
try

{

 // Convert input values to numeric and assign

 quantityInteger = int.Parse(quantityTextBox.Te

 try

 {

 priceDecimal = decimal.Parse(priceTextBox.

 // Calculate values.

 extendedPriceDecimal = quantityInteger * p

 discountDecimal = Decimal.Round(

 (extendedPriceDecimal * DISCOUNT_RATE_D

 amountDueDecimal = extendedPriceDecimal -

 totalAmountDecimal += amountDueDecimal;

 numberTransactionsInteger++;

 // Format and display answers.

 extendedPriceTextBox.Text = extendedPriceD

 C H A P T E R

1
 Introduction to
Programming and
Visual C# 2008

 at the completion of this chapter, you will be able to . . .

 1. Describe the process of visual program design and development.

 2. Explain the term object-oriented programming.

 3. Explain the concepts of classes, objects, properties, methods, and

events.

 4. List and describe the three steps for writing a C# program.

 5. Describe the various files that make up a C# project.

 6. Identify the elements in the Visual Studio environment.

 7. Define design time , run time , and debug time.

 8. Write, run, save, print, and modify your first C# program.

 9. Identify syntax errors, run-time errors, and logic errors.

 10. Look up C# topics in Help.

bra17216_ch01_001-066.indd Page 1 7/27/08 11:12:56 AM user-s207bra17216_ch01_001-066.indd Page 1 7/27/08 11:12:56 AM user-s207 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

2 V I S U A L C# Introduction to Programming and Visual C# 2008

 Beginning in Chapter 9 you will create programs using Web Forms and
Visual Web Developer. You can run Web applications in a browser such as
 Internet Explorer or Mozilla FireFox, on the Internet, or on a company intranet.
 Figure 1.2 shows a Web Forms application.
 You also will become acquainted with Microsoft’s new screen design tech-
nology, Windows Presentation Foundation (WPF), which is covered in Chapter
14. WPF uses its own designer and design elements, which are different from
those used for Windows forms.

 Writing Windows Applications with Visual C#

 Using this text, you will learn to write computer programs that run in the
 Microsoft Windows environment. Your projects will look and act like standard
Windows programs. You will use the tools in C# (C sharp) and Windows Forms
to create windows with familiar elements such as labels, text boxes, buttons,
radio buttons, check boxes, list boxes, menus, and scroll bars. Figure 1.1 shows
some sample Windows user interfaces.

 F i g u r e 1 . 1

 Graphical user interfaces for

application programs designed

with C# and Windows Forms.

Text boxes

ButtonsPicture
box

Labels

Radio
buttons

Labels

Check box

Group box

List box

Drop-down list

Menu bar

bra17216_ch01_001-066.indd Page 2 7/21/08 8:01:21 PM user-s172bra17216_ch01_001-066.indd Page 2 7/21/08 8:01:21 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 3

 The Windows Graphical User Interface

 Microsoft Windows uses a graphical user interface , or GUI (pronounced
“gooey”). The Windows GUI defines how the various elements look and
function. As a C# programmer, you have available a toolbox of these ele-
ments. You will create new windows, called forms . Then you will use the
toolbox to add the various elements, called controls . The projects that you
will write follow a programming technique called object-oriented pro-
gramming (OOP) .

 F i g u r e 1 . 2

 A Web Forms application

running in a browser.

 Programming Languages—Procedural,
Event Driven, and Object Oriented

 There are literally hundreds of programming languages. Each was developed to
solve a particular type of problem. Most traditional languages, such as BASIC,
C, COBOL, FORTRAN, PL/1, and Pascal, are considered procedural lan-
guages. That is, the program specifies the exact sequence of all operations.
Program logic determines the next instruction to execute in response to condi-
tions and user requests.
 The newer programming languages such as C#, Java, and Visual Basic
(VB) use a different approach: object-oriented programming (OOP) .
 In the OOP model, programs are no longer procedural. They do not follow
a sequential logic. You, as the programmer, do not take control and determine
the sequence of execution. Instead, the user can press keys and click various
buttons and boxes in a window. Each user action can cause an event to occur,
which triggers a method (a set of programming statements) that you have writ-
ten. For example, the user clicks on a button labeled Calculate. The clicking
causes the button’s Click event to occur, and the program automatically jumps
to a method you have written to do the calculation.

bra17216_ch01_001-066.indd Page 3 7/21/08 8:01:21 PM user-s172bra17216_ch01_001-066.indd Page 3 7/21/08 8:01:21 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

4 V I S U A L C# Introduction to Programming and Visual C# 2008

 The Object Model

 In C# you will work with objects, which have properties, methods, and events.
Each object is based on a class.

 Objects
 Think of an object as a thing, or a noun. Examples of objects are forms and
controls. Forms are the windows and dialog boxes you place on the screen;
 controls are the components you place inside a form, such as text boxes, but-
tons, and list boxes.

 Properties
 Properties tell something about or control the behavior of an object such as
its name, color, size, or location. You can think of properties as adjectives that
describe objects.
 When you refer to a property, you first name the object, add a period, and
then name the property. For example, refer to the Text property of a form called
SalesForm as SalesForm.Text (pronounced “sales form dot text”).

 Methods
 Actions associated with objects are called methods . Methods are the verbs of
object-oriented programming. Some typical methods are Close , Show , and
 Clear . Each of the predefined objects has a set of methods that you can
use. You will learn to write additional methods to perform actions in your
 programs.
 You refer to methods as Object.Method (“object dot method”). For exam-
ple, a Show method can apply to different objects: BillingForm.Show shows
the form object called BillingForm; exitButton.Show shows the button object
called exitButton.

 Events
 You can write methods that execute when a particular event occurs. An event
occurs when the user takes an action such as clicking a button, pressing a key,
scrolling, or closing a window. Events also can be triggered by actions of other
objects, such as repainting a form or a timer reaching a preset point.

 Classes
 A class is a template or blueprint used to create a new object. Classes contain
the definition of all available properties, methods, and events.
 Each time that you create a new object, it must be based on a class. For
example, you may decide to place three buttons on your form. Each button is
based on the Button class and is considered one object, called an instance of the
class. Each button (or instance) has its own set of properties, methods, and
events. One button may be labeled “OK”, one “Cancel”, and one “Exit”. When
the user clicks the OK button, that button’s Click event occurs; if the user clicks
on the Exit button, that button’s Click event occurs. And, of course, you have
written different program instructions for each of the button’s Click events.

 An Analogy
 If the concepts of classes, objects, properties, methods, and events are still a
little unclear, maybe an analogy will help. Consider an Automobile class. When

 T he term members is used to refer to
both properties and methods. ■

 TIP

bra17216_ch01_001-066.indd Page 4 7/21/08 8:01:21 PM user-s172bra17216_ch01_001-066.indd Page 4 7/21/08 8:01:21 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 5

we say automobile, we are not referring to a particular auto, but we know that
an automobile has a make and model, a color, an engine, and a number of
doors. These elements are the properties of the Automobile class.
 Each individual auto is an object, or an instance of the Automobile class.
Each Automobile object has its own settings for the available properties. For
example, each Automobile object has a Color property, such as myAuto.Color =
Blue and yourAuto.Color = Red.
 The methods, or actions, of the Automobile class might be Start , SpeedUp ,
 SlowDown , and Stop . To refer to the methods of a specific object of the class,
use myAuto.Start and yourAuto.Stop .
 The events of an Automobile class could be Arrive or Crash. In a C# pro-
gram, you write event-handling methods that specify the actions you want to
take when a particular event occurs for an object. For example, you might write
a method to handle the yourAuto.Crash event.
 Note : Chapter 12 presents object-oriented programming in greater depth.

 Microsoft’s Visual Studio

 The latest version of Microsoft’s Visual Studio, called Visual Studio 2008, in-
cludes C#, Visual C++, Visual Basic, and the .NET 3.5 Framework.

 The .NET Framework
 The programming languages in Visual Studio run in the .NET Framework. The
Framework provides for easier development of Web-based and Windows-based
applications, allows objects from different languages to operate together, and
standardizes how the languages refer to data and objects. Several third-party
vendors have produced versions of other programming languages to run in the
.NET Framework, including .NET versions of APL by Dyalog, FORTRAN by
Lahey Computer Systems, COBOL by Fujitsu Software Corporation, Pascal by
the Queensland University of Technology (free), PERL by ActiveState, RPG by
ASNA, and Java, known as IKVM.NET.
 The .NET languages all compile to (are translated to) a common machine
language, called Microsoft Intermediate Language (MSIL). The MSIL code,
called managed code, runs in the Common Language Runtime (CLR), which is
part of the .NET Framework.

 C#
 Microsoft C# is a part of Visual Studio. You also can purchase C# by itself
(without the other languages but with the .NET Framework). C# is available in
an Express Edition , a Standard Edition, a Professional Edition , and four
specialized versions of Team System Editions for large enterprise application
development. You can find a matrix showing the features of each edition in
Help. Anyone planning to do professional application development that in-
cludes the advanced features of database management should use the Profes-
sional Edition or the Team System Database version. The full Professional
Edition is available to educational institutions through the Microsoft Academic
Alliance program and is the best possible deal. When a campus department
purchases the Academic Alliance, the school can install Visual Studio on all
classroom and lab computers and provide the software to all students and fac-
ulty at no additional charge. For more information, have your instructor visit:
http://msdn.microsoft.com/en-us/academic/default.aspx

bra17216_ch01_001-066.indd Page 5 7/21/08 8:01:22 PM user-s172bra17216_ch01_001-066.indd Page 5 7/21/08 8:01:22 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

6 V I S U A L C# Introduction to Programming and Visual C# 2008

 Microsoft provides an Express Edition of each of the programming lan-
guages, which you can download for free (www.microsoft.com/express/down-
load/). You can use Visual C# Express for Windows development and Visual
Web Developer Express for the Web applications in Chapters 9 and 10.
 This text is based on the Professional Edition of Visual Studio 2008, the
current version. You cannot run the projects in this text in any earlier version
of C#.

 Writing C# Programs

 When you write a C# application, you follow a three-step process for planning
the project and then repeat the three-step process for creating the project. The
three steps involve setting up the user interface, defining the properties, and
then creating the code.

 The Three-Step Process

 Planning
 1. Design the user interface . When you plan the user interface , you draw

a sketch of the screens the user will see when running your project. On
your sketch, show the forms and all the controls that you plan to use.
Indicate the names that you plan to give the form and each of the objects
on the form. Refer to Figure 1.1 for examples of user interfaces.

 Before you proceed with any more steps, consult with your user and
make sure that you both agree on the look and feel of the project.

 2. Plan the properties . For each object, write down the properties that you
plan to set or change during the design of the form.

 3. Plan the C# code . In this step you plan the classes and methods that
will execute when your project runs. You will determine which events
require action to be taken and then make a step-by-step plan for those
actions.

 Later, when you actually write the C# code , you must follow the
language syntax rules. But during the planning stage, you will write out
the actions using pseudocode , which is an English expression or
 comment that describes the action. For example, you must plan for
the event that occurs when the user clicks on the Exit button. The
pseudocode for the event could be End the project or Quit .

 Programming
 After you have completed the planning steps and have approval from your user,
you are ready to begin the actual construction of the project. Use the same
three-step process that you used for planning.

 1. Define the user interface . When you define the user interface, you create
the forms and controls that you designed in the planning stage.

 Think of this step as defining the objects you will use in your
 application.

bra17216_ch01_001-066.indd Page 6 7/21/08 8:01:22 PM user-s172bra17216_ch01_001-066.indd Page 6 7/21/08 8:01:22 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 7

 2. Set the properties . When you set the properties of the objects, you give
each object a name and define such attributes as the contents of a label,
the size of the text, and the words that appear on top of a button and in
the form’s title bar.

 You might think of this step as describing each object.
 3. Write the code . You will use C# programming statements (called C#

code) to carry out the actions needed by your program. You will be sur-
prised and pleased by how few statements you need to create a powerful
Windows program.

 You can think of this third step as defining the actions of your
 program.

 C# Application Files

 A C# application, called a solution , can consist of one or more projects. Since
all of the solutions in this text have only one project, you can think of one
 solution = one project. Each project can contain one or more form files. In
Chapters 1 through 5, all projects have only one form, so you can think of one
project = one form. Starting in Chapter 6, your projects will contain multiple
forms and additional files. As an example, the HelloWorld application that you
will create later in this chapter creates the following files:

 File Name File Icon Description

 HelloWorld.sln The solution file . A text file that holds
information about the solution and the projects
it contains. This is the primary file for the
solution—the one that you open to work on or
run your project. Note the “9” on the icon,
which refers to Visual Studio version 9.

 HelloWorld.suo Solution user options file. Stores information
about the state of the integrated development
environment (IDE) so that all customizations
can be restored each time you open the
solution.

 HelloForm.cs A .cs (C#) file that holds the code methods that
you write. This is a text file that you can open
in any editor. Warning : You should not modify
this file unless you are using the editor in the
Visual Studio environment.

