CHAPTER 29
Strength of Materials || oy

UNIT 29-1
Stresses and Strain

Relationship Between Mass and Force

Mass is the quantity of matter in a body. The mass of an object remains constant,
regardless of its location on earth. Mass is measured in ounces, pounds, and tons (U.S.
Customary), or grams, kilograms, and metric tons (metric).

Some examples of the use of these units of measurement are in

e Defining quantities of material, packaged in bulk, such as bags of mortar and tons of
sand

e Defining physical characteristics of material such as 210-1b asphalt shingles and 18-0z,
24-0z, or 32-0z glass

e Defining load capacities for building elements, elevator cranes, hoists, bridges, roads,
supports, and bearing surfaces

e Specifying application of materials such as 20-Ib roofing asphalt per mopping per 100
ft? (U.S. Customary) or 10-kg roofing asphalt per mopping per 100 m? (metric)

e Establishing costs for materials, unit prices, and rates on an ounce, pound, or ton (U.S.
Customary) or gram, kilogram, or metric ton basis (metric)

Force is the external agent that changes or tends to change the condition of rest of a
body. Force is measured in ounce-force, pound-force, ton-force and kip-force (U.S.
Customary) or in newtons (N) for light forces, kilonewtons (kN) for intermediate forces,
and meganewtons (MN) for heavy forces (metric).

Forces related to the design and construction processes are humerous: bearing capacity,
applied weight (mass under the influence of gravity) of live, dead, and mobile loads,
connection load, etc. Force may be concentrated on a tiny spot or applied over an
immense area.

To convert kilograms to a force value, multiply the mass value (in kilograms) by

9.806 65 to obtain the force in newtons.

STRESSES

When a force acts on a piece of material, internal resistance or forces are set up in the
material to resist the external force. The resisting forces are called stresses and are
measured in pounds per square inch or square foot (U.S. Customary) or pascals (metric).
A pascal (Pa) is a pressure or stress produced when a force of one newton (N) is applied
to an area of one square meter (m>).

N
Pa= e
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The pascal is a very small unit of measure. It is used for very low-stress applications. In
most instances the kilopascal (kPa) and megapascal (MPa) are used.

In solving stress problems the following formulas can be used:

force force
stress = or area =
area stress

force = stress x area

There are three kinds of stresses: tension, compression, and shear. Tension, or tensile
stress, is caused by an external force that tends to pull apart or stretch the material. Tie
bars supporting heating units or fans from ceiling members are examples of parts subject
to tensile stress. See Fig. 29-1-1.
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Fig. 29-1-1 Stresses.

Compression, or compressive stress, is caused by external forces that tend to crush or
push the material together. Basement posts and walls are parts subject to compressive
stress.

Shear stress is caused by external forces that tend to cause the particles within the
material to slide past one another. Rivets holding metal plates together are subject to
shear stress.

These stresses often appear in combination. In a simple beam supporting a load, all
three stresses occur. There is a tensile stress along the bottom of the beam, a compressive
stress along the top of the beam, and a shear stress at each side at the abutments.

The ultimate strength of a material is the highest unit of stress that the material can
withstand without breaking.

LOADS
The external forces acting on a body, called loads and measured in pounds, tons, and Kips
(U.S. Customary) or newtons, kilonewtons, and meganewtons (metric), are classified

according to the manner in which they are applied.
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A static load is one that is applied gradually to a part and that remains practically
constant once the maximum load is reached. The weight (mass) of a building acting on its
foundation is an example of a static load. Static loads are also referred to as dead loads.

An impact or shock load is one that is applied suddenly on an object for a short time.
When a nail is struck by a hammer or a train passes over a portion of track, the loads
resulting from these actions are known as impact loads.

Repeated loads are loads that are alternately applied and removed many times. An
example of a part that is subjected to this type of load is a connecting rod in an
automobile engine.

Only static and impact loads will be dealt with in this unit.

