as you keep the name of the button unchanged and don’t delete the
method, all is well. But if you want to rename the button, or perhaps delete the
method (maybe you accidentally double-clicked a label or the form and have a
method that you really don’t want or need), then you will need to take addi-
tional steps.

Deleting an Event Handler

Assume that you have double-clicked the form called Form1 and now have an
extra event handler that you do not want. If you simply delete the event han-
dler, your program generates an error message due to the extra code that ap-
pears in the Form’s designer.cs file. When you double-click on the form, the
extra Form Load event handler looks like this:

private void Formi_Load(object sender, EventArgs e)

{
}

If you delete these lines of code and try to run the program, you receive an
error message that ““WindowsApplicationl.Form1’ does not contain a defini-
tion for ‘Form1_Load’.” If you double-click on the error message, it takes you
to a line in the Form1.Designer.cs file. You can delete the line of code that it
takes you to, which, in this example, is

this.Load += new System.EventHandler(this.Formi_Load);

The preferable way to remove the statement that assigns the event handler is
to use the Properties window in the designer. First, make sure to select the form
or control that has the unwanted event handler assigned; then click on the Events
button in the Properties window (Figure 1.53). You will see the event-handling
method’s name for the name of the event. You can select and delete the name of
the method, which removes the assignment statement from the Designer.cs file,
and you will not generate an error message when you delete the code lines.

Renaming a Control

You can receive an error if you rename a control after you write the code for its
event. For this example, assume that you add a button that is originally called
buttonl. You write the code for the buttonl_Click event handler and then de-
cide to change the button’s name to exitButton. (This scenario occurs quite of-
ten, especially with beginning programmers.)

19

50 V I § U A L C#

Introduction to Programming and Visual C# 2008

Figure 1.53

Properties N, s
Forml System.Windows.Forms.Ferm -
=R B # Click the
Events button
Layout
Select Leave

the event——

|<'E— Delete the

name of the
event handler

LocationChanged
MaximizedBoundsChz
MaximumSizeChange
MeiChildActivate
MinimumSizeChange:
MouseCaptureChange

Load
Occurs whenever the user loads the form.

If you simply change the Name property of buttonl to exitButton in the
Form Designer, your program will still run without an error message. But you
may be surprised to see that the event handler is still named button1_Click. If
you check the events in the Properties window, you will see why (Figure 1.54):
Although the control was renamed, the event handler was not. And if you type
a new name into the Properties window (exitButton_Click, for example), a new
(empty) method template will appear in your code. The code that you wrote in
the button1_Click method is still there and the new exitButton_Click method
is empty. One solution is to just cut-and-paste the code from the old method to
the new one. You can safely delete the empty button1_Click method since it no
longer is assigned as the event handler.

To remove the form’s event
handler, select the form and
click on the Events button in
the Properties window. Then
delete the entry for the event
handler—Forml_Load in
this example.

Figure 1.54

Properties ~ 14 x

Button is —s exitButton Systern.Windows. Forms.Button
o= 313 | #

CausesValidaticnChan: N

ChangellCues

buttonl_Click B—Evenl
handler still
has the

old name

renamed

ClientSizeChanged

ContexthenuStripChar

Controlfdded

ControlRemoved

CurserChanged

DockChanged -
Click
Ocecurs when the compeonent is clicked,

Another way to change the name of an event handler is to use refactoring,
which allows you to make changes to an existing object. After you change the
name of the control using the designer, switch to the Editor window and right-
click on the name of the event-handling method (buttonl_Click in this exam-
ple). From the context menu, select Refactor / Rename. The Rename dialog box

Even though you rename a
control, the event handler is
not renamed automatically.

C H A P T E R 1

shows the current name of the method (Figure 1.55). Enter the new name,
making sure to include the “_Click.” When you click OK, you see a Preview
Changes-Rename dialog box with the proposed changes highlighted (Fig-
ure 1.56). Click Apply and all references to the old name are changed to the
new one, which corrects the line in the Designer.cs file that assigns the event

handler.