 HelloForm.Designer.cs A .cs (C#) file created by the Form Designer
that holds the definition of the form and its
controls. You should not modify this file
directly, but instead make changes in the
Designer and allow it to update the file.

 HelloForm.resx A resource file for the form. This text file
defines all resources used by the form,
including strings of text, numbers, and any
graphics.

bra17216_ch01_001-066.indd Page 7 7/21/08 8:01:22 PM user-s172bra17216_ch01_001-066.indd Page 7 7/21/08 8:01:22 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

8 V I S U A L C# Introduction to Programming and Visual C# 2008

Note : You can display file extensions. In Windows Vista, open the Explorer and
select Organize / Folders and Search Options , click on the View tab and deselect
the check box for Hide extensions for known file types. In Windows XP, in the My
Computer Tools menu, select Folder Options and the View tab. Deselect the
check box for Hide extensions for known file types . If you do not display the
 extensions, you can identify the file types by their icons.
 After you run your project, you will find several more files created by the
system. The only file that you open directly is the .sln, or solution file.

 The Visual Studio Environment

 The Visual Studio environment is where you create and test your projects.
A development environment such as Visual Studio is called an integrated
development environment (IDE) . The IDE consists of various tools, includ-
ing a form designer, which allows you to visually create a form; an editor, for
entering and modifying program code; a compiler, for translating the C# state-
ments into the intermediate machine code; a debugger, to help locate and cor-
rect program errors; an object browser, to view the available classes, objects,
properties, methods, and events; and a Help facility.
 In versions of Visual Studio prior to .NET, each language had its own IDE.
For example, to create a Visual Basic project you would use the Visual Basic
IDE, and to create a C++ project you would use the C++ IDE. But in Visual
Studio, you use the one IDE to create projects in any of the supported
 languages.

 Default Environment Settings

 The full version of Visual Studio 2008 provides an option that allows the
 programmer to select the default profile for the IDE. The first time you open
Visual Studio, you are presented with the Choose Default Environment Settings
dialog box (Figure 1.3), where you can choose Visual C# Development Settings .
This text uses the Visual C# settings.

 File Name File Icon Description

 HelloWorld.csproj The project file that describes the project and
lists the files that are included in the project.

 HelloWorld.csproj.user The project user options file. This text file
holds IDE option settings so that the next time
you open the project, all customizations will be
restored.

 Program.cs A .cs (C#) file that contains automatically
generated code that runs first when you execute
your application.

bra17216_ch01_001-066.indd Page 8 7/21/08 8:01:23 PM user-s172bra17216_ch01_001-066.indd Page 8 7/21/08 8:01:23 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 9

 Note : If you plan to develop in more than one language, such as VB and
C#, you can save each group of settings and switch back and forth between the
two. Select Tools / Import and Export Settings and choose to Reset all settings .

 The IDE Initial Screen

 When you open the Visual Studio IDE, you generally see an empty environ-
ment with a Start Page (Figure 1.4). However, it’s easy to customize the envi-
ronment, so you may see a different view. In the step-by-step exercise later in
this chapter, you will learn to reset the IDE layout to its default view.
 The contents of the Start Page vary, depending on whether you are con-
nected to the Internet. Microsoft has included links that can be updated, so you
may find new and interesting information on the Start Page each time you open
it. To display or hide the Start Page, select View / Other Windows / Start Page .
 You can open an existing project or begin a new project using the Start
Page or the File menu. The examples in this text use the menus.

 The New Project Dialog

 You will create your first C# projects by selecting File / New Project , which
opens the New Project dialog (Figure 1.5). In the New Project dialog, you may
need to expand the node for Other Languages , depending on your installation.
Under Visual C# , select Windows , and in the Templates pane, select Windows
Forms Application . You also give the project a name in this dialog. Deselect the
check box for Create directory for solution , which creates an extra level of folders
for our single-project solutions.

 F i g u r e 1 . 3

 The first time you open the

Visual Studio IDE, you must

select the default environment

settings for Visual C#

development.

bra17216_ch01_001-066.indd Page 9 7/21/08 8:01:23 PM user-s172bra17216_ch01_001-066.indd Page 9 7/21/08 8:01:23 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

10 V I S U A L C# Introduction to Programming and Visual C# 2008

 F i g u r e 1 . 4

 The Visual Studio IDE with the Start Page open, as it first appears in Windows Vista, without an open project. You can close

the Start Page by clicking on its Close button.

Close button for
Start Page

 F i g u r e 1 . 5

 Begin a new C# Windows

project using the Windows

Forms Application template.

Select the Windows Forms
Application template

Select Visual C# Windows

Enter the project name

bra17216_ch01_001-066.indd Page 10 7/21/08 8:01:23 PM user-s172bra17216_ch01_001-066.indd Page 10 7/21/08 8:01:23 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 11

 The IDE Main Window

 Figure 1.6 shows the Visual Studio environment’s main window and its various
child windows. Note that each window can be moved, resized, opened, closed, and
customized. Some windows have tabs that allow you to display different contents.
Your screen may not look exactly like Figure 1.6 ; in all likelihood, you will want
to customize the placement of the various windows. The Designer and Editor win-
dows are generally displayed in tabs in the center of the screen (the Document
window), and the various tool windows are docked along the edges and bottom of
the IDE, but the locations and the docking behavior are all customizable.
 The IDE main window holds the Visual Studio menu bar and the toolbars.
You can display or hide the various windows from the View menu.

 F i g u r e 1 . 6

 The Visual Studio environment. Each window can be moved, resized, closed, or customized.

 The Toolbars

 You can use the buttons on the toolbars as shortcuts for frequently used opera-
tions. Each button represents a command that also can be selected from a menu.
 Figure 1.7 a shows the toolbar buttons on the Standard toolbar for the Profes-
sional Edition, which displays in the main window of the IDE; Figure 1.7 b shows
the Layout toolbar, which is useful for designing forms in the Form Designer; and
 Figure 1.7 c shows the Text Editor toolbar, which contains buttons to use in the
Editor window. Select View / Toolbars to display or hide these and other toolbars.

bra17216_ch01_001-066.indd Page 11 7/21/08 8:01:24 PM user-s172bra17216_ch01_001-066.indd Page 11 7/21/08 8:01:24 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

12 V I S U A L C# Introduction to Programming and Visual C# 2008

 The Document Window

 The largest window in the center of the screen is the Document window .
Notice the tabs across the top of the window, which allow you to switch between
open documents. The items that display in the Document window include the
Form Designer, the Code Editor, the Project Designer, the Database Designer,
and the Object Browser.
 You can switch from one tab to another, or close any of the documents
 using its Close button.

 The Form Designer

 The Form Designer is where you design a form that makes up your user in-
terface. In Figure 1.6 , the Form Designer for Form1 is currently displaying.
You can drag the form’s sizing handles or selection border to change the size of
the form.

 F i g u r e 1 . 7

 The Visual Studio toolbars contain buttons that are shortcuts for menu commands. You can display or hide each of the

toolbars: a. the Standard toolbar; b. the Layout toolbar; and c. the Text Editor toolbar.

 U se Ctrl + Tab to switch to another
open document in the Document
window. ■

 TIP

Toolbox

Start Page

Solution Explorer

Object Browser

Properties W
indow

Find
Solution Platform

s

Redo
Undo

Navigate Backward

Navigate Forward

Solution Configurations

Paste
Copy

Cut
Save All

Save File

Open File

Add New Item

New Project

(a)

Tab Order

M
erge Cells

Send To Back

Bring To Front

Center Vertically

Center H
orizontally

Rem
ove Vertical Spacing

Decrease Vertical Spacing

Increase Vertical Spacing

M
ake Vertical Spacing Equal

Rem
ove H

orizontal Spacing

Decrease H
orizontal Spacing

Increase H
orizontal Spacing

M
ake H

orizontal Spacing Equal

Size To Grid

M
ake Sam

e Size

M
ake Sam

e H
eight

M
ake Sam

e W
idth

Align Bottom
s

Align M
iddles

Align Tops

Align Rights

Align Centers

Align Lefts

Align to Grid

(b)

Uncom
m

ent the Selected Lines

Com
m

ent Out the Selected Lines

Clear Bookm
arks

M
ove To Next Bookm

ark

M
ove To Previous Bookm

ark in Current Folder

M
ove To Next Bookm

ark in Current Folder

M
ove To Previous Bookm

ark in Current Docum
ent

M
ove To Next Bookm

ark in Current Docum
ent

M
ove To Previous Bookm

ark

Toggle Bookm
ark

Display W
ord Com

pletion

Display Quick Info

Display Param
eter Info

Display Object M
em

ber List

(c)

Increase Indent

Decrease Indent

bra17216_ch01_001-066.indd Page 12 7/21/08 8:01:24 PM user-s172bra17216_ch01_001-066.indd Page 12 7/21/08 8:01:24 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 13

 Y ou can sort the properties in the
window either alphabetically or by
categories. Use the buttons on the
Properties window. ■

 TIP

 When you begin a new C# Windows application, a new form is added to
the project with the default name Form1. In the step-by-step exercise later in
the chapter, you will learn to change the form’s name.

 The Solution Explorer Window

 The Solution Explorer window holds the filenames for the files included in
your project and a list of the classes it references. The Solution Explorer window
and the environment’s title bar hold the name of your solution (.sln) file, which is
WindowsFormsApplication1 by default unless you give it a new value in the New
Project dialog box. In Figure 1.6 , the name of the solution is MyFirstProject.

 The Properties Window

 You use the Properties window to set the properties for the objects in your
project. See “Set Properties” later in this chapter for instructions on changing
properties.

 The Toolbox

 The toolbox holds the tools you use to place controls on a form. You may have
more or different tools in your toolbox, depending on the edition of C# you are
using (Express, Standard, Professional, or Team System). Figure 1.8 shows the
toolbox.

 Y ou can sort the tools in the tool-
box: Right-click the toolbox and se-
lect Sort Items Alphabetically from
the context menu (the shortcut
menu). ■

 TIP

 F i g u r e 1 . 8

 The toolbox for Visual Studio

Windows Forms. Your toolbox

may have more or fewer tools,

depending on the edition you

are using.

Common controls for
Windows Forms

Scroll to see more
controls

bra17216_ch01_001-066.indd Page 13 8/12/08 1:23:19 AM user-s208bra17216_ch01_001-066.indd Page 13 8/12/08 1:23:19 AM user-s208 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

14 V I S U A L C# Introduction to Programming and Visual C# 2008

Help with Specific Tasks

Selected Topic

Help Search

Index ResultsHelp Favorites
Help Contents

Help Index

Filter

 F i g u r e 1 . 9

 Help displays in a new window, independent of the Visual Studio IDE window.

 Help

 Visual Studio has an extensive Help feature, which includes the Microsoft
Developer Network library (MSDN). You can find reference materials for C#,
C++, VB, and Visual Studio; several books; technical articles; and the Micro-
soft Knowledge Base, a database of frequently asked questions and their
 answers.
 Help includes the entire reference manual, as well as many coding exam-
ples. See the topic “Visual Studio Help” later in this chapter for help on
Help.
 When you make a selection from the Help menu, the requested item ap-
pears in a new window that floats on top of the IDE window (Figure 1.9), so you
can keep both open at the same time. It’s a good idea to set the Filtered By entry
to Visual C# .

 Design Time, Run Time, and Debug Time

 Visual Studio has three distinct modes. While you are designing the user inter-
face and writing code, you are in design time . When you are testing and run-
ning your project, you are in run time . If you get a run-time error or pause
program execution, you are in debug time . The IDE window title bar indicates
(Running) or (Debugging) to indicate that a project is no longer in design time.

bra17216_ch01_001-066.indd Page 14 7/21/08 8:01:25 PM user-s172bra17216_ch01_001-066.indd Page 14 7/21/08 8:01:25 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 15

 Set Up Your Workspace

 Before you can begin a project, you must open the Visual Studio IDE. You also
may need to customize your workspace.

 Run Visual Studio
 These instructions assume that Visual Studio 2008 is installed in the default
location. If you are running in a classroom or lab, the program may be installed
in an alternate location, such as directly on the desktop.

 STEP 1: Click the Windows Start button and move the mouse pointer to All
Programs .

 STEP 2: Locate Microsoft Visual Studio 2008 .
 STEP 3: If a submenu appears, select Microsoft Visual Studio 2008 or Microsoft

Visual C# 2008 Express .
 Visual Studio will start and display the Start Page (refer to Figure

1.4). If you are using Visual Studio Professional and this is the first
time that VS has been opened for this user, you will need to select
 Visual C# Development Settings from the Choose Default Environment
Settings dialog box (refer to Figure 1.3).

 Note : The VS IDE can be customized to not show the Start Page when it
opens.