TYPES OF STRESS

Since there are three types of stresses, a material will have three different ultimate
strengths. When machine parts are designed, it is not feasible to work precisely to the
ultimate strength of the material since the addition of any shock or unforeseen load would
cause breaking.

Therefore, when parts are designed, another stress known as the safe working stress
(allowable unit stress) is used. This stress is obtained by dividing the ultimate strength of
the material by a number called the factor of safety. Hence

ultimate strength (Su)

Safe working stress (S) =

factor of safety (FS)
Term Symbol Farmula
Force or Load F F=AxS%
Area A = ~§-
Stress s &= i
Ultimate Strength Su S =5 xFS
Factor of Safety Fs Fs = %
Deformation _Dr_ 5
{Unit Strain) Du |Du=""=¢
Deformation Dt Ot =DuxlL
(Total Strain)
Coefficients of M
Linear Expansion
Maodulus of € o2
Elasticity " Du
Length of Part L L w Bt
teing Deformed Du

Fig. 29-1-2 Common terms, symbols, and formulas.

Other common terms and formulas are shown in Fig. 29-1-2. The number used for the
factor of safety varies according to the material, the proposed location of the part, and the
type of force that it must withstand. For example, a wooden part that is subjected to a
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shock force would have a greater factor of safety than a steel part that is subjected to a
dead load. Factors of safety are not used as frequently as they were in the past since many
of today's codes for structures and machines list the allowable unit or working stresses to
be used. However, in certain applications, such as aircraft design, the ultimate strength
and factors of safety are often used. Allowable unit stresses for steel will be covered in
greater detail later in the chapter.

Figure 29-1-3 shows the average values of the ultimate strengths of various materials.

Maodul
Ultimate Strength Allowable Unit Strass m«-ﬂ LI
Com- Com- Elasticity
Materlal Tersion pression  Shear | Temsion pression Shear |Tension
Aluminum 107 ibdin.2 15 12 12 11 000
MPFPa 103 a3 83 7B 500
Brass 107 b2 21 30 36 % 000
Mra 145 207 248 &2 000
Copper 107 Ibfin.2 349 32 36 15 000
MPa 235 220 248 143 00
Cast fran 103 Ibtin.2 21 20 249 15 4 14 Q00
Gray MPa 145 G20 &5 103 28 96 500
Cast Iren 103 ibfin2 2 45 a0 5.2 1.5 6.6 25 000
Malleable hPa 274 317 275 3s 5 45 172 Q00
Cast lron 107 [bfin.2 48 48 40 12 12 10 28 000
Wrought MPa 330 330 275 ZE | 83 69 193 000
Stesl
AST2-50 10% |fin.2 a5 &5 50 E] 30 20 29 0oo
AST2M-380 MFa 450 450 345 210 210 140§ 200 Q00
{See Fig. 29-1-8)

Bold figures denote ULS, Customary system values.

Fig. 29-1-3 Physical properties of common materials.

EXAMPLE 1 A 2-ton weight is suspended from a 1.25 x 2.00-in. steel bar. What is the unit
stress in pounds per square inch (psi)?

Solution The unit stress will be the force divided by the area.

force
area

stress =

22000
 125%2.00
=1600 psi

EXAMPLE 2 What tensile force would cause a ¢$2.00 A572-50 steel rod to fail?

Solution The cross-sectional area of the rod is equal to nR® = 3.1416 x 1.00 x 1.00 =
3.1416 in.2. From the table shown in Fig. 29-1-3, A572-50 steel has an ultimate strength
of 65 000 psi. Therefore, the tensile force that would cause the rod to fail is
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Area x ultimate strength = 3.1416 x 65 000 = 204 204 Ib

EXAMPLE 3 What is the maximum permissible tensile load an A572M-350 structural
steel column, having a cross-sectional area of 300 mm?, can carry if the factor of safety is
given as 5?