Figure 1.55

51

Change the name of the event-handling method using Refactor / Rename, which changes the name of the method and the

assignment of the event handler in the form’s Designer.cs file.

Rename

)

Mew name:

Lecation:

WindeowsFermsApplication Forml

/| Preview reference changes
Search in comments
Search in strings

Rename gverloads

Cancel

Rename @Iéj
Mew name:
exitButton_Click
Lecation:
WindowsFormsApplication,Forml
/| Preview reference changes
Search in comments
Search in strings
Rename gverloads
Cancel

Figure 1.56

Preview Changes - Rename

The Preview Changes-
Rename dialog box shows the

Rename 'buttonl_Click' to 'exitButton_Click":

changes that you are about to

| make. Click Apply to complete

=1 [¥]+4] Forml Designer.cs

Preview Code Changes:

InitializeComponent () ;

[P thiseatButten.Click += new System, EventHandler(this.buttond_Click);

= private woid [exitButton Cl:i.ckitc:b:’ect zender,

Apply

the Rename operation.

m

Cancel

52 V I § U A L C#

Naming Rules and Conventions for Objects

Using good consistent names for objects can make a project easier to read and
understand, as well as easier to debug. You must follow the C# rules for naming
objects, methods, and variables. In addition, conscientious programmers also
follow certain naming conventions.

Most professional programming shops have a set of standards that their
programmers must use. Those standards may differ from the ones you find in
this book, but the most important point is this: Good programmers follow stan-
dards. You should have a set of standards and always follow them.

The Naming Rules

When you select a name for an object, C# requires the name to begin with a
letter or an underscore. The name can contain letters, digits, and underscores.
An object name cannot include a space or punctuation mark and cannot be a
reserved word, such as button or Close, but can contain one. For example,
exitButton and closeButton are legal. C# is case sensitive, so exitbutton, Exit-
Button, and exitButton refer to three different objects.

The Naming Conventions

This text follows standard naming conventions, which help make projects more
understandable. When naming controls, use camel casing, which means that
you begin the name with a lowercase character and capitalize each additional
word in the name. Make up a meaningful name and append the full name of the
control’s class. Do not use abbreviations unless it is a commonly used term that
everyone will understand. All names must be meaningful and indicate the pur-
pose of the object.

Examples
messagelabel
exitButton
discountRatelLabel

Do not keep the default names assigned by C#, such as buttonl and
label3. Also, do not name your objects with numbers. The exception to this
rule is for labels that never change during program execution. These labels
usually hold items such as titles, instructions, and labels for other controls.
Leaving these labels with their default names is perfectly acceptable and is
practiced in this text.

For forms and other classes, capitalize the first letter of the name and all
other words within the name. You will find this style of capitalization referred
to as pascal casing in the MSDN Help files. Always append the word Form to
the end of a form name.

Examples
HelloForm
MainForm

AboutForm

Refer to Table 1.2 for sample object names.

Introduction to Programming and Visual C# 2008

C H A P T E R

Recommended Naming Conventions for C# Objects.

Table

1.2

53

Object Class
Form

Button

Label
TextBox
RadioButton
CheckBox
PictureBox
ComboBox

ListBox

SoundPlayer

Example
DataEntryForm
exitButton

total Label
paymentAmountTextBox
boldRadioButton
printSummaryCheckBox
landscapePictureBox
bookListComboBox
ingredientslistBox

introPageSoundPlayer

Visual Studio Help

Visual Studio has an extensive Help facility, which contains much more infor-
mation than you will ever use. You can look up any C# statement, class, prop-
erty, method, or programming concept. Many coding examples are available,
and you can copy and paste the examples into your own project, modifying

them if you wish.

The VS Help facility includes all of the Microsoft Developer Network
library (MSDN), which contains several books, technical articles, and the
Microsoft Knowledge Base, a database of frequently asked questions and their
answers. MSDN includes reference materials for the VS IDE, the NET Frame-

work, C#, Visual Basic, and C++. You will want to filter the information to

display only the Visual C# and related information.