 Start a New Project
 STEP 1: Select File / New / Project ; the New Project dialog box opens (refer to

 Figure 1.5). Make sure that Visual C# and Windows are selected for

 Writing Your First C# Project

 For your first C# project, you will create a form with three controls (see Fig-
ure 1.10). This simple project will display the message “Hello World” in a
label when the user clicks the Display button and will terminate when the
user clicks the Exit button.

 F i g u r e 1 . 1 0

 The Hello World form. The

“Hello World” message will

appear in a label when the user

clicks on the Display button.

The label does not appear until

the button is pressed.

bra17216_ch01_001-066.indd Page 15 7/21/08 8:01:25 PM user-s172bra17216_ch01_001-066.indd Page 15 7/21/08 8:01:25 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

16 V I S U A L C# Introduction to Programming and Visual C# 2008

 Project types and Windows Forms Application is selected for the template.
If you are using Visual C# Express, the dialog box differs slightly and
you don’t have to choose the language, but you can still choose a Win-
dows Forms Application.

 STEP 2: Enter “HelloWorld” (without the quotes) for the name of the new proj-
ect (Figure 1.11) and click the OK button. The new project opens
(Figure 1.12). At this point, your project is stored in a temporary di-
rectory. You can specify a new location for the project later when you
save it.

 F i g u r e 1 . 1 1

 Enter the name for the new project.

 Set Up Your Environment
 In this section, you will customize the environment. For more information on
customizing windows, floating and docking windows, and altering the location
and contents of the various windows, see Appendix C.

 STEP 1: Reset the IDE’s default layout by choosing Window / Reset Window
Layout and responding Yes . The IDE should now match Figure 1.12 .

 STEP 2: Point to the icon for the toolbox at the left of the IDE window. The
Toolbox window pops open. Notice the pushpin icon at the top of the
window (Figure 1.13); clicking this icon pins the window open rather
than allowing it to Auto Hide.

 STEP 3: Click the Auto Hide pushpin icon for the Toolbox window; the toolbox
will remain open.

bra17216_ch01_001-066.indd Page 16 7/21/08 8:01:25 PM user-s172bra17216_ch01_001-066.indd Page 16 7/21/08 8:01:25 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 17

 F i g u r e 1 . 1 2

 The Visual Studio IDE with the new HelloWorld C# project. Your screen may look significantly different from the figure since

the environment can be customized.

Solution ExplorerDocument window

Toolbox

Properties window

 F i g u r e 1 . 1 3

 The Toolbox window.
Toolbox icon

Pushpin icon

bra17216_ch01_001-066.indd Page 17 8/12/08 1:55:19 AM user-s208bra17216_ch01_001-066.indd Page 17 8/12/08 1:55:19 AM user-s208 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

18 V I S U A L C# Introduction to Programming and Visual C# 2008

 STEP 4: Optional: Select Tools / Options . In the Options dialog box, select
 Startup under Environment , drop down the At startup list and select
 Show empty environment (Figure 1.14), and click OK . This selection
causes the Start Page to not appear and will make your environment
match the illustrations in this text. Note that you can show the Start
Page at any time by selecting View / Other Windows / Start Page .

 Plan the Project

 The first step in planning is to design the user interface. Figure 1.15 shows a
sketch of the form that includes a label and two buttons. You will refer to the
sketch as you create the project.

 F i g u r e 1 . 1 4

 Select Show empty environment for the environment’s Startup option in the Options dialog box .

Set this option so that the Start Page does not
appear at startup

 F i g u r e 1 . 1 5

 A sketch of the Hello World form for planning.

Display

Exit

messageLabelHelloForm

displayButton

exitButton

bra17216_ch01_001-066.indd Page 18 7/21/08 8:01:26 PM user-s172bra17216_ch01_001-066.indd Page 18 7/21/08 8:01:26 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 19

 The next two steps, planning the properties and the code, have already
been done for this first sample project. You will be given the values in the steps
that follow.

 Define the User Interface

 Set Up the Form
 Notice that the new form in the Document window has all the standard Windows
features, such as a title bar, maximize and minimize buttons, and a Close button.

 STEP 1: Resize the form in the Document window: Drag the handle in the
lower-right corner down and to the right (Figure 1.16).

 F i g u r e 1 . 1 6

 Make the form larger by

dragging its lower-right

handle diagonally. The

handles disappear as you

drag the corner of the form.

Drag handle to enlarge form

 Place Controls on the Form
 You are going to place three controls on the form: a label and two buttons .

 STEP 1: Point to the Label tool in the toolbox and double-click; a Label
control appears on the form. Drag the label to the desired location
(Figure 1.17). Later you will adjust the label’s size.

 As long as the label is selected, you can press the Delete key to
delete it, or drag it to a new location.

 You can tell that a label is selected; it has a dotted border, as shown
in Figure 1.17 , when the AutoSize property is true (the default) or
 sizing handles if you set the AutoSize property to false .

 STEP 2: Draw a button on the form: Click on the Button tool in the toolbox,
position the crosshair pointer for one corner of the button, and drag to
the diagonally opposite corner (Figure 1.18). When you release the
mouse button, the new button should appear selected and have

bra17216_ch01_001-066.indd Page 19 7/21/08 8:01:26 PM user-s172bra17216_ch01_001-066.indd Page 19 7/21/08 8:01:26 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

20 V I S U A L C# Introduction to Programming and Visual C# 2008

 resizing handles . The blue lines that appear are called snap lines ,
which can help you align your controls.

 While a control is selected, you can delete it or move it. If it has
resizing handles, you also can resize it. Refer to Table 1.1 for instruc-
tions for selecting, deleting, moving, and resizing controls. Click
 outside of a control to deselect it.

 F i g u r e 1 . 1 7

 The newly created label appears outlined, indicating that it is selected. Notice that the contents of the label are set to the

control’s name (label1) by default.

Double-click the Label tool

 F i g u r e 1 . 1 8

 Select the Button tool and

drag diagonally to create a

new Button control. The blue

snap lines help to align

controls.

Snap line

Draw the Button
control using the
crosshair pointer

bra17216_ch01_001-066.indd Page 20 7/21/08 8:01:26 PM user-s172bra17216_ch01_001-066.indd Page 20 7/21/08 8:01:26 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 21

STEP 3: While the first button is still selected, point to the Button tool in the
toolbox and double-click. A new button of the default size will appear
on top of the last-drawn control (Figure 1.19).

Selecting, Deleting, Moving, and Resizing Controls on a Form. T a b l e 1 . 1

 Select a control Click on the control.

 Delete a control Select the control and then press the Delete key on the keyboard.

 Move a control Select the control, point inside the control (not on a handle), press
the mouse button, and drag it to a new location.

 Resize a control Make sure the control is selected and has resizing handles; then
either point to one of the handles, press the mouse button, and drag
the handle; or drag the form’s bottom border to change the height or
the side border to change the width. Note that the default format for
labels does not allow resizing.

 F i g u r e 1 . 1 9

 Place a new button on the form

by double-clicking the Button

tool in the toolbox. The new

button appears on top of the

previously selected control.

STEP 4: Keep the new button selected, point anywhere inside the button (not on

a handle), and drag the button below your first button (Figure 1.20).
STEP 5: Select each control and move and resize the controls as necessary.

Make the two buttons the same size and line them up. Use the snap
lines to help with the size and alignment. Note that you can move but
not resize the label.

 At this point you have designed the user interface and are ready to set the
properties.

 Set Properties

 Set the Name and Text Properties for the Label
STEP 1: Click on the label you placed on the form; a dotted outline appears

around the control. If the Properties window is not displaying, select
View / Properties Window or press the F4 key. Click on the title bar of
the Properties window to make it the active window (Figure 1.21).

bra17216_ch01_001-066.indd Page 21 7/21/08 8:01:26 PM user-s172bra17216_ch01_001-066.indd Page 21 7/21/08 8:01:26 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

22 V I S U A L C# Introduction to Programming and Visual C# 2008

 F i g u r e 1 . 2 0

 Drag the new button (button2)

below button1.

 I f no control is selected when you
double-click a tool, the new control
is added to the upper-left corner of
the form. ■

 TIP

 F i g u r e 1 . 2 1

 The currently selected control is shown in the Properties window.

Properties
window

Namespace
and class of
selected object

Settings box

Object box

Name of selected object

bra17216_ch01_001-066.indd Page 22 7/21/08 8:01:27 PM user-s172bra17216_ch01_001-066.indd Page 22 7/21/08 8:01:27 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 23

 Notice that the Object box at the top of the Properties window is
showing label1 (the name of the object) and System.Windows.Forms.
Label as the class of the object. The actual class is Label; System.
Windows.Forms is called the namespace , or the hierarchy used to
locate the class.

 STEP 2: In the Properties window, click on the Alphabetical button to make
sure the properties are sorted in alphabetic order. Then select the
Name property, which appears near the top of the list. Click on (Name)
and notice that the Settings box shows label1 , the default name of the
label (Figure 1.22).

 I f the Properties window is not visi-
ble, you can choose View / Proper-
ties Window or press the F4 key to
show it. ■

 TIP

 F i g u r e 1 . 2 2

 The Properties window. Click

on the Name property to

change the value in the

Settings box.

Alphabetical
button

Settings
box

 STEP 3: Type “messageLabel” (without the quotation marks). See Figure 1.23 .
As a shortcut, you may wish to delete the “1” from the end of “label1”,
press the Home key to get to the beginning of the word, and then type
“message”. Change the “l” for label to uppercase.

 After you change the name of the control and press Enter or Tab,
you can see the new name in the Object box’s drop-down list.

 F i g u r e 1 . 2 3

 Type “messageLabel” into the

Settings box for the Name

property.

Sort the
Properties list
alphabetically

The new
name appears
in the
Settings box

bra17216_ch01_001-066.indd Page 23 7/21/08 8:01:27 PM user-s172bra17216_ch01_001-066.indd Page 23 7/21/08 8:01:27 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

24 V I S U A L C# Introduction to Programming and Visual C# 2008

 STEP 4: Select the AutoSize property and change the value to False. You can
easily change a property from True to False in several ways: (1) Click
in the word “True” and type only the letter “f”, and the value changes
automatically; (2) Double-click on either the property name (Auto-
Size) or the property value (True), and the value toggles each time you
double-click; or (3) Click on either the property name or the property
value, and a drop-down arrow appears at the right end of the Settings
box. Drop down the list and make your selection from the possible
values (True or False, in this case).

 STEP 5: Click on the Text property to select it. (Scroll the Properties list if
necessary.)

 The Text property of a control determines what will be displayed
on the form. Because nothing should display when the program be-
gins, you must delete the value of the Text property (as described in
the next two steps).

 STEP 6: Double-click on label1 in the Settings box; the entry should appear
selected (highlighted). See Figure 1.24 .

 F i g u r e 1 . 2 4

 Double-click in the Settings

box to select the entry.
Name of control

Value in
Settings
box is
selected

 STEP 7: Press the Delete key to delete the value of the Text property. Then
press Enter and notice that the label on the form appears empty.
Changes do not appear until you press Enter or move to another prop-
erty or control.

 As an alternate technique, you can double-click on the property
name, which automatically selects the entry in the Settings box. Then
you can press the Delete key or just begin typing to change the entry.

 All you see is a very small selection border (Figure 1.25), and if
you click anywhere else on the form, which deselects the label, you
cannot see it at all.

 If you need to select the label after deselecting it, you can click in
the approximate spot on the form or use the Properties window: Drop
down the Object list at the top of the window; you can see a list of all
controls on the form and can make a selection (Figure 1.26).

 D on’t confuse the Name property
with the Text property. You will use
the Name property to refer to the
control in your C# code. The Text
property determines what the user
will see on the form. C# sets both of
these properties to the same value
by default and it is easy to confuse
them. ■

 TIP

bra17216_ch01_001-066.indd Page 24 7/21/08 8:01:27 PM user-s172bra17216_ch01_001-066.indd Page 24 7/21/08 8:01:27 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 25

 Lock the Controls
 STEP 1: Point anywhere on the form and click the right mouse button to

 display a context menu . On the context menu, select Lock Controls
(Figure 1.27). Locking prevents you from accidentally moving the

 F i g u r e 1 . 2 5

 Delete the value for the Text property from the Settings box; the label on the form also appears empty.

Label is empty and selected

Text deleted from the
Settings box

 F i g u r e 1 . 2 6

 Drop down the Object box in

the Properties window to select

any control on the form.

bra17216_ch01_001-066.indd Page 25 7/21/08 8:01:28 PM user-s172bra17216_ch01_001-066.indd Page 25 7/21/08 8:01:28 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

26 V I S U A L C# Introduction to Programming and Visual C# 2008

controls. When your controls are locked, a selected control has a
small lock icon in the upper-left corner instead of resizing handles
(Figure 1.28).

 Note : You can unlock the controls at any time if you wish to rede-
sign the form. Just click again on Lock Controls on the context menu to
deselect it.

 F i g u r e 1 . 2 7

 After the controls are placed into

the desired location, lock them

in place by selecting Lock
Controls from the context menu.