Solution From the table shown in Fig. 29-1-3, A572M-350 structural steel has an ultimate
tensile strength of 450 MPa.

ultimate strength

Working stress =

factor of safety
= 4—20 =90 MPa

Therefore, maximum allowable load = S x A = working stress x area = (90 x 10°%) Pa x
(300 x 10°) = 27 kN.

EXAMPLE 4 A 10" x 10" x 8'-0 Western hemlock construction-grade post supports a
weight of 75 000 Ib. Does this meet the minimum requirements as recommended by the
Institute of Timber Construction (ITC)?

Solution From the table shown in Fig. 29-1-4 under the headings Carrying Load
Independently, Compression, and Parallel to Grain, we find the allowable unit stress for
Western hemlock, construction grade, is 1100 psi. Therefore

Maximum allowable load = A x S=10x 10 x 1100 = 110 000 Ib
The load is acceptable.

Next check for buckling, using the formula 1/d < 10, where L = length in inches and d =
least dimension of compression member in inches. 1/d = (8 x 12) + 10 = 9.6. Therefore,
the post carrying this load would meet ITC requirements.

Carrying Load Independently

Working Stress N
Bending Compression i
S5tress Parallel Perpen- Tension
at Longl- o dicular | Parallel
Grade of Extreme tudinal Grain to | to
Group Lumber Fiber Shear | Vg = 10 Grain | Grain
- 1b/fin.2 1500 120 1200 415 1500
Douglas SLeeoii st ] MPa 10 .8 8 2.9 10
il [eTd 2
Fir Standard IB/ir. . 1200 95 1000 290 1200
MFPa a8 o7 I | 27 | 8
" Iosin.= 1500 100 1100 365 | 1500
. Ly 5 |
Western St MPa 10 0.7 g | 2.5 | 10
lirm. 2 1
Hemilock Srandard ISir. 1200 80 | 1000 265 1200
MPa & 0.6 7 25 8
T 2
Structural i IO_SD | 0 | 750 300 1050
Spruce MFPa i | 0.6 | & 2.1 9
A1) Ibdin.< 840 | TO | &500 300 840
c |
Construction MPa & 0.5 | . > 1 &
structural Ibdin. 2 SO0 80 750 260 00
Red Cedar & ' nMPa & 0.6 s | 1.8 8
Pine . ) Ibsin.2 720 65 600 260 720
Construction
- - nMPa 5 0.5 - | 1.8 | 5
MNaote: Values shown are for teaching purposes only: Consult your local building codes for exact values

Bold figures denote LS. Customary system wvalues.

Fig. 29-1-4 Allowable unit stresses for sawn timber members.
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EXAMPLE 5 What force is required to punch a 1.50 in. diameter hole in a no. 12 USS
gage sheet?

Solution The sheared area will be equal to the circumference of the circle multiplied by
the thickness of the sheet. Circumference of a 1.50 in. diameter hole = 4.71 in. Thickness
of a no. 12 USS plate (see Appendix) = .109 in. Sheared area = 4.71 x .109 = .513 in.
Ultimate shear strength of steel (see Fig. 29-1-3) is 50 000 psi. Therefore the force
required to punch the hole = A x S =.513 x 50 000 = 25 650 Ib.

DEFORMATION

When an object is subjected to a load or force, the shape of the material is changed
slightly. This change in length is called strain, or deformation. See Fig. 29-1-5. The
length of an object is shortened by a compressive force or lengthened by a tensile force.
The change in size is called total elongation and is normally measured in inches (U.S.
Customary) or millimeters (metric) while the change in length per inch or millimeter is
called unit elongation and is normally measured in inches per inch (U.S. Customary), or
millimeters per millimeter (metric). Normally the deformation is so small that it cannot
be detected by the naked eye. The deformation or sag that occurs on a beam when a load
is applied is called deflection.
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Fig. 29-1-5 Deformation due to loads.