Installing and Running MSDN

You can run MSDN from a hard drive, or online. Of course, if you plan to
access MSDN online, you must have a live Internet connection as you work.
Depending on how you install C#, you are given the option to refer
first to online, first to local, or only to local. You can change this setting
later in the Options dialog box (Figure 1.57). Select Tools / Options and ex-
pand the Environment node and the Help node. Click on Online. You can
choose the options to Try online first, then local; Try local first, then online; or
Try local only, not online. Notice also that you can select sites to include in

Help topics.

The extensive Help is a two-edged sword: You have available a wealth of
materials, but it may take some time to find the topic you want.

54 \ [| S U A L C# Introduction to Programming and Visual C# 2008

Figure 1.57

In the Options dialog box, you can specify the preferred source for Help content and choose the Help providers.

Cptians |i|£_hj]

Environment - When leading Help content
General Try online first, then local
Add-in/Macros Security 0 iTry local first, then enling
AutoRecover Try lecal only, not online
Documents
Find and Replace A Search these providers: Codezone Community:
Fents and Celors 7] Local Help |1‘| /| 4GuysFromRolla.com a
HE'E | J1 MSDM Online |T| /| Asphlliance.com =
Enera . — ,
. J| Codezone Community J| C# Corner.com
Dynamic Help .
. 41 Questions /| CodeGuru,.com
Online 71 DevCitv.net
. evCity.ne
Import and Export Settings Devel ! Fusion (U
. . vl 1 L (
Internaticnal Settings eveloper Fusion (UK) N
Keyboard 4GuysFromRolla.com is one of the »
Startup Internet's largest Active Server Pages
Task List and \MET resource sites, 4Guys
Neb Browser
Projects and Selutions Read the privacy statement...

Source Control

oK Cancel

Viewing Help Topics

The Help system in Visual Studio 2008 allows you to view the Help topics in a
separate window from the VS IDE, so you can have both windows open at the
same time. When you choose How Do I, Search, Contents, Index, or Help Favorites
from the Help menu, a new window opens on top of the IDE, window (Figure 1.58).
You can switch from one window to the other, or resize the windows to view both
on the screen if your screen is large enough.

You can choose to filter the Help topics so that you don’t have to view topics
for all of the languages when you search for a particular topic. In the Index or Con-
tents window, drop down the Filtered by list and choose Visual C# Express Edition
for the Express Edition or Visual C# for the Professional Edition (Figure 1.59).

In the Search window, you can choose additional filter options, such as the
technology and topic type. Drop down a list and select any desired options
(Figure 1.60).

In the Help Index window, you see main topics and subtopics (indented
beneath the main topics). All main topics and some subtopics have multiple
entries available. When you choose a topic that has more than one possible
entry, the Index Resuits pane opens up below the main Document window (refer
to Figure 1.58). Click on the entry for which you are searching and the corre-
sponding page appears in the Document window. For most controls, such as the
Label control that appears in Figure 1.58, you will find references for mobile
controls, Web controls, and Windows Forms. For now, always choose Windows
Forms. Chapters 1 to 8 deal with Windows Forms exclusively; Web Forms are
introduced in Chapter 9.

C H A P T E R 1

Figure 1.58

The Help window. The Help topic and Search appear in tabbed windows in the main Document window; Index, Contents,
and Help Favorites appear in tabbed windows docked at the left of the main window.