Remember that context menus

differ depending on the current

operation and system setup.

 F i g u r e 1 . 2 8

 After you lock the controls on a

form, a selected control has a

lock icon instead of resizing

handles.

The Button
control is
selected
and locked

 Set the Name and Text Properties for the First Button
 STEP 1: Click on the first button (button1) to select it and then look at the

Properties window. The Object box should show the name (button1)
and class (System . Windows . Forms . Button) of the button (Figure 1.29).

bra17216_ch01_001-066.indd Page 26 7/21/08 8:01:28 PM user-s172bra17216_ch01_001-066.indd Page 26 7/21/08 8:01:28 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 27

 Problem? If you should double-click and code appears in the Doc-
ument window, simply click on the Form1.cs [Design] tab at the top of
the window.

 STEP 2: Change the Name property of the button to “displayButton” (without
the quotation marks).

 Although the project would work fine without this step, we prefer to
give this button a meaningful name, rather than use button1, its de-
fault name. The guidelines for naming controls appear later in this
chapter in the section “Naming Rules and Conventions for Objects.”

 STEP 3: Change the Text property to “Display” (without the quotation marks).
This step changes the words that appear on top of the button.

 Set the Name and Text Properties for the Second Button
 STEP 1: Select button2 and change its Name property to “exitButton.”
 STEP 2: Change the Text property to “Exit.”

 Change Properties of the Form
 STEP 1: Click anywhere on the form, except on a control. The Properties win-

dow Object box should now show the form as the selected object
(Form1 as the object’s name and System.Windows.Forms.Form as its
class).

 STEP 2: Change the Text property to “Hello World by Your Name” (again, no
quotation marks and use your own name).

 The Text property of a form determines the text that appears in the
 title bar. Your screen should now look like Figure 1.30 .

 STEP 3: In the Properties window, click on the StartPosition property and no-
tice the arrow on the property setting, indicating a drop-down list.
Drop down the list and select CenterScreen . This will make your form
appear in the center of the screen when the program runs.

 STEP 4: In the Solution Explorer, right-click on Form1.cs and choose Rename
from the context menu. Change the file name to “HelloForm.cs”, mak-
ing sure to retain the .cs extension. Press Enter when finished and
click Yes on the confirmation dialog box. This changes the name of the
file that saves to disk (Figure 1.31) as well as the name of the class.

 A lways set the Name property of
controls before writing code. Al-
though the program will still work
if you reverse the order, the method
names won’t match the control
names, which can cause confu-
sion. ■

 TIP

Object box

Enter a new Name
property value

 F i g u r e 1 . 2 9

 Change the properties of the

first button.

bra17216_ch01_001-066.indd Page 27 7/21/08 8:01:28 PM user-s172bra17216_ch01_001-066.indd Page 27 7/21/08 8:01:28 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

28 V I S U A L C# Introduction to Programming and Visual C# 2008

 STEP 5: Click on the form in the Document window, anywhere except on a
control. The name of the file appears on the tab at the top of the
 Designer window and the Properties window shows properties for
the form’s class, not the file. The C# designer changed the name
of the form’s class to match the name of the file (Figure 1.32).

 F i g u r e 1 . 3 0

 Change the form’s Text

property to set the text that

appears in the form’s title bar.

The form’s Text property
appears in the title bar

 F i g u r e 1 . 3 1

 The Properties window shows

the file’s properties with the

new name for the file. You can

change the filename in the

Properties window or the

Solution Explorer.

Properties
of the file

bra17216_ch01_001-066.indd Page 28 7/21/08 8:01:28 PM user-s172bra17216_ch01_001-066.indd Page 28 7/21/08 8:01:28 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 29

 Write Code

 C# Events
 While your project is running, the user can do many things, such as move the
mouse around; click either button; move, resize, or close your form’s window;
or jump to another application. Each action by the user causes an event to oc-
cur in your C# project. Some events (like clicking on a button) you care about,
and some events (like moving the mouse and resizing the window) you do not
care about. If you write code for a particular event, then C# will respond to the
event and automatically execute your method. C# ignores events for which no

methods are written.

 C# Event Handlers
 You write code in C# in methods. For now, each method will begin with the
words private void and the code will be enclosed in opening and closing
braces { }.
 C# automatically names your event-handling methods (also called event
handlers). The name consists of the object name, an underscore (_), and the
name of the event. For example, the Click event for your button called display-
Button will be displayButton_Click. For the sample project you are writing,
you will have a displayButton_Click method and an exitButton_Click method.

 F i g u r e 1 . 3 2

 The Properties window for the form. The form’s class name now matches the name of the form’s file.

The form is selected and locked

Filename

Name of the form class

Name of the form’s file

 I f you change the form’s filename
before changing the form’s class
name, the IDE automatically
changes the form’s class name to
match the filename. It does not
make the change if you have
changed the form’s class name
 yourself. ■

 TIP

bra17216_ch01_001-066.indd Page 29 7/21/08 8:01:29 PM user-s172bra17216_ch01_001-066.indd Page 29 7/21/08 8:01:29 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

30 V I S U A L C# Introduction to Programming and Visual C# 2008

 C# Code Statements

 This first project requires two C# statements: the comment and the assign-
ment statement . You also will execute a method of an object.

 The Comment Statement
 Comment statements, sometimes called remarks , are used for project documen-
tation only. They are not considered “executable” and have no effect when the
program runs. The purpose of comments is to make the project more readable
and understandable by the people who read it.
 Good programming practices dictate that programmers include comments
to clarify their projects. Every method should begin with a comment that de-
scribes its purpose. Every project should have comments that explain the pur-
pose of the program and provide identifying information such as the name of
the programmer and the date the program was written and/or modified. In ad-
dition, it is a good idea to place comments within the logic of a project, espe-
cially if the purpose of any statements might be unclear.
 When you try to read someone else’s code or your own after a period of
time, you will appreciate the generous use of comments.
 C# comments begin with slashes. Most of the time, your comments will be
on a separate line. You also can add slashes and a comment to the right end of
a line of code.

 The Comment Statement—Examples

 E
xam

ples

 // This project was written by Jonathon Edwards.

 // Exit the project.

 messageLabel.Text = "Hello World"; // Assign the message to the Text property.

 Multiline Comments You also can create multiline comments by placing /* at
the beginning and */ at the end. The enclosing symbols can be on lines by
themselves or on existing lines. As you type additional lines between the be-
ginning and ending symbols, the editor adds an asterisk at the start of each
line, indicating that it is a comment line. However, you do not need the * at the
beginning of each line. When you want to turn multiple lines of code into com-
ments, just add the opening /* and ending */ .

 /*

 * Project: Ch01HandsOn

 * Programmer: Bradley/Millspaugh

 * Date: June 2009

 * Description: This project displays a Hello World message

 * using labels and buttons.

 * */

/*Project: Ch01HandsOn

Programmer: Bradley/Millspaugh

Date: June 2009

Description: This project displays a Hello World message

 using labels and buttons. */

bra17216_ch01_001-066.indd Page 30 7/21/08 8:01:29 PM user-s172bra17216_ch01_001-066.indd Page 30 7/21/08 8:01:29 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 31

 Ending a Statement
 Most C# statements must be terminated by a semicolon (;). Comments and a
few other statements (which you will learn about later) do not end with a semi-
colon. A C# statement may extend over multiple lines; the semicolon indicates
that the statement is complete.

 The Assignment Statement
 The assignment statement assigns a value to a property or variable (you learn
about variables in Chapter 3). Assignment statements operate from right to left;
that is, the value that appears on the right side of the equal sign is assigned to
the property named on the left of the equal sign. It is often helpful to read the
equal sign as “is replaced by.” For example, the following assignment state-
ment would read “messageLabel.Text is replaced by Hello World.”

 messageLabel.Text = "Hello World";

 The Assignment Statement—General Form

 Object.Property = value ;

 G
eneral

F
orm

 The value named on the right side of the equal sign is assigned to (or placed
into) the property named on the left.

 The Assignment Statement—Examples

 E
xam

ples

 titleLabel.Text = "A Snazzy Program";

 addressLabel.Text = "1234 South North Street";

 messageLabel.AutoSize = true;

 numberInteger = 12;

 Notice that when the value to assign is some actual text (called a literal), it is
enclosed in quotation marks. This convention allows you to type any combina-
tion of alpha and numeric characters. If the value is numeric, do not enclose it
in quotation marks. And do not place quotation marks around the terms true
and false , which C# recognizes as special key terms.

 Ending a Program by Executing a Method
 To execute a method of an object, you write:

 Object.Method ();

 Notice that methods always have parentheses. Although this might seem like a
bother, it’s helpful to distinguish between properties and methods: Methods
always have parentheses; properties don’t.

 Examples

 helloButton.Hide();

 messageLabel.Show();

bra17216_ch01_001-066.indd Page 31 7/21/08 8:01:29 PM user-s172bra17216_ch01_001-066.indd Page 31 7/21/08 8:01:29 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

32 V I S U A L C# Introduction to Programming and Visual C# 2008

 To execute a method of the current form, you use the this keyword for the
object. And the method that closes the form and terminates the project execu-
tion is Close .

 this.Close();

 In most cases, you will include this.Close() in the event-handling
method for an Exit button or an Exit menu choice.
 Note : Remember, the keyword this refers to the current object. You can
omit this since a method without an object reference defaults to the current
object.

 Code the Event-Handling Methods for Hello World

 Code the Click Event Handler for the Display Button
 STEP 1: Double-click the Display button. The Visual Studio editor opens

with the header line of your method already in place, with the
 insertion point indented inside the opening and closing braces
(Figure 1.33).

 F i g u r e 1 . 3 3

 The Editor window, showing the first line of the displayButton_Click event handler with the insertion point between the

opening and closing braces.

Insertion point

bra17216_ch01_001-066.indd Page 32 7/21/08 8:01:29 PM user-s172bra17216_ch01_001-066.indd Page 32 7/21/08 8:01:29 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 33

 STEP 2: Type this comment statement:

 // Display the Hello World message.

 Notice that the editor automatically displays comments in green
(unless you or someone else has changed the color with an Environ-
ment option).

 Follow good coding conventions and indent all lines between the
opening and closing braces. The smart editor attempts to help you
 follow this convention. Also, always leave a blank line after the
 comments at the top of a method.

 STEP 3: Press Enter twice and then type this assignment statement:

 messageLabel.Text = "Hello World";

 Note : When you type the names of objects and properties, allow
 IntelliSense to help you. When you type the first character of a name,
such as the “m” of “messageLabel”, IntelliSense pops up a list of pos-
sible object names from your program (Figure 1.34). When several
items match the first letter, you can type additional characters until you
get a match, or use your keyboard down arrow or the mouse to highlight
the correct item. To accept the correct item when it is highlighted, press
the punctuation character that should follow the item, such as the
 period, spacebar, equal sign, semicolon, Tab key, or Enter key, or
 double-click the item with your mouse. For example, accept “message-
Label” by pressing the period and accept “Text” by pressing the space-
bar, since those are the characters that follow the selected items.

 F i g u r e 1 . 3 4

 IntelliSense pops up to help

you. Select the correct item

from the list and press the

period, spacebar, semicolon,

Tab key, or Enter key to accept

the text.

 The assignment statement

 messageLabel.Text = "Hello World";

 assigns the literal “Hello World” to the Text property of the control
called messageLabel. Compare your screen to Figure 1.35 .

 A ccept an entry from the IntelliSense
popup list by typing the punctuation
that follows the entry, by pressing
the spacebar, the Tab key, or the
 Enter key. You also can scroll the list
and select with your mouse. ■

 TIP

bra17216_ch01_001-066.indd Page 33 8/12/08 1:23:28 AM user-s208bra17216_ch01_001-066.indd Page 33 8/12/08 1:23:28 AM user-s208 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

34 V I S U A L C# Introduction to Programming and Visual C# 2008

 Code the Click Event Handler for the Exit Button
 STEP 1: Double-click the Exit button to open the editor for the exitButton_

Click event handler.
 STEP 2: Type this comment:

 // Exit the project.

 STEP 3: Press Enter twice and type this C# statement:

 this.Close();

 STEP 4: Make sure your code looks like the code shown in Figure 1.36 .

Editor tab Form Designer tab

Comment statement

Assignment statement

 F i g u r e 1 . 3 5

 Type the comment and

assignment statement for the

displayButton_Click event

handler.

 A llow the Editor and IntelliSense to
help you. If the IntelliSense list does
not pop up, likely you misspelled
the name of the control. ■

 TIP

 STEP 4: Return to the Form Designer (refer to Figure 1.32) by clicking on the
 HelloForm.cs [Design] tab on the Document window (refer to Figure 1.35).

 F i g u r e 1 . 3 6

 Type the code for the exitButton_Click event handler. Notice that an asterisk appears on the tab at the top of the window,

indicating that there are unsaved changes in the file.