Stress-Strain Diagram

The relationship between stress and strain for any material is best shown by a diagram;
see Fig. 29-1-6. A piece of carbon steel 1.00 in. x 1.00 in. having an area of 1.00 in.? was
subjected to a tensile load which was increased each time by 5000 Ib, and the results were
recorded. Up to point A on the graph, the elongation of the bar was proportional to the
stress. Point A, which was recorded at 29 000 Ib, was the elastic limit for that steel. After
point A, the elongation increased at a faster rate. At a stress slightly higher than the elastic
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limit, deformation occurred without an increase in stress. This is known as the yield point
of the material. As the tension increased, the bar elongated until point B was reached.
This was the largest load applied, which was recorded at 65 000 Ib. Beyond this point the
bar continued to stretch or elongate with less tension. Point B was the ultimate strength of
the material. The breaking point of the bar was point C, which was recorded at 48 000 Ib.

The strength of any material may be plotted and calculated in a similar manner,
although not all materials act in the same way. An example of this would be a cast-iron
part. Since the ultimate strength and the breaking point would be the same, the part would
break at the maximum load.

//—U LTIMATE STRENGTH
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05 JA0 .5 20 25 30

ELONGATION IN INCHES

Fig. 29-1-6 Stress-Strain diagram for A572-42 carbon steel.

If a force acting on an object is not great, the material will return to its original shape
when the force is removed. This tendency to return to the original shape after being
deformed is called elasticity and varies greatly in different materials. For example, lead is
said to have little or no elasticity, while spring steel has a great amount. If, however, the
material does not return to its original shape after it has been subjected to a force, it is
said to be stressed beyond its elastic limit. Up to this elastic limit the deformation is
proportional to the load; that is, the unit stress is proportional to the unit strain at any
point in a material up to its elastic limit. This is known as Hooke's law. Beyond the
elastic limit, the deformation ceases to be proportional to the load. The elastic limit of a
material is difficult to determine accurately.

The modulus of elasticity of a material is defined as the ratio of unit stress to unit
deformation (the stress in 1 in. divided by the deformation in 1 in.) and is denoted by the
letter E. It may be used for finding the elongation per inch or millimeter caused by any
given load.

In the metric system, the modulus of elasticity is the stress in pascals divided by the
deformation in one millimeter.

EXAMPLE 6 A steel bar 10 ft long elongates .075 in. under a tensile force. Calculate the
unit deformation.
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Solution
Unit elongation (Du)

_ total strain or deformation (Dt)
B length of part (L)

__.075 _ : ;
=Tox12 .00063in. perin.

EXAMPLE 7 Find the unit deformation on a piece of steel produced by a stress of 45
000 psi.

Solution From Fig. 29-1-3 we find the modulus of elasticity for steel is 29 000 000.
Therefore,

_S __ 45000 _ ; ;
Du_E 590 00 000 .001552 in. per in.

EXAMPLE 8 A .25 x 1.00 in. steel bar 15 ft in length supports a tensile load of 5000 Ib.
Find the total deformation.
Solution

P 5000 :
S=A=75 x 1.00_ 20000psi

The modulus of elasticity for steel (see Fig. 29-1-3) = 29 000 000.
Du = S/E =20 000 + 29 000 000 =.000 69 in. per in. Therefore,

Dt =Dux L =.00069 x 15 x 12 =.1242 in.

Temperature Stresses. When the temperature of a piece of metal is changed, the length
of the metal will be either decreased or increased, depending on whether the temperature
of the metal is lowered or raised. If, however, the part is rigidly held and is restrained
from changing its length, stresses known as temperature stresses will result. The main
factors concerning temperature stress are (1) amount of heat involved, (2) material
undergoing temperature change (aluminum, iron, etc.), and (3) length of part. In order to
avoid these stresses, trusses or girders of long spans frequently have one end placed on a
roller or a sliding plate.