/Tab for Help topics Search tab
o HelloWorld - Microsoft Visual Studio |.ﬂ.l
File Edit View Project Build Debug Data Iofl: Test Window ﬂeli/
din] e il e ol L il | ™ 3 =) 2| @ Dehin = e (DI L L .
i@ Label Members - Microsoft Visual Studic 2008 Docun/entation - Microsoft Docupdent Explorer ‘ =HECA X
File Edit View Tools Window Help
) Back 2] tg A @ HowDol - 4 Search 3 Index <3 Zontents |Help Favorites =) | #JMSDN Forums 2
Index -1 x Label Members Search = &
prieredloy: URL: ms-help://MS.VSCC A0/ MSMSDNQTRAI0 enffuref_system.windows.forms/html/680 -
Visual = -
- Collapse All v Code: All b Members: Show All
Look for: b Frameworks: Show All
Label class, all members Label Members
label e Label Class Constructors Methods Properties Events
LABEL Explicit Interface Implementations See Alsc Send Feedback

Label (System.Web ULMeobileControls)
Label captions
Data Sources window

m o

Represents a standard Windows label.

Label class The Label type exposes the following members.
about Label class
alllmembers - Constructors
constructor
declarative syntax T — T il
events
fields :
Index Results - Label class, all membexs - 4 topics found ~ 1 X
methods
properties Title Location
Label control Label Members (System.Web. ULMobileCoxt... system.web.mobile

declarative syntax . .
Label contral (System.Web.ULMobileCor Label Members (System,Web, ULWebContro.\

Label control [Web Forms] = | Label Members (System. Windows.Controls)

systermn.web

resentationframework

3 Index |5 Contents] Help Favorites

Index Contents Favorites tab Index results; Main Document window
tab tab select the desired shows Help topics
topic
Figure 1.59
Index S Filter the Help topics so that

only the C# topics appear.

Filtered by

Visual C# F— Drop

{unfiltered) T down list to
MET Fr§n1EW'0rk select filter
Enterprise Servers

Office Development
Platform SDK

Smart Device Development
Tearn Explorer

Yisual Basic

Visual C++
Visual C++ Mative Development
Vizual Studic Team System
VSTO Development (2003 System)
VSTO Development (2007 System)
Web Development (NET)
Nindows Forms Development
KAML
propertes
Lakel control
declarative syntax
Label control (Systermn.Web. ULMobileCor
Label contral [Web Forms] -

Ly Index |5 Contents <] Help Favorites

56 \ [| S U A L C# Introduction to Programming and Visual C# 2008

Figure 1.60

Drop down the Content Type list to make selections for the Search window.

Label Mermbers Search - X
-~
-
- Language: =
= Technology: All E

'L\@Cuntent Type: All

5| Controls Fan 0-0 of 0 resu
/| Documentation 8 Articles
(| [7] IntelliSense Code Snippets th results to
‘ Local Help
'] Knowledge Baze)
/| Sample Applications ng aterm in the
FIE APP s g the Search
J| Templates & Starter Kits
£ TIr 3

A good way to start using Help is to view the topics that demonstrate how
to look up topics in Help. On the Help Contents tab, select Help on Help
(Microsoft Document Explorer Help). Then choose Microsoft Document Explorer
Overview and What’s New in Document Explorer. Make sure to visit Managing
Help Topics and Windows, which has subtopics describing how to copy topics
and print topics.

Context-Sensitive Help

A quick way to view Help on any topic is to use context-sensitive Help. Se-
lect a C# object, such as a form or a control, or place the insertion point in a
word in the editor and press F1. The Help window pops up with the corre-
sponding Help topic displayed, if possible, saving you a search. You can dis-
play context-sensitive Help about the environment by clicking in an area of the
screen and pressing Shift + F1.

Managing Windows
At times you may have more windows and tabs open than you want. You can

hide or close any window, or switch to a different window.

e To close a window that is a part of a tabbed window, click the window’s
Close button. Only the top window will close.

* o switch to another window that is part of a tabbed window, click on its tab.

For additional help with the environment, see Appendix C, “Tips and
Shortcuts for Mastering the Visual Studio Environment.”

C H A P TE R 1 57

) Feedback 1.1

Note: Answers for Feedback questions appear in Appendix A.