Asterisk indicates unsaved changes

bra17216_ch01_001-066.indd Page 34 8/12/08 1:23:33 AM user-s208bra17216_ch01_001-066.indd Page 34 8/12/08 1:23:33 AM user-s208 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 35

 Run the Project

 After you have finished writing the code, you are ready to run the project. Use
one of these three techniques:

 1. Open the Debug menu and choose Start Debugging .
 2. Press the Start Debugging button on the toolbar.
 3. Press F5, the shortcut key for the Start Debugging command.

 Start the Project Running
 STEP 1: Choose one of the three methods previously listed to start your project

running.
 Problems? See “Finding and Fixing Errors” later in this chapter.

You must correct any errors and restart the program.
 If all went well, the form appears and the Visual Studio title bar

now indicates that you are in run time (Figure 1.37).

 I f your form disappears during run
time, click its button on the Windows
task bar. ■

 TIP

 F i g u r e 1 . 3 7

 The form of the running application.

IDE title bar
indicates that the
program is in run time

Running program,
Editor tab is locked

Running program,
Form Designer tab locked

Form for the running application

bra17216_ch01_001-066.indd Page 35 7/21/08 8:01:30 PM user-s172bra17216_ch01_001-066.indd Page 35 7/21/08 8:01:30 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

36 V I S U A L C# Introduction to Programming and Visual C# 2008

 Click the Display Button
 STEP 1: Click the Display button. Your “Hello World” message appears in the

label (Figure 1.38).
 F i g u r e 1 . 3 8

 Click the Display button and

“Hello World” appears in the

label.

 Click the Exit Button
 STEP 1: Click the Exit button. Your project terminates, and you return to design

time.

 Save Your Work

 Of course, you must always save your work often. Except for a very small proj-
ect such as this one, you will usually save your work as you go along. Unless
you (or someone else) have changed the setting in the IDE’s Options dialog box,
your files are automatically saved in a temporary location each time you build
(compile) or execute (run) your project. After you have performed a save to a
different location, files are automatically resaved each time you compile or
run. You also can save the files as you work.

 Save the Files
 STEP 1: Open the Visual Studio File menu and choose Save All . This option

will save the current form, project, and solution files.
 Note : When saving a project, do not attempt to save a modified ver-

sion by giving the project a new name. If you want to move or rename
the project, it must be closed. See Appendix C for help.

 Close the Project
 STEP 1: Open the File menu and choose Close Solution . If you haven’t saved

since your last change, you will be prompted to save.

 Open the Project

 Now is the time to test your save operation by opening the project from disk.
You can choose one of three ways to open a saved project:

 • Select Open Project from the Visual Studio File menu and browse to find
your .sln file, which has a small “9” as part of the file’s icon.

 C lick the Save All toolbar button to
quickly save all of your work. ■

 TIP

bra17216_ch01_001-066.indd Page 36 7/21/08 8:01:30 PM user-s172bra17216_ch01_001-066.indd Page 36 7/21/08 8:01:30 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 37

 • Choose the project from the File / Recent Projects menu item.

 • Choose the project from Recent Projects (if available) on the Start Page
(View / Other Windows / Start Page).

 Open the Project File
 STEP 1: Open your project by choosing one of the previously listed techniques.

Remember that the file to open is the .sln file.
 If you do not see your form on the screen, check the Solution Ex-

plorer window—it should say HelloWorld for the project. Select the
icon for your form: HelloForm.cs. You can double-click the icon or
single-click and click on the View Designer button at the top of the
Solution Explorer (Figure 1.39); your form will appear in the Designer
window. Notice that you also can click on the View Code button to
display your form’s code in the Editor window.

View Code button

View Designer button

Select
the form

 F i g u r e 1 . 3 9

 To display the form layout,

select the form name and click

on the View Designer button,

or double-click on the form

name. Click on the View Code

 button to display the code in

the editor.

 Modify the Project

 Now it’s time to make some changes to the project. We’ll change the size of the
“Hello World” message, display the message in two different languages, and
display the programmer name (that’s you) on the form.

 Change the Size and Alignment of the Message
 STEP 1: Right-click the form to display the context menu. If your controls are

currently locked, select Lock Controls to unlock the controls so that
you can make changes.

 STEP 2: Drop down the Object list at the top of the Properties window and
 select messageLabel, which will make the label appear selected.

 STEP 3: Scroll to the Font property in the Properties window. The Font
property is actually a Font object that has a number of properties.
To see the Font properties, click on the small plus sign on the left
(Figure 1.40); the Font properties will appear showing the current
values (Figure 1.41).

 You can change any of the Font properties in the Properties win-
dow, such as setting the Font’s Size, Bold, or Italic properties. You
also can display the Font dialog box and make changes there.

bra17216_ch01_001-066.indd Page 37 8/12/08 1:23:41 AM user-s208bra17216_ch01_001-066.indd Page 37 8/12/08 1:23:41 AM user-s208 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

38 V I S U A L C# Introduction to Programming and Visual C# 2008

 STEP 4: Click the Properties button for the font (the button with the ellipsis on
top) to display the Font dialog box (Figure 1.42). Select 12 point if it
is available. (If it isn’t available, choose another number larger than
the current setting.) Click OK to close the Font dialog box.

 STEP 5: Select the TextAlign property. The Properties button that appears with
the down-pointing arrow indicates a drop-down list of choices. Drop
down the list (Figure 1.43) and choose the center box; the alignment
property changes to MiddleCenter .

 Add a New Label for Your Name
 STEP 1: Click on the Label tool in the toolbox and create a new label along the

bottom edge of your form (Figure 1.44). (You can resize the form if
necessary.)

 STEP 2: Change the label’s Text property to “by Your Name.” (Use your name
and omit the quotation marks.)

 Note : You do not need to rename this label because it will never be
referred to in the code.

 F i g u r e 1 . 4 0

 Click on the Font’s plus sign to

view the properties of the Font

object.

Click to
expand the
Font list

 F i g u r e 1 . 4 1

 You can change the individual

properties of the Font object.

Settings
box

Font
properties

Properties
button

 W hen you change a property from
its default value, the property name
appears bolded; you can scan down
the property list and easily identify
the properties that are changed from
their default value. ■

 TIP

bra17216_ch01_001-066.indd Page 38 7/21/08 8:01:31 PM user-s172bra17216_ch01_001-066.indd Page 38 7/21/08 8:01:31 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 39

 Y ou can change the Font property
of the form, which sets the default
Font for all objects on the form. ■

 TIP

 F i g u r e 1 . 4 2

 Choose 12 point on the Font
dialog box.

Select 12 point

 F i g u r e 1 . 4 3

 Select the center box for the

TextAlign property.

Properties
button

Select
MiddleCenter
alignment

 F i g u r e 1 . 4 4

 Add a new label for your name

at the bottom of the form.

Enter your name in a label

bra17216_ch01_001-066.indd Page 39 7/21/08 8:01:31 PM user-s172bra17216_ch01_001-066.indd Page 39 7/21/08 8:01:31 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

40 V I S U A L C# Introduction to Programming and Visual C# 2008

 Add a Spanish Button
 STEP 1: Add a new button. Move and resize the buttons as necessary, referring

to Figure 1.45 .
 STEP 2: Change the Name property of the new button to spanishButton.
 STEP 3: Change the Text property of the new button to “Spanish.”

 The Label’s AutoSize Property Earlier you changed the AutoSize property of
messageLabel to False, a step that allows you to set the size of the label your-
self. When AutoSize is set to True (the default), the label resizes automati-
cally to accommodate the Text property, which can be an advantage when the
text or font size may change. However, if you plan to delete the Text property,
as you did for messageLabel, the label resizes to such a tiny size that it is
difficult to see.
 Any time that you want to set the size of a label yourself, change the
 AutoSize property to False. This setting also allows you to create taller labels
that allow a long Text property to wrap to multiple lines. If you set the Text
property to a very long value when AutoSize is set to True, the label will re-
size only to the edge of the form and cut off any excess text, but if AutoSize is
set to False and the label has been resized to a taller height, the long Text
property will wrap.

 Change the Text of the Display Button
 Because we plan to display the message in one of two languages, we’ll change
the text on the Display button to “English” and move the buttons to allow for
another button.

 STEP 1: Select the Display button and change its Text property to “English.”
 STEP 2: Move the English button and the Exit button to the right and leave

room for a Spanish button (Figure 1.45).

 A n easy way to create multiple sim-
ilar controls is to copy an existing
control and paste it on the form. You
can paste multiple times to create
multiple controls. ■

 TIP

 F i g u r e 1 . 4 5

 Move the English and Exit
 buttons and add a Spanish

 button.

bra17216_ch01_001-066.indd Page 40 7/21/08 8:01:31 PM user-s172bra17216_ch01_001-066.indd Page 40 7/21/08 8:01:31 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 41

 Add an Event Handler for the Spanish Button
 STEP 1: Double-click on the Spanish button to open the editor for spanishBut-

ton_Click.
 STEP 2: Add a comment:

 // Display the Hello World message in Spanish.

 STEP 3: Press Enter twice and type the following line of C# code.

 messageLabel.Text = "Hola Mundo";

 STEP 4: Return to design view.

 Lock the Controls
 STEP 1: When you are satisfied with the placement of the controls on the form,

display the context menu and select Lock Controls again.

 Save and Run the Project
 STEP 1: Save your project again. You can use the File / Save All menu command

or the Save All toolbar button.
 STEP 2: Run your project again. Try clicking on the English button and the

 Spanish button.
 Problems? See “Finding and Fixing Errors” later in this chapter.
 STEP 3: Click the Exit button to end program execution.

 Add Comments
 Good documentation guidelines require some more comments in the project.
Always begin each method with comments that tell the purpose of the method.
In addition, each project file needs identifying comments at the top.

 STEP 1: Display the code in the editor and click in front of the first line
(using System;). Make sure that you have an insertion point; if
the entire first line is selected, press the left arrow to set the inser-
tion point.

 STEP 2: Press Enter to create a blank line.
 Warning : If you accidentally deleted the first line, click Undo (or

press Ctrl + Z) and try again.
 STEP 3: Move the insertion point up to the blank line and type the following

comments, one per line (Figure 1.46):

 /*

 * Project: Hello World

 * Programmer: Your Name (Use your own name here.)

 * Date: (Fill in today ’s date.)
 * Description: This project will display a "Hello World"
 * message in two different languages.

 */

 P ress Ctrl + Home to quickly move
the insertion point to the top of the
file. ■

 TIP

bra17216_ch01_001-066.indd Page 41 7/21/08 8:01:31 PM user-s172bra17216_ch01_001-066.indd Page 41 7/21/08 8:01:31 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

42 V I S U A L C# Introduction to Programming and Visual C# 2008

 Finish Up
 STEP 1: Run the project again. Test each language button multiple times; then

click the Exit button.

 Print the Code

 Select the Printing Options
 STEP 1: Make sure that the Editor window is open and showing your form’s

code. The File / Print command is disabled unless the code is displaying
and its window selected.

 STEP 2: Open the File menu and choose Print . Click OK .

 View Event Handlers
 You also can get to the event-handling methods for a control using the Proper-
ties window in design mode. With a button control selected, click on the Events
button (lightning bolt) in the Properties window; all of the events for that con-
trol display (Figure 1.47). If you’ve already written code for the Click event, the
method name appears bold in the Properties window. When you double-click
on the event, the editor takes you to the method in the code window.
 To write an event-handling method for any of the available events of a con-
trol, double-click the event name. You will be transferred to the Code Editor
window with the insertion point inside the template for the new event handler.
You also can click in any event name in the Properties window and then drop
down a list of all previously written methods and select a method to assign as
the event handler.

 F i g u r e 1 . 4 6

 Enter the comments at the top

of the form file.

bra17216_ch01_001-066.indd Page 42 8/12/08 1:23:47 AM user-s208bra17216_ch01_001-066.indd Page 42 8/12/08 1:23:47 AM user-s208 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 43

 F i g u r e 1 . 4 7

 Click on the Events button to

see the available events for a

selected control. Any event

handlers that are already

written appear in bold. Double-

click an event to jump to the

Editor window inside the event

handler for that method, or

drop down the list to select a

method to assign as the

handler for the event.

The Events button

Properties
button

Event
handler for
Click event

Selected
control

Selected
event

 A Sample Printout

 This output is produced when you print the form’s code. An explanation of
some of the features of the code follows the listing.

 C:\Users\. . .\Ch01HelloWorld\HelloForm.cs 1

/*

 * Project: Hello World

 * Programmer: Your Name (Use your own name here.)

 * Date: (Fill in today ’s date.)
 * Description: This project will display a "Hello World"
 * message in two different languages.