The linear change per inch or millimeter of length of a part for a degree of change in
temperature is called the coefficient of linear expansion or contraction. The coefficients
of common materials are shown in Fig. 29-1-7. Thus, the total deformation resulting from
temperature change can be found as follows. Let total strain or deformation be Dt, the
coefficient of linear expansion Ce, temperature change (°F)T, and length of part (in.) L.
Then Dt = Ce x T x L. In the metric system, degrees Celsius (°C) is used.
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e

Coefficient of
Linear Expansion
Inches per Inch
per °F

Material [Millimeters per
millimeter per °C]
Aluminumn Laogize
[0.000 023 0]
Erass L000 010 4
[0.000 018 7]
Bronze - 00001
{0.000 018 2]
Copper L0000 009 3
{0.000 06 7]
fron—=Cast 000 006 2
[o.000 011 2]
ron—\Wrought 000 006 B
[0.000 012 2]
Steel—Hard 000 007 4
[0.000 013 3]
Steel—Med|um 000 006 7
{0.000 012 1]
Steel—Soft 000 006 1
[0.000 G711 0]

Bracketed Figures denote metric values.

Fig. 29-1-7 Coefficients of expansion.

EXAMPLE 9 A medium steel bar 100 in. long is raised from 70 to 170°F. How much

does it expand?

Solution The coefficient of linear expansion for medium steel (see Fig. 29-1-7) is .000

006 7. Therefore

Total deformation (Dt) = Ce x T x L =.000 006 7 x 100 x 100 = .067 in.

EXAMPLE 10 If the steel bar in Example 9 is restrained and is 2 in. square, what
compressive stress is placed on the bar and what load is placed on the restraining

members?
Solution

Total strain = 0.67 in.

Unit strain = E
100

=.00067in.perin.
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Du (unit strain) :é

Where S = stress
E = modulus of elasticity.

See Fig. 29-1-3.
Therefore
S =DuxE
=.000 67 x 29 000 000
=19 430 psi
Therefore
Load = stress x area
=19430x2.00 x 2.00
=777201b
LL5. CUSTOMARY MEERIC
- Allowable tinie Allowakle Unit
= w| Sirety — Kipifite = Sres —MPa
= B 5 &7 § e
LR _T T ¥ £ 25 i[|s|£2|2
Steel EE“E : 12| 5| sten ES|3s| 2§ |2 | E
2 s =0|ag 5
Deseription | Standard BEEC| & | S| & | & smawa SE|2E| &S |8 | &
Al B8 (35|22 |22 |24 | 145 | A35 400 | 250 | 10| 150 | 165 | 100
ALIZ A0 |75 |60 | 36 | 36 |40 | 24 ASTIM  -810 | 520 | 410 | 245 | 245 [ 270 | 165
Gerweral 55 (7O (55 |33 (33 |36 |22 S330 | 420 | 3B0 | 230 | 230 | 250 | 150
Corstriction GO | &% | 50|30 (30|33 (2D -350 | 450 | 350 [ 200 | 2010 | 220 | 140
45 |60 (45 (27 |27 |30 [ 18 30 | 41D | 20| 1BS | 185 | 205 | 125
42 |60 (42 (25|25 |28 | 168 290 (410 (290 | 1?5 175 ) 1RO | 115

Motes 1. hleric designations and values were not avalabie at tme of printing. They ane soft conmefbed.
2. Walues showm ane for sieel hming 2 mapdmum thickness of 50 mm [200 in.).

Fig. 29-1-8 Allowable working stress for steel.

UNIT STRESSES FOR STEEL

The increasing use of high-strength steels no longer permits the continuation of a
standard design specification based on the exclusive use of one grade of steel. These
high-strength steels afford as much as a 50 percent increase in strength as compared to
common structural carbon steel.