1. Display the Help Index, filter by Visual C# (or Visual C# Express Edition),
and type “button control.” In the Index list, notice multiple entries for
button controls. Depending on the edition of C#, you may see entries for
HTML, Web Forms, and Windows Forms. Click on the main topic, Button
control [Windows Forms}: and click on the entry for about Button control.
The topics included for the Professional Edition are more extensive than
those for the Express Edition. In the Express Edition, only one page
matches the selection and it appears in the main Document window. In
the Professional Edition, several topics appear in the Index Results list.
Click on a title in the Index Resuits to display the corresponding page in
the Document window. Notice that additional links appear in the text in
the Document window. You can click on a link to view another topic.

2. Display the Editor window of your Hello World project. Click on the
Close method to place the insertion point. Press the F1 key to view
context-sensitive Help.

3. Select each of the options from the VS IDE’s Help menu to see how they
respond.

Your Hands-On Programming Example

Write a program for the Look Sharp Fitness Center to display the current pro- £
motions. Include a label for the current special and buttons for each of the
following departments: Clothing, Equipment and Accessories, Juice Bar, Mem-
bership, and Personal Training.
The user interface should also have an Exit button and a label with the
programmer’s name. Use appropriate names for all controls. Make sure to
change the Text property of the form.

Planning the Project

Sketch a form (Figure 1.61), which your users sign off as meeting their needs.

Figure 1.61

A planning sketch of the form for the hands-on programming example.

Look Sharp Fitness Center ¢—————labell

clothingButton—-)| Clothing

equipmentButton | Equipment/Accessories

|

|
juiceBarButton —->| Juice Bar J
i Membership |
|

|

| J(—— promotionslLabel

membershipButton

personalTrainingButton—y-)| Fersonal Training

exitButton —-)[Exit

Programmed by Your Name(—rlabglz

58 vV 1 8§ U A L C# Introduction to Programming and Visual C# 2008

Note: Although this step may seem unnecessary, having your users sign off
is standard programming practice and documents that your users have been
involved and have approved the design.

Plan the Objects and Properties

Plan the property settings for the form and for each control.

Object Property Setting
PromotionForm Name PromotionForm
Text Current Promotions
StartPosition CenterScreen
labell Text Look Sharp Fitness Center Hint: Do not
change the name
of this label.
Font 18 pt.
label2 Text Programmed by Your Name
promotionsLabel Name promotionsLabel
AutoSize True
Text (blank)
TextAlign MiddleLeft
Font 12 pt.
clothingButton Name clothingButton
Text Clothing
equipmentButton Name equipmentButton
Text Equipment/Accessories
juiceBarButton Name juiceBarButton
Text Juice Bar
membershipButton Name membershipButton
Text Membership
personal TrainingButton Name personal TrainingButton
Text Personal Training
exitButton Name exitButton
Text Exit

Plan the Event Methods You will need event-handling methods for each button.

Method Actions—Pseudocode

clothingButton_Click Display “Take an extra 30% off the clearance items.” in the label.
equipmentButton_Click Display “Yoga mats—25% off.”

juiceBarButton_Click Display “Try a free serving of our new WheatBerry Shake.”
membershipButton_Click Display “First month personal training included.”

personal TrainingButton_Click Display “3 free sessions with membership renewal.”
exitButton_Click End the project.

C H A P TE R 1 59

Write the Project Follow the sketch in Figure 1.61 to create the form. Figure
1.62 shows the completed form.

® Set the properties of each object, as you have planned.
e Working from the pseudocode, write each event-handling method.

® When you complete the code, thoroughly test the project.

Figure 1.62

The form for the hands-on

ot Current Promotions o || = | EE programming example

Look Sharp Fitness Center

Clothing I

Equipment/ Accessaories I

Juice Bar

Membership I

Personal Training I

I
I
I
I
I
I

Ext I Programmed by 4. Programmer

The Project Coding Solution

/*

* Project: ChO1HandsOn

* Programmer: Bradley/Millspaugh

* Date: June 2009

* Description: This project displays current sales for
td each department.