 */

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace HelloWorld

{

 public partial class HelloForm : Form

 {

 public HelloForm()

 {

 InitializeComponent();

 }

 private void displayButton_Click(object sender, EventArgs e)

 {

 // Display the Hello World message.

bra17216_ch01_001-066.indd Page 43 7/21/08 8:01:32 PM user-s172bra17216_ch01_001-066.indd Page 43 7/21/08 8:01:32 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

44 V I S U A L C# Introduction to Programming and Visual C# 2008

 messageLabel.Text = "Hello World";
 }

 private void exitButton_Click(object sender, EventArgs e)

 {

 // Exit the project.

 this.Close();

 }

 private void spanishButton_Click(object sender, EventArgs e)

 {

 // Display the Hello World message in Spanish.

 messageLabel.Text = "Hola Mundo";
 }

 }

}

 Automatically Generated Code

 In the preceding code listing, you see many statements that you wrote, plus
some more that appeared “automatically.” Although a programmer could begin
a C# program by using a simple text editor and write all of the necessary state-
ments to make the program run, using the development tools of the Visual
Studio IDE is much quicker and more efficient. The IDE adds a group of state-
ments by default and sets up the files for the project to accommodate the ma-
jority of applications. Later, when your programs include database tables, you
will have to write additional using statements.

 The Using Statements
 The using statements appear at the top of the file after the comments that you
wrote. Using statements provide references to standard groups of classes from
the language library. For example, the statement using System.Windows.
Forms; allows your program to refer to all of the Windows controls that appear
in the toolbox. Without the using statement, each time that you wanted to refer
to a Label control, for example, you would have to specify the complete refer-
ence: System.Windows.Forms.Label.messageLabel . Instead, in the pro-
gram with the using statement, you can just refer to messageLabel .

 The Namespace Statement
 As mentioned earlier, a namespace provides a way to refer to programming
components by location or organization. In the Label example in the preceding
section, “Label” is the class and “System.Windows.Forms” is the namespace,
or library grouping where “Label” is found. You can think of a namespace as
similar to a telephone area code: In any one area code, a single phone number
can appear only once, but that same phone number can appear in any number
of other area codes.
 Using the .NET Framework, every program component is required to
have a namespace. The VS IDE automatically adds a namespace statement
to your program. The default namespace is the name of your solution, but you
can use a different name if you wish. Many companies use the namespace to

bra17216_ch01_001-066.indd Page 44 7/21/08 8:01:32 PM user-s172bra17216_ch01_001-066.indd Page 44 7/21/08 8:01:32 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 45

organize applications such as the company name and functional organization,
 LookSharpFitnessCenter.Payroll , for example.
 In Visual Studio, one solution can contain multiple projects. All of the so-
lutions in this text contain only one project, so you can think of a solution and
a project as being equal.

 The Class Statement
 In object-oriented programming, code is organized into classes. A new class
can be based on (inherit from) another class, which gives the new class all of
the properties and methods of the original class (the base class).
 When you create a new form, you declare a new class (HelloForm in the
earlier example). The new class inherits from the Form base class, which makes
your new form behave like a standard form, with a title bar, maximize and
minimize buttons, and resizable borders, among other behaviors.
 A class may be split into multiple files. VS uses this feature, to place most
of the code automatically generated by the Form Designer in a separate file
that is part of the form’s class.
 The automatically generated statement

 public partial class HelloForm : Form

means that this is a new class called HelloForm that inherits from the Form
class. The new class is a partial class, so another file can exist that also con-
tains statements that are part of the HelloForm class. You will learn more about
classes and files in later chapters.

 Finding and Fixing Errors

 You already may have seen some errors as you entered the first sample project.
Programming errors come in three varieties: syntax errors, run-time errors, and
logic errors.

 Syntax Errors

 When you break C#’s rules for punctuation, format, or spelling, you generate a
 syntax error . Fortunately, the smart editor finds most syntax errors and even
corrects many of them for you. The syntax errors that the editor cannot identify
are found and reported by the compiler as it attempts to convert the code into
intermediate machine language. A compiler-reported syntax error may be
 referred to as a compile error .
 The editor identifies syntax errors as you move off the offending line. A
red squiggly line appears under the part of the line that the editor cannot
interpret. You can view the error message by pausing the mouse pointer over
the error, which pops up a box that describes the error (Figure 1.48). You also
can display an Error List window, which appears at the bottom of the Editor
window and shows all error messages along with the line number of the state-
ment that caused the error. You can display line numbers on the source code
(Figure 1.49) with Tools / Options / Text Editor / C# / General / Display / Line
Numbers .

bra17216_ch01_001-066.indd Page 45 7/21/08 8:01:32 PM user-s172bra17216_ch01_001-066.indd Page 45 7/21/08 8:01:32 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

46 V I S U A L C# Introduction to Programming and Visual C# 2008

 The quickest way to jump to an error line is to point to a message in the
Error List window and double-click. The line in error will display in the Editor
window with the error highlighted (Figure 1.50).
 If a syntax error is found by the compiler, you will see the dialog box shown
in Figure 1.51 . Click No and return to the editor, correct your errors, and run
the program again.

 Run-Time Errors

 If your project halts during execution, it is called a run-time error or an
 exception . C# displays a dialog box and highlights the statement causing
the problem.
 Statements that cannot execute correctly cause run-time errors. The state-
ments are correctly formed C# statements that pass the syntax checking; how-
ever, the statements fail to execute due to some serious issue. You can cause

 F i g u r e 1 . 4 8

 The editor identifies a syntax error with a squiggly red line; you can point to an error to pop up the error message.

 F i g u r e 1 . 4 9

 You can display the Error List window and line numbers in the source code to help locate the error lines.

bra17216_ch01_001-066.indd Page 46 7/21/08 8:01:32 PM user-s172bra17216_ch01_001-066.indd Page 46 7/21/08 8:01:32 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 47

run-time errors by attempting to do impossible arithmetic operations, such as
calculate with nonnumeric data, divide by zero, or find the square root of a
negative number.
 In Chapter 3 you will learn to catch exceptions so that the program does
not come to a halt when an error occurs.

 Logic Errors

 When your program contains logic errors , the program runs but produces
incorrect results. Perhaps the results of a calculation are incorrect or the wrong
text appears or the text is okay but appears in the wrong location.
 Beginning programmers often overlook their logic errors. If the project
runs, it must be right—right? All too often, that statement is not correct. You
may need to use a calculator to check the output. Check all aspects of the proj-
ect output: computations, text, and spacing.

 F i g u r e 1 . 5 0

 Quickly jump to the line in error by double-clicking on the error message in the Error List window.

Double-click anywhere on
this line to jump to the error

 F i g u r e 1 . 5 1

 When the compiler identifies

syntax errors, it cannot

continue. Click No to return to

the editor and correct the error.

bra17216_ch01_001-066.indd Page 47 7/21/08 8:01:32 PM user-s172bra17216_ch01_001-066.indd Page 47 7/21/08 8:01:32 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

48 V I S U A L C# Introduction to Programming and Visual C# 2008

 For example, the Hello World project in this chapter has event-handling
methods for displaying “Hello World” in English and in Spanish. If the con-
tents of the two methods were switched, the program would work, but the re-
sults would be incorrect.
 The following code does not give the proper instructions to display the
message in Spanish:

 private void spanishButton_Click(object sender, EventArgs e)

{

 // Display the Hello World message in Spanish.

 messageLabel.Text = "Hello World ";
}

 Project Debugging

 If you talk to any computer programmer, you will learn that programs don’t
have errors—programs get “bugs” in them. Finding and fixing these bugs is
called debugging .
 For syntax errors and run-time errors, your job is easier. C# displays the
Editor window with the offending line highlighted. However, you must identify
and locate logic errors yourself.
 C# also includes a very popular feature: edit-and-continue. If you are able
to identify the run-time error and fix it, you can continue project execution
from that location by clicking on the Start Debugging button, pressing F5, or
choosing Debug / Continue . You also can correct the error and restart from the
beginning.
 The Visual Studio IDE has some very helpful tools to aid in debugging
your projects. The debugging tools are covered in Chapter 4.

 A Clean Compile
 When you start executing your program, the first step is called compiling ,
which means that the C# statements are converted to Microsoft Intermediate
Language (MSIL). Your goal is to have no errors during the compile process: a
 clean compile . Figure 1.52 shows the Error List window for a clean compile:
0 Errors; 0 Warnings; 0 Messages.

 I f you get the message “There were
build errors. Continue?” always say
 No . If you say Yes , the last cleanly
compiled version runs rather than
the current version. ■

 TIP

 F i g u r e 1 . 5 2

 Zero errors, warnings, and messages mean that you have a clean compile.

 Modifying an Event Handler

 When you double-click a Button control to begin writing an event-handling
method for the Click event, several things happen. As an example, say that you

bra17216_ch01_001-066.indd Page 48 7/21/08 8:01:33 PM user-s172bra17216_ch01_001-066.indd Page 48 7/21/08 8:01:33 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 49

have a button on your form called button1 . If you double-click button1, the
Editor window opens with a template for the new method:

 private void button1_Click(object sender, EventArgs e)
 {

 }

 The insertion point appears between the opening and closing braces, where
you can begin typing your new method. But behind the scenes, VS also adds a
line to the (hidden) FormName .Designer.cs file that assigns this new method to
the Click event of the button.
 As long as you keep the name of the button unchanged and don’t delete the
method, all is well. But if you want to rename the button, or perhaps delete the
method (maybe you accidentally double-clicked a label or the form and have a
method that you really don’t want or need), then you will need to take addi-
tional steps.

 Deleting an Event Handler
 Assume that you have double-clicked the form called Form1 and now have an
extra event handler that you do not want. If you simply delete the event han-
dler, your program generates an error message due to the extra code that ap-
pears in the Form’s designer.cs file. When you double-click on the form, the
extra Form Load event handler looks like this:

 private void Form1_Load(object sender, EventArgs e)
 {

 }

 If you delete these lines of code and try to run the program, you receive an
error message that “‘WindowsApplication1.Form1’ does not contain a defini-
tion for ‘Form1_Load’.” If you double-click on the error message, it takes you
to a line in the Form1.Designer.cs file. You can delete the line of code that it
takes you to, which, in this example, is

 this.Load += new System.EventHandler(this.Form1_Load);

 The preferable way to remove the statement that assigns the event handler is
to use the Properties window in the designer. First, make sure to select the form
or control that has the unwanted event handler assigned; then click on the Events
button in the Properties window (Figure 1.53). You will see the event-handling
method’s name for the name of the event. You can select and delete the name of
the method, which removes the assignment statement from the Designer.cs file,
and you will not generate an error message when you delete the code lines.

 Renaming a Control
 You can receive an error if you rename a control after you write the code for its
event. For this example, assume that you add a button that is originally called
 button1 . You write the code for the button1_Click event handler and then de-
cide to change the button’s name to exitButton. (This scenario occurs quite of-
ten, especially with beginning programmers.)

bra17216_ch01_001-066.indd Page 49 7/21/08 8:01:33 PM user-s172bra17216_ch01_001-066.indd Page 49 7/21/08 8:01:33 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

50 V I S U A L C# Introduction to Programming and Visual C# 2008

 If you simply change the Name property of button1 to exitButton in the
Form Designer, your program will still run without an error message. But you
may be surprised to see that the event handler is still named button1_Click. If
you check the events in the Properties window, you will see why (Figure 1.54):
 Although the control was renamed, the event handler was not. And if you type
a new name into the Properties window (exitButton_Click, for example), a new
(empty) method template will appear in your code. The code that you wrote in
the button1_Click method is still there and the new exitButton_Click method
is empty. One solution is to just cut-and-paste the code from the old method to
the new one. You can safely delete the empty button1_Click method since it no
longer is assigned as the event handler.

 F i g u r e 1 . 5 4

 Even though you rename a

control, the event handler is

not renamed automatically.
Button is
renamed

Event
handler still
has the
old name

Click the
Events button

Delete the
name of the
event handler

Select
the event

 F i g u r e 1 . 5 3

 To remove the form’s event

handler, select the form and

click on the Events button in

the Properties window. Then

delete the entry for the event

handler—Form1_Load in

this example.

 Another way to change the name of an event handler is to use refactoring,
which allows you to make changes to an existing object. After you change the
name of the control using the designer, switch to the Editor window and right-
click on the name of the event-handling method (button1_Click in this exam-
ple). From the context menu, select Refactor / Rename . The Rename dialog box

bra17216_ch01_001-066.indd Page 50 7/21/08 8:01:33 PM user-s172bra17216_ch01_001-066.indd Page 50 7/21/08 8:01:33 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 51

shows the current name of the method (Figure 1.55). Enter the new name,
 making sure to include the “_Click.” When you click OK , you see a Preview
Changes-Rename dialog box with the proposed changes highlighted (Fig-
ure 1.56). Click Apply and all references to the old name are changed to the
new one, which corrects the line in the Designer.cs file that assigns the event
handler.

 F i g u r e 1 . 5 5

 Change the name of the event-handling method using Refactor / Rename , which changes the name of the method and the

assignment of the event handler in the form’s Designer.cs file.