To simplify matters, permissible unit stresses for the various grades of steel are given
in terms of a percentage of a specified minimum yield point. These unit stresses are not to
exceed 61 percent of the yield point. For steel having a yield point of 36 kips/in.?, the
permissible unit stress would be 22 kips/in.2, which provides for a factor of safety of
1.64. Figure 29-1-8 lists the various grades of steels and their allowable unit stresses. In
keeping with the inclusion of steels of several strength grades, a number of corresponding
specifications for cast-steel forgings and other materials such as rivets, welding
electrodes, and high-strength bolts have been introduced.
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CHAPTER 29 AR by

Strength of Materials

UNIT 29-2
Bolted and Riveted Joints

It is assumed that the reader has a full understanding of the many advantages of bolted and
riveted construction and possesses a knowledge of this type of working drawing and
terminology.

The factors of safety for fasteners used in tension are preferably based upon ultimate
strength rather than yield point since ultimate strength is of much greater significance for fas-
teners. The permissible working stresses as shown in Fig. 29-2-1 represent working loads
that are approximately one-third to one-half of the value of the ultimate loads observed in
tests.

For greater convenience in the proportioning of the bolted connections, permissible
stresses for bolts are now given in terms applicable to their normal body area, i.e., the area of
the unthreaded shank.

The tensile stress permitted for A307 bolts and threaded parts of A36 steel is equivalent to
22 000 psi (pounds per square inch) or 150 MPa (metric) applied at the root area of the
threads. See Fig. 29-1-8.

Permissible stresses for rivets are given in terms applicable to the nominal cross-sectional
area of the rivet before driving. See Fig. 29-2-1.

TEMSION
24 ktpsiin? 140 MPa
Rivet Sfze in [nches Rlvet 3lze [n MIllfmeters
Rivet Dia. in. (mm)| .50 L2575 B75 1,00 12 16 20 Z2 25
Area ind [mmE) Jd96 0 307 442 LOT JBS | 113 201 314 3\e 4
Load kips [kiM] 393 &14 884 1203 157 I582 2814 43946 532 o874
SHEAR

Check Below to Ensure that the Allcwable Load Is Mot
Governed by Bearlng

1t klpsn2 100 MPa
Rivet Size lir Iirches Rivet lize in Millimeters
River Dla. in. {mm) i) 625 75 875 oo |12 14 20 22 25

single Shear kips (kM) | 294 4460 G563 S0z 11.78 | 1.3 2001 314 3B 49

Double Shear
kips (kM| L.ge 920 1225 1804 23546 | 226 402 &2B Th 982

Fig. 29-2-1 Allowable load in kips per square inch (U.S. Customary) and kilonewtons (metric) for
structural steel. (Continued on the next page.)
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BEARING
Single and Multlple Shear

Check to Ensure that the Allowable Load Is Not Gaverped by Shear

Thickness of 45 kips/In.? 310 MPa

Materlal R vt Sl Iy Inches Rlwet Slze in MIflimeters

In. P .20 A28 .75 .B15 1.00 12 T 20 22 25
.188 5 +.22 527 633 7.38 184 248 3 34.1 388
250 G 562 703 844 984 1025 | 223 29.8 IF2 409 455
AT a 7.03 B79 10585 1231 1406 | 298 39.7 496 546 &2
375 10 10.58 1266 1477 14688 49.4 &2 &8.2 775
500 12 19.69 2250 8.4 93

1.00¢ 25 2250 2813 3375 3938 4500 272 4964 6.2 682 775

For mateniai thickness othar than those shown, the bearing value is the valuoe for |00/, (U5 Custeenary| or 1 mm (matric)
multnlied by the actuail thickness. Use values showr in bottom line.

Fig. 29-2-1 Continued.

The most common methods of bolting or riveting plates together are by lapping or butting
the plates, as shown in Fig. 29-2-2. There are many areas where a failure may occur in this
type of connection (Fig. 29-2-3). In the lap joint the rivet may shear between the two plates.
Since the rivet would shear in only one plate, it is said to be in single shear. The area that
would shear would be the cross-sectional area of the rivet.

Fig. 29-2-2 Plate connections.
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Fig. 29-2-3 Stress areas in lap and butt joints.