*/

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace ChO1HandsOn

{
public partial class PromotionsForm : Form
{
public Formi ()
{
InitializeComponent();
}

60

\ % I § U A L C# Introduction to Programming and Visual C# 2008

private void exitButton_Click(object sender, EventArgs e)

{
// End the project.
this.Close();
}
private void clothingButton_Click(object sender, EventArgs e)
{
// Display current promotion.
promotionsLabel.Text = "Take an extra 30% off the clearance items.";
}
private void equipmentlLabel Click(object sender, EventArgs e)
{
// Display current promotion.
promotionsLabel.Text = "Yoga mats——25% off.";
}
private void juiceBarButton_Click(object sender, EventArgs e)
{
// Display current promotion.
promotionsLabel.Text = "Try a free serving of our new WheatBerry Shake.";
}
private void membershipButton_Click(object sender, EventArgs e)
{
// Display current promotion.
promotionsLabel.Text = "First month personal training included.";
}
private void personalTrainingButton Click(object sender, EventArgs e)
{
// Display current promotion.
promotionsLabel.Text = "3 free sessions with membership renewal.";
}

. Visual C# is an object-oriented language primarily used to write applica-

tion programs that run in Windows or on the Internet using a graphical
user interface (GUI).

. In the OOP object model, classes are used to create objects that have prop-

erties, methods, and events.

. The current release of C# is called Visual C# 2008 and is one part of

Visual Studio. C# is available individually in an Express Edition or in
Visual Studio Professional Edition and Team System versions.

C

w

6.

=~

(ee)
QO

9.
10.

11.

12.

13.
14.

16.

—

~
o)

19.
20.

21.
22.
23.
24.

~

H A P T E R 1

. The .NET Framework provides an environment for the objects from many
languages to interoperate. Each language compiles to Microsoft Intermedi-
ate Language (MSIL) and runs in the Common Language Runtime (CLR).
To plan a project, first sketch the user interface and then list the objects
and properties needed. Then plan the necessary event-handling methods.
The three steps to creating a C# project are (1) define the user interface,
(2) set the properties, and (3) write the code.

. A C# application is called a solution. Each solution may contain multiple
projects, and each project may contain multiple forms and additional files.
The solution file has an extension of .sln, a project file has an extension of
.csproj, and form files and additional C# files have an extension of .cs. In
addition, the Visual Studio environment and the C# compiler both create
several more files.

. The Visual Studio integrated development environment (IDE) consists of

several tools, including a form designer, an editor, a compiler, a debugger,

an object browser, and a Help facility.

Visual Studio has three modes: design time, run time, and debug time.

You can customize the Visual Studio IDE and reset all customizations back

to their default state.

You create the user interface for an application by adding controls from the

toolbox to a form. You can move, resize, and delete the controls.

The Name property of a control is used to refer to the control in code. The

Text property holds the words that the user sees on the screen.

C# code is written in methods. Method bodies begin and end with braces { }.

Project comments are used for documentation. Good programming practice

requires comments in every method and at the top of a file.

Most C# statements must be terminated by a semicolon. A statement may

appear on multiple lines; the semicolon determines the end of the state-

ment. Comments and some other statements do not end with semicolons.

Assignment statements assign a value to a property or a variable. Assign-

ment statements work from right to left, assigning the value on the right

side of the equal sign to the property or variable named on the left side of
the equal sign.

The this.Close () method terminates program execution.

. Each event to which you want to respond requires an event-handling

method, also called an event handler.

You can print out the C# code for documentation.

Three types of errors can occur in a C# project: syntax errors, which violate

the syntax rules of the C# language; run-time errors, which contain a state-

ment that cannot execute properly; and logic errors, which produce errone-
ous results.

Finding and fixing program errors is called debugging.

You must have a clean compile before you run the program.

Following good naming conventions can help make a project easier to debug.

C# Help has very complete descriptions of all project elements and their

uses. You can use the How Do I, Contents, Index, Search, Help Favorites, or

context-sensitive Help.