 F i g u r e 1 . 5 6

 The Preview Changes-
Rename dialog box shows the

changes that you are about to

make. Click Apply to complete

the Rename operation.

bra17216_ch01_001-066.indd Page 51 7/21/08 8:01:33 PM user-s172bra17216_ch01_001-066.indd Page 51 7/21/08 8:01:33 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

52 V I S U A L C# Introduction to Programming and Visual C# 2008

 Naming Rules and Conventions for Objects

 Using good consistent names for objects can make a project easier to read and
understand, as well as easier to debug. You must follow the C# rules for naming
objects, methods, and variables. In addition, conscientious programmers also
follow certain naming conventions.
 Most professional programming shops have a set of standards that their
programmers must use. Those standards may differ from the ones you find in
this book, but the most important point is this: Good programmers follow stan-

dards. You should have a set of standards and always follow them.

 The Naming Rules
 When you select a name for an object, C# requires the name to begin with a
letter or an underscore. The name can contain letters, digits, and underscores.
An object name cannot include a space or punctuation mark and cannot be a
reserved word, such as button or Close, but can contain one. For example,
 exitButton and closeButton are legal. C# is case sensitive, so exitbutton, Exit-
Button, and exitButton refer to three different objects.

 The Naming Conventions
 This text follows standard naming conventions, which help make projects more
understandable. When naming controls, use camel casing , which means that
you begin the name with a lowercase character and capitalize each additional
word in the name. Make up a meaningful name and append the full name of the
control’s class. Do not use abbreviations unless it is a commonly used term that
everyone will understand. All names must be meaningful and indicate the pur-
pose of the object.

 Examples
 messageLabel
 exitButton
 discountRateLabel

 Do not keep the default names assigned by C#, such as button1 and
 label3. Also, do not name your objects with numbers. The exception to this
rule is for labels that never change during program execution. These labels
usually hold items such as titles, instructions, and labels for other controls.
Leaving these labels with their default names is perfectly acceptable and is
practiced in this text.
 For forms and other classes, capitalize the first letter of the name and all
other words within the name. You will find this style of capitalization referred
to as pascal casing in the MSDN Help files. Always append the word Form to
the end of a form name.

 Examples
 HelloForm
 MainForm
 AboutForm

 Refer to Table 1.2 for sample object names.

bra17216_ch01_001-066.indd Page 52 7/21/08 8:01:34 PM user-s172bra17216_ch01_001-066.indd Page 52 7/21/08 8:01:34 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 53

Recommended Naming Conventions for C# Objects. T a b l e 1 . 2

 Object Class Example
 Form DataEntryForm

 Button exitButton

 Label totalLabel

 TextBox paymentAmountTextBox

 RadioButton boldRadioButton

 CheckBox printSummaryCheckBox

 PictureBox landscapePictureBox

 ComboBox bookListComboBox

 ListBox ingredientsListBox

 SoundPlayer introPageSoundPlayer

 Visual Studio Help

 Visual Studio has an extensive Help facility, which contains much more infor-
mation than you will ever use. You can look up any C# statement, class, prop-
erty, method, or programming concept. Many coding examples are available,
and you can copy and paste the examples into your own project, modifying
them if you wish.
 The VS Help facility includes all of the Microsoft Developer Network
 library (MSDN), which contains several books, technical articles, and the
 Microsoft Knowledge Base, a database of frequently asked questions and their
answers. MSDN includes reference materials for the VS IDE, the .NET Frame-
work, C#, Visual Basic, and C++. You will want to filter the information to
display only the Visual C# and related information.

 Installing and Running MSDN

 You can run MSDN from a hard drive, or online. Of course, if you plan to
 access MSDN online, you must have a live Internet connection as you work.
 Depending on how you install C#, you are given the option to refer
first to online, first to local, or only to local. You can change this setting
later in the Options dialog box (Figure 1.57). Select Tools / Options and ex-
pand the Environment node and the Help node. Click on Online . You can
choose the options to Try online first, then local ; Try local first, then online ; or
 Try local only, not online . Notice also that you can select sites to include in
Help topics.
 The extensive Help is a two-edged sword: You have available a wealth of
materials, but it may take some time to find the topic you want.

bra17216_ch01_001-066.indd Page 53 7/21/08 8:01:34 PM user-s172bra17216_ch01_001-066.indd Page 53 7/21/08 8:01:34 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

54 V I S U A L C# Introduction to Programming and Visual C# 2008

 F i g u r e 1 . 5 7

 In the Options dialog box, you can specify the preferred source for Help content and choose the Help providers.

 Viewing Help Topics

 The Help system in Visual Studio 2008 allows you to view the Help topics in a
separate window from the VS IDE, so you can have both windows open at the
same time. When you choose How Do I , Search , Contents , Index , or Help Favorites
from the Help menu, a new window opens on top of the IDE window (Figure 1.58).
You can switch from one window to the other, or resize the windows to view both
on the screen if your screen is large enough.
 You can choose to filter the Help topics so that you don’t have to view topics
for all of the languages when you search for a particular topic. In the Index or Con-
tents window, drop down the Filtered by list and choose Visual C# Express Edition
for the Express Edition or Visual C# for the Professional Edition (Figure 1.59).
 In the Search window, you can choose additional filter options, such as the
technology and topic type. Drop down a list and select any desired options
(Figure 1.60).
 In the Help Index window, you see main topics and subtopics (indented
beneath the main topics). All main topics and some subtopics have multiple
entries available. When you choose a topic that has more than one possible
entry, the Index Results pane opens up below the main Document window (refer
to Figure 1.58). Click on the entry for which you are searching and the corre-
sponding page appears in the Document window. For most controls, such as the
Label control that appears in Figure 1.58 , you will find references for mobile
controls, Web controls, and Windows Forms. For now, always choose Windows
Forms. Chapters 1 to 8 deal with Windows Forms exclusively; Web Forms are
introduced in Chapter 9.

bra17216_ch01_001-066.indd Page 54 7/21/08 8:01:35 PM user-s172bra17216_ch01_001-066.indd Page 54 7/21/08 8:01:35 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 55

Drop
down list to
select filter

 F i g u r e 1 . 5 9

 Filter the Help topics so that

only the C# topics appear.

 F i g u r e 1 . 5 8

 The Help window. The Help topic and Search appear in tabbed windows in the main Document window; Index , Contents ,

and Help Favorites appear in tabbed windows docked at the left of the main window.

Tab for Help topics Search tab

Index
tab

Contents
tab

Favorites tab Index results;
select the desired
topic

Main Document window
shows Help topics

bra17216_ch01_001-066.indd Page 55 7/21/08 8:01:35 PM user-s172bra17216_ch01_001-066.indd Page 55 7/21/08 8:01:35 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

56 V I S U A L C# Introduction to Programming and Visual C# 2008

 A good way to start using Help is to view the topics that demonstrate how
to look up topics in Help. On the Help Contents tab, select Help on Help
 (Microsoft Document Explorer Help) . Then choose Microsoft Document Explorer
Overview and What’s New in Document Explorer . Make sure to visit Managing
Help Topics and Windows , which has subtopics describing how to copy topics
and print topics.

 Context-Sensitive Help

 A quick way to view Help on any topic is to use context-sensitive Help . Se-
lect a C# object, such as a form or a control, or place the insertion point in a
word in the editor and press F1. The Help window pops up with the corre-
sponding Help topic displayed, if possible, saving you a search. You can dis-
play context-sensitive Help about the environment by clicking in an area of the
screen and pressing Shift + F1.

 Managing Windows

 At times you may have more windows and tabs open than you want. You can
hide or close any window, or switch to a different window.

 • To close a window that is a part of a tabbed window, click the window’s
 Close button. Only the top window will close.

 • To switch to another window that is part of a tabbed window, click on its tab.

 For additional help with the environment, see Appendix C, “Tips and
Shortcuts for Mastering the Visual Studio Environment.”

 F i g u r e 1 . 6 0

 Drop down the Content Type list to make selections for the Search window.

bra17216_ch01_001-066.indd Page 56 7/21/08 8:01:35 PM user-s172bra17216_ch01_001-066.indd Page 56 7/21/08 8:01:35 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 57

 Your Hands-On Programming Example

 Write a program for the Look Sharp Fitness Center to display the current pro-
motions. Include a label for the current special and buttons for each of the
following departments: Clothing, Equipment and Accessories, Juice Bar, Mem-
bership, and Personal Training.
 The user interface should also have an Exit button and a label with the
programmer’s name. Use appropriate names for all controls. Make sure to
change the Text property of the form.

 Planning the Project
 Sketch a form (Figure 1.61), which your users sign off as meeting their needs.

➤ Feedback 1.1
 Note : Answers for Feedback questions appear in Appendix A.

 1. Display the Help Index, filter by Visual C# (or Visual C# Express Edition),
and type “button control.” In the Index list, notice multiple entries for
button controls. Depending on the edition of C#, you may see entries for
HTML, Web Forms, and Windows Forms. Click on the main topic, Button
control [Windows Forms] : and click on the entry for about Button control .
The topics included for the Professional Edition are more extensive than
those for the Express Edition. In the Express Edition, only one page
matches the selection and it appears in the main Document window. In
the Professional Edition, several topics appear in the Index Results list.
Click on a title in the Index Results to display the corresponding page in
the Document window. Notice that additional links appear in the text in
the Document window. You can click on a link to view another topic.

 2. Display the Editor window of your Hello World project. Click on the
 Close method to place the insertion point. Press the F1 key to view
context-sensitive Help.

 3. Select each of the options from the VS IDE’s Help menu to see how they
respond.

 F i g u r e 1 . 6 1

 A planning sketch of the form for the hands-on programming example.

label2

label1Look Sharp Fitness Center

Programmed by Your Name

promotionsLabel

ClothingclothingButton

Equipment/AccessoriesequipmentButton

Juice BarjuiceBarButton

MembershipmembershipButton

Personal TrainingpersonalTrainingButton

ExitexitButton

bra17216_ch01_001-066.indd Page 57 7/21/08 8:01:35 PM user-s172bra17216_ch01_001-066.indd Page 57 7/21/08 8:01:35 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

58 V I S U A L C# Introduction to Programming and Visual C# 2008

 Note: Although this step may seem unnecessary, having your users sign off
is standard programming practice and documents that your users have been
involved and have approved the design.

 Plan the Objects and Properties
 Plan the property settings for the form and for each control.

 Object Property Setting

 PromotionForm Name PromotionForm
 Text Current Promotions
 StartPosition CenterScreen

 label1 Text Look Sharp Fitness Center Hint: Do not
 change the name
 of this label.

 Font 18 pt.

 label2 Text Programmed by Your Name

 promotionsLabel Name promotionsLabel
 AutoSize True
 Text (blank)
 TextAlign MiddleLeft
 Font 12 pt.

 clothingButton Name clothingButton
 Text Clothing

 equipmentButton Name equipmentButton
 Text Equipment/Accessories

 juiceBarButton Name juiceBarButton
 Text Juice Bar

 membershipButton Name membershipButton
 Text Membership

 personalTrainingButton Name personalTrainingButton
 Text Personal Training

 exitButton Name exitButton
 Text Exit

 Plan the Event Methods You will need event-handling methods for each button.

 Method Actions—Pseudocode

 clothingButton_Click Display “Take an extra 30% off the clearance items.” in the label.

 equipmentButton_Click Display “Yoga mats––25% off.”

 juiceBarButton_Click Display “Try a free serving of our new WheatBerry Shake.”

 membershipButton_Click Display “First month personal training included.”

 personalTrainingButton_Click Display “3 free sessions with membership renewal.”

 exitButton_Click End the project.

bra17216_ch01_001-066.indd Page 58 7/21/08 8:01:36 PM user-s172bra17216_ch01_001-066.indd Page 58 7/21/08 8:01:36 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 59

 Write the Project Follow the sketch in Figure 1.61 to create the form. Figure
1.62 shows the completed form.

 • Set the properties of each object, as you have planned.

 • Working from the pseudocode, write each event-handling method.

 • When you complete the code, thoroughly test the project.

 F i g u r e 1 . 6 2

 The form for the hands-on

programming example.

 The Project Coding Solution

 /*

 * Project: Ch01HandsOn

 * Programmer: Bradley/Millspaugh

 * Date: June 2009

 * Description: This project displays current sales for

 * each department.

 */

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace Ch01HandsOn

{

 public partial class PromotionsForm : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

bra17216_ch01_001-066.indd Page 59 7/21/08 8:01:36 PM user-s172bra17216_ch01_001-066.indd Page 59 7/21/08 8:01:36 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

 private void exitButton_Click(object sender, EventArgs e)

 {

 // End the project.

 this.Close();

 }

 private void clothingButton_Click(object sender, EventArgs e)

 {

 // Display current promotion.

 promotionsLabel.Text = "Take an extra 30% off the clearance items.";
 }

 private void equipmentLabel_Click(object sender, EventArgs e)

 {

 // Display current promotion.

 promotionsLabel.Text = "Yoga mats— —25% off.";
 }

 private void juiceBarButton_Click(object sender, EventArgs e)

 {

 // Display current promotion.

 promotionsLabel.Text = "Try a free serving of our new WheatBerry Shake.";
 }

 private void membershipButton_Click(object sender, EventArgs e)

 {

 // Display current promotion.

 promotionsLabel.Text = "First month personal training included.";
 }

 private void personalTrainingButton_Click(object sender, EventArgs e)

 {

 // Display current promotion.

 promotionsLabel.Text = "3 free sessions with membership renewal.";
 }

 }

}

 S u m m a r y

 1. Visual C# is an object-oriented language primarily used to write applica-
tion programs that run in Windows or on the Internet using a graphical
user interface (GUI).

 2. In the OOP object model, classes are used to create objects that have prop-
erties, methods, and events.

 3. The current release of C# is called Visual C# 2008 and is one part of
 Visual Studio. C# is available individually in an Express Edition or in
 Visual Studio Professional Edition and Team System versions.

60 V I S U A L C# Introduction to Programming and Visual C# 2008

bra17216_ch01_001-066.indd Page 60 7/21/08 8:01:36 PM user-s172bra17216_ch01_001-066.indd Page 60 7/21/08 8:01:36 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 61

 4. The .NET Framework provides an environment for the objects from many
languages to interoperate. Each language compiles to Microsoft Intermedi-
ate Language (MSIL) and runs in the Common Language Runtime (CLR).

 5. To plan a project, first sketch the user interface and then list the objects
and properties needed. Then plan the necessary event-handling methods.

 6. The three steps to creating a C# project are (1) define the user interface,
(2) set the properties, and (3) write the code.

 7. A C# application is called a solution . Each solution may contain multiple
projects, and each project may contain multiple forms and additional files.
The solution file has an extension of .sln, a project file has an extension of
.csproj, and form files and additional C# files have an extension of .cs. In
addition, the Visual Studio environment and the C# compiler both create
several more files.

 8. The Visual Studio integrated development environment (IDE) consists of
several tools, including a form designer, an editor, a compiler, a debugger,
an object browser, and a Help facility.

 9. Visual Studio has three modes: design time, run time, and debug time.
 10. You can customize the Visual Studio IDE and reset all customizations back

to their default state.
 11. You create the user interface for an application by adding controls from the

toolbox to a form. You can move, resize, and delete the controls.
 12. The Name property of a control is used to refer to the control in code. The

Text property holds the words that the user sees on the screen.
 13. C# code is written in methods. Method bodies begin and end with braces { }.
 14. Project comments are used for documentation. Good programming practice

requires comments in every method and at the top of a file.
 15. Most C# statements must be terminated by a semicolon. A statement may

appear on multiple lines; the semicolon determines the end of the state-
ment. Comments and some other statements do not end with semicolons.

 16. Assignment statements assign a value to a property or a variable. Assign-
ment statements work from right to left, assigning the value on the right
side of the equal sign to the property or variable named on the left side of
the equal sign.

 17. The this.Close() method terminates program execution.
 18. Each event to which you want to respond requires an event-handling

method, also called an event handler .
 19. You can print out the C# code for documentation.
 20. Three types of errors can occur in a C# project: syntax errors, which violate

the syntax rules of the C# language; run-time errors, which contain a state-
ment that cannot execute properly; and logic errors, which produce errone-
ous results.

 21. Finding and fixing program errors is called debugging .
 22. You must have a clean compile before you run the program.
 23. Following good naming conventions can help make a project easier to debug.
 24. C# Help has very complete descriptions of all project elements and their

uses. You can use the How Do I , Contents , Index , Search , Help Favorites , or
context-sensitive Help.

bra17216_ch01_001-066.indd Page 61 7/21/08 8:01:36 PM user-s172bra17216_ch01_001-066.indd Page 61 7/21/08 8:01:36 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

62 V I S U A L C# Introduction to Programming and Visual C# 2008

 R e v i e w Q u e s t i o n s

 1. What are objects and properties? How are they related to each other?
 2. What are the three steps for planning and creating C# projects? Describe

what happens in each step.
 3. What is the purpose of these C# file types: .sln, .suo, and .cs?
 4. When is C# in design time? run time? debug time?
 5. What is the purpose of the Name property of a control?
 6. Which property determines what appears on the form for a Label control?
 7. What is the purpose of the Text property of a button? the Text property of a

form?
 8. What does displayButton_Click mean? To what does displayButton refer?

To what does Click refer?
 9. What is a C# event? Give some examples of events.
 10. What property must be set to center text in a label? What should be the

value of the property?
 11. Describe the two types of comments in a C# program and tell where each

is generally used.

 K e y T e r m s
 assignment statement 30
 button 19
 camel casing 52
 class 4
 clean compile 48
 code 6
 comment 30
 context menu 25
 context-sensitive Help 56
 control 3
 debug time 14
 debugging 48
 design time 14
 Document window 12
 event 4
 event handler 29
 event-handling method 29
 exception 46

 Express Edition 5
 form 3
 Form Designer 12
 graphical user interface (GUI) 3
 Help 14
 integrated development

environment (IDE) 8
 label 19
 logic error 47

 method 4
 namespace 23
 object 4
 object-oriented

programming (OOP) 3
 pascal casing 52
 Professional Edition 5
 project file 8
 Properties window 13
 property 4
 pseudocode 6
 resizing handle 20
 run time 14
 run-time error 46
 snap lines 20
 solution 6
 Solution Explorer window 13
 solution file 7
 Standard Edition 5
 syntax error 45
 Team System 5
 Text property 24
 this 32
 toolbar 11
 toolbox 3
 user interface 6
 Visual Studio environment 8

bra17216_ch01_001-066.indd Page 62 7/21/08 8:01:36 PM user-s172bra17216_ch01_001-066.indd Page 62 7/21/08 8:01:36 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 63

 12. What is meant by the term debugging ?
 13. What is a syntax error, when does it occur, and what might cause it?
 14. What is a run-time error, when does it occur, and what might cause it?
 15. What is a logic error, when does it occur, and what might cause it?
 16. Tell the class of control and the likely purpose of each of these object

names:
 addressLabel
 exitButton
 nameTextBox

 17. What does context-sensitive Help mean? How can you use it to see the
Help page for a button?

 P r o g r a m m i n g E x e r c i s e s

 1.1 For your first C# exercise, you must first complete the Hello World proj-
ect. Then add buttons and event-handling methods to display the “Hello
World” message in two more languages. You may substitute any other
languages for those shown. Feel free to modify the user interface to suit
yourself (or your instructor).

 Make sure to use meaningful names for your new buttons, following
the naming conventions in Table 1.2 . Include comments at the top of
 every method and at the top of the file.

 “Hello World” in French: Bonjour tout le monde
 “Hello World” in Italian: Ciao Mondo

 1.2 Create a project that displays the hours for each department on campus.
Include buttons for Student Learning, Financial Aid, Counseling, and the
Bookstore. Each button should display the hours for that department in a
label. The interface should have one label for the hours, one label for the
programmer name, buttons for each department, and an Exit button.

 Make sure to use meaningful names for your new buttons, following
the naming conventions in Table 1.2 . Include comments at the top of
 every method and at the top of the file.

 1.3 Write a project that displays four sayings, such as “The early bird gets
the worm” or “A penny saved is a penny earned.” (You will want to keep
the sayings short, as each must be entered on one line. However, when the
saying displays on your form, you can set the label’s properties to allow
long lines to wrap within the label.)

 Make a button for each saying with a descriptive Text property for
each, as well as a button to exit the project.

 Include a label that holds your name at the bottom of the form. Also,
make sure to change the form’s title bar to something meaningful.

 If your sayings are too long to display on one line, set the label’s Auto-
Size property to False and resize the height of the label to hold multiple
lines. You may change the Font properties of the label to the font and size
of your choice.

 Make sure the buttons are large enough to hold their entire Text
 properties.

bra17216_ch01_001-066.indd Page 63 7/21/08 8:01:36 PM user-s172bra17216_ch01_001-066.indd Page 63 7/21/08 8:01:36 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

64 V I S U A L C# Introduction to Programming and Visual C# 2008

 Follow good naming conventions for object names; include comments
at the top of every method and at the top of the file.

 1.4 Write a project to display company contact information. Include buttons
and labels for the contact person, department, and phone. When the user
clicks on one of the buttons, display the contact information in the cor-
responding label. Include a button to exit.

 Include a label that holds your name at the bottom of the form and
change the title bar of the form to something meaningful.

 You may change the Font properties of the labels to the font and size of
your choice.

 Follow good naming conventions for object names; include comments
at the top of every method and at the top of the file.

 1.5 Create a project to display the daily specials for “your” diner. Make up a
name for your diner and display it in a label at the top of the form. Add a
label to display the appropriate special depending on the button that is
pressed. The buttons should be

 • Soup of the Day

 • Chef’s Special

 • Daily Fish

 Also include an Exit button.

 Sample Data: Dorothy’s Diner is offering Tortilla Soup, a California
Cobb Salad, and Hazelnut-Coated Mahi Mahi.

 Case Studies

 Custom Supplies Mail Order

 If you don’t have the time to look for all those hard-to-
find items, tell us what you’re looking for. We’ll send
you a catalog from the appropriate company or order
for you.
 We can place an order and ship it to you. We also
help with shopping for gifts; your order can be gift
wrapped and sent anywhere you wish.
 The company title will be shortened to CS Mail
Order. Include this name on the title bar of the first
form of each project that you create for this case
study.
 Your first job is to create a project that will dis-
play the name and telephone number for the contact
person for the customer relations, marketing, order
processing, and shipping departments.
 Include a button for each department. When the
user clicks on the button for a department, display the

name and telephone number for the contact person in
two labels. Also include identifying labels with Text
“Department Contact” and “Telephone Number.”
 Be sure to include a button for Exit .
 Include a label at the bottom of the form that holds
your name and give the form a meaningful title bar.

 Test Data

 Department Department Telephone
 Contact Number

 Customer Relations Tricia Mills 500-1111

 Marketing Michelle Rigner 500-2222

 Order Processing Kenna DeVoss 500-3333

 Shipping Eric Andrews 500-4444

bra17216_ch01_001-066.indd Page 64 7/21/08 8:01:37 PM user-s172bra17216_ch01_001-066.indd Page 64 7/21/08 8:01:37 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

C H A P T E R 1 65

 Christopher’s Car Center will meet all of your automo-
bile needs. The center has facilities with everything
for your vehicles including sales and leasing for new
and used cars and RVs, auto service and repair, detail
shop, car wash, and auto parts.
 Your first job is to create a project that will dis-
play current notices.
 Include four buttons labeled “Auto Sales,” “Ser-
vice Center,” “Detail Shop,” and “Employment
 Opportunities.” One label will be used to display
the information when the buttons are clicked. Be sure
to include a button for Exit .
 Include your name in a label at the bottom of the
form.

 Christopher’s Car Center

 Cool Boards

 Test Data

 Button Label Text

 Auto Sales Family wagon, immaculate
condition $12,995

 Service Center Lube, oil, filter $25.99

 Detail Shop Complete detail $79.95 for
most cars

 Employment Opportunities Sales position, contact Mr. Mann

551-2134 x475

 Xtreme Cinema

 This neighborhood store is an independently owned
video rental business. The owners would like to allow
their customers to use the computer to look up the
aisle number for movies by category.
 Create a form with a button for each category.
When the user clicks on a button, display the corre-
sponding aisle number in a label. Include a button to
exit.
 Include a label that holds your name at the bottom
of the form and change the title bar of the form to
Xtreme Cinema.
 You may change the font properties of the labels
to the font and size of your choice. Include additional
categories, if you wish.
 Follow good programming conventions for object
names; include comments at the top of every method
and at the top of the file.

 Test Data

 Button Location

 Comedy Aisle 1

 Drama Aisle 2

 Action Aisle 3

 Sci-Fi Aisle 4

 Horror Aisle 5

 New Releases Back Wall

 This chain of stores features a full line of clothing and
equipment for snowboard and skateboard enthusiasts.
Management wants a computer application to allow
their employees to display the address and hours for
each of their branches.
 Create a form with a button for each store branch.
When the user clicks on a button, display the correct
address and hours.
 Include a label that holds your name at the bottom
of the form and change the title bar of the form to Cool
Boards.

 You may change the font properties of the labels
to the font and size of your choice.
 Follow good programming conventions for object
names; include comments at the top of every method
and at the top of the file.
 Store Branches: The three branches are Down-
town, Mall, and Suburbs. Make up hours and locations
for each.

bra17216_ch01_001-066.indd Page 65 7/21/08 8:01:37 PM user-s172bra17216_ch01_001-066.indd Page 65 7/21/08 8:01:37 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

bra17216_ch01_001-066.indd Page 66 7/21/08 8:01:37 PM user-s172bra17216_ch01_001-066.indd Page 66 7/21/08 8:01:37 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch01/Volumes/201/MHDQ081/mhbra3%0/bra3ch01