61

62 \ Y% | S U A L C# Introduction to Programming and Visual C# 2008

Key Terms

assignment statement 30 method 4
button 19 namespace 23
camel casing 52 object 4
class 4 object-oriented
clean compile 48 programming (OOP) 3
code 6 pascal casing 52
comment 30 Professional Edition 5
context menu 25 project file 8
context-sensitive Help 56 Properties window 13
control 3 property 4
debug time 14 pseudocode 6
debugging 48 resizing handle 20
design time 14 run time 14
Document window 12 run-time error 46
event 4 snap lines 20
event handler 29 solution 6
event-handling method 29 Solution Explorer window 13
exception 46 solution file 7
Express Edition 5 Standard Edition 5
form 3 syntax error 45
Form Designer 12 Team System 5
graphical user interface (GUL) 3 Text property 24
Help 14 this 32
integrated development toolbar 11

environment (IDE) 8 toolbox 3
label 19 user interface 6
logic error 47 Visual Studio environment 8

Review Questions

—

. What are objects and properties? How are they related to each other?
. What are the three steps for planning and creating C# projects? Describe
what happens in each step.

[\

. What is the purpose of these C# file types: .sln, .suo, and .cs?
. When is C# in design time? run time? debug time?
. What is the purpose of the Name property of a control?
. Which property determines what appears on the form for a Label control?
. What is the purpose of the Text property of a button? the Text property of a
form?
8. What does displayButton_Click mean? To what does displayButton refer?
To what does Click refer?
9. What is a C# event? Give some examples of events.
10. What property must be set to center text in a label? What should be the
value of the property?

~ O Ut &~ W

11. Describe the two types of comments in a C# program and tell where each
is generally used.

C H A P TE R 1 63

12. What is meant by the term debugging?
13. What is a syntax error, when does it occur, and what might cause it?
14. What is a run-time error, when does it occur, and what might cause it?
15. What is a logic error, when does it occur, and what might cause it?
16. Tell the class of control and the likely purpose of each of these object
names:
addressLabel
exitButton
nameTextBox
17. What does context-sensitive Help mean? How can you use it to see the
Help page for a button?

Programming Exercises

1.1 For your first C# exercise, you must first complete the Hello World proj-
ect. Then add buttons and event-handling methods to display the “Hello
World” message in two more languages. You may substitute any other
languages for those shown. Feel free to modify the user interface to suit
yourself (or your instructor).

Make sure to use meaningful names for your new buttons, following
the naming conventions in Table 1.2. Include comments at the top of
every method and at the top of the file.

“Hello World” in French: Bonjour tout le monde

“Hello World” in Italian: Ciao Mondo

1.2 Create a project that displays the hours for each department on campus.
Include buttons for Student Learning, Financial Aid, Counseling, and the
Bookstore. Each button should display the hours for that department in a
label. The interface should have one label for the hours, one label for the
programmer name, buttons for each department, and an Exit button.

Make sure to use meaningful names for your new buttons, following
the naming conventions in Table 1.2. Include comments at the top of
every method and at the top of the file.

1.3 Wirite a project that displays four sayings, such as “The early bird gets
the worm” or “A penny saved is a penny earned.” (You will want to keep
the sayings short, as each must be entered on one line. However, when the
saying displays on your form, you can set the label’s properties to allow
long lines to wrap within the label.)

Make a button for each saying with a descriptive Text property for
each, as well as a button to exit the project.

Include a label that holds your name at the bottom of the form. Also,
make sure to change the form’s title bar to something meaningful.

If your sayings are too long to display on one line, set the label’s Auto-
Size property to False and resize the height of the label to hold multiple
lines. You may change the Font properties of the label to the font and size
of your choice.

Make sure the buttons are large enough to hold their entire Text
properties.

64 \ Y% | S U A L C# Introduction to Programming and Visual C# 2008

Follow good naming conventions for object names; include comments
at the top of every method and at the top of the file.

1.4 Write a project to display company contact information. Include buttons
and labels for the contact person, department, and phone. When the user
clicks on one of the buttons, display the contact information in the cor-
responding label. Include a button to exit.

Include a label that holds your name at the bottom of the form and
change the title bar of the form to something meaningful.

You may change the Font properties of the labels to the font and size of
your choice.

Follow good naming conventions for object names; include comments
at the top of every method and at the top of the file.

1.5 Create a project to display the daily specials for “your” diner. Make up a
name for your diner and display it in a label at the top of the form. Add a
label to display the appropriate special depending on the button that is
pressed. The buttons should be

e Soup of the Day
e Chef’s Special
® Daily Fish
Also include an Exit button.

Sample Data: Dorothy’s Diner is offering Tortilla Soup, a California
Cobb Salad, and Hazelnut-Coated Mahi Mahi.

Case Studies

Custom Supplies Mail Order I

If you don’t have the time to look for all those hard-to-
find items, tell us what you’re looking for. We’ll send
you a catalog from the appropriate company or order
for you.

We can place an order and ship it to you. We also
help with shopping for gifts; your order can be gift
wrapped and sent anywhere you wish.

The company title will be shortened to CS Mail
Order. Include this name on the title bar of the first
form of each project that you create for this case
study.

Your first job is to create a project that will dis-
play the name and telephone number for the contact
person for the customer relations, marketing, order
processing, and shipping departments.

Include a button for each department. When the
user clicks on the button for a department, display the

name and telephone number for the contact person in
two labels. Also include identifying labels with Text
“Department Contact” and “Telephone Number.”

Be sure to include a button for Exit.

Include a label at the bottom of the form that holds
your name and give the form a meaningful title bar.

Test Data

Department Department Telephone
Contact Number

Customer Relations Tricia Mills 500-1111

Marketing Michelle Rigner 500-2222

Order Processing Kenna DeVoss 500-3333

Shipping Eric Andrews 500-4444

C H A P T E R 1

65

Christopher’s Car Center I

Christopher’s Car Center will meet all of your automo-
bile needs. The center has facilities with everything
for your vehicles including sales and leasing for new
and used cars and RVs, auto service and repair, detail
shop, car wash, and auto parts.

Your first job is to create a project that will dis-
play current notices.

Include four buttons labeled “Auto Sales,” “Ser-
vice Center,” “Detail Shop,” and “Employment
Opportunities.” One label will be used to display
the information when the buttons are clicked. Be sure
to include a button for Exit.

Include your name in a label at the bottom of the
form.

Test Data

Button Label Text

Auto Sales Family wagon, immaculate

condition $12,995

Service Center Lube, oil, filter $25.99

Detail Shop Complete detail $79.95 for

most cars

Sales position, contact Mr. Mann
551-2134 x475

Employment Opportunities

Xtreme Cinema I

This neighborhood store is an independently owned
video rental business. The owners would like to allow
their customers to use the computer to look up the
aisle number for movies by category.

Create a form with a button for each category.
When the user clicks on a button, display the corre-
sponding aisle number in a label. Include a button to
exit.

Include a label that holds your name at the bottom
of the form and change the title bar of the form to
Xtreme Cinema.

You may change the font properties of the labels
to the font and size of your choice. Include additional
categories, if you wish.

Follow good programming conventions for object
names; include comments at the top of every method
and at the top of the file.

Test Data

Button Location
Comedy Aisle 1
Drama Aisle 2
Action Aisle 3
Sci-Fi Aisle 4
Horror Aisle 5
New Releases Back Wall

Cool Boards I

This chain of stores features a full line of clothing and
equipment for snowbhoard and skateboard enthusiasts.
Management wants a computer application to allow
their employees to display the address and hours for
each of their branches.

Create a form with a button for each store branch.
When the user clicks on a button, display the correct
address and hours.

Include a label that holds your name at the bottom
of the form and change the title bar of the form to Cool
Boards.

You may change the font properties of the labels
to the font and size of your choice.

Follow good programming conventions for object
names; include comments at the top of every method
and at the top of the file.

Store Branches: The three branches are Down-
town, Mall, and Suburbs. Make up hours and locations
for each.