There is a possibility that the plate may fail by tearing away at its weakest point, the
section through the rivet or bolt hole. This would be a tension failure. The area that would
fail would be the area of the plate at the center of the hole less the area of the hole.

A third type of failure would be for the rivet or bolt to rip through or crush the plate
directly beneath it. This is called a bearing failure, and the area that would fail in the plate
would be equal to the diameter of the fastener times the plate thickness. If more than one bolt
or rivet were used, the load would be divided equally on the fasteners. Since only two pieces
of metal are joined, they are said to be in single bearing.

In the butt joint shown in Fig. 29-2-3, the rivet would have to be sliced into two sections if
the joint were to fail by shear. The rivet is said to be in double shear, and twice the area of
the rivet is used in the shear calculations.

If the joint fails by tension, that is, pulls or tears away, it will do so at its weakest point —
the section through the hole. Since the two outside plates are pulling in one direction and the
center plate in the other, the smaller of the two areas must be used in calculating the tensile
strength of the joint.

In calculating for bearing failure, a greater allowable working stress is permissible for
rivets and high-strength bolts over ordinary bolts.

Rivet Holes

In calculating the stresses in riveted and bolted joints, a distinction must be made between
structural joints and joints in boilers, pipes, and tanks. In structural work, the steel members
are generally punched and drilled .06 in. (1.5 mm) larger than the rivet in the shop and then
taken to the site for assembly. In calculating the tensile stress in the joint, the size of the hole
is taken as .12 in. (3 mm) greater than the nominal diameter of the rivet. This is to allow for
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any unseen damage that may occur around the hole when it is punched and assembled. Areas
for shear and bearing are based on the nominal rivet diameter.

In the construction of boilers, where leakage may be a problem, it is essential that the rivet
holes line up. These holes are often reamed at assembly. As the finished rivet fills the hole
(which is larger than the rivet) completely, the diameter of the hole is used for computing all
the stresses.

Spacing of Rivets or Bolts
The minimum distance between the centers of fastener holes is 3 times the diameter of the
fastener, but when possible, the distance shall be not less than shown in Fig. 29-2-4.

In Rolled Minlrnudn
Trr Rolled Edge of Spacing
Fastener In Sheared Edyge of Structural of Rivets
Diameter Edge Plate: Shapes or Bofts
Inches mm Inches mm neches mm Inches mm Inches mm
50 12 1.00 25 80 23 75 20 200 50
B25 14 1.10 2B .00 25 30 23 225 Bt
75 20 1.25 32 1.1a 28 1.0 25 250 &5
ars 22 1.50 38 1.25 32 1.1 28 .00 75
1.0 25 1.75 45 1.50 23 1.25 32 350 20
1.125 30 200 50 1.75 45 1.8 38 4.00 100
1.25 32 225 &0 200 o 1.75 45 4.50 115

Fig. 29-2-4 Minimum edge distances and spacings for rivets and bolts.

The maximum pitch of rivets, or bolts, in line with the stress of compression members
composed of plates and shapes does not exceed 16 times the thickness of the thinnest outside
plate or shape or 20 times the thickness of the thinnest enclosed plate or shape, with a
maximum of 12 in. (300 mm). When two or more gage center lines are used with rivets and
bolts staggered, the maximum pitch of rivets or bolts in the line of stress in each gage line
shall not exceed 24 times the thick ness of the thinnest plate or shape, with a maximum of 18
in. (450 mm).

The distance between lines of rivets or bolts measured at right angles to the line of stress
shall not exceed 32 times the thickness of the thinnest plate or shape. The minimum distance
from the center of any punched hole to any edge shall be that given in Fig. 29-2-4.

EXAMPLE 1 Lap joint. Two steel bars, .50 x 2.00 in. are lapped and joined by a .75-in. rivet.
What is the allowable tensile load that could be applied to the joint? The holes for rivets are
to be punched. Plate material is A36 steel.

Solution: There are three areas that must be checked:
1. The bars failing under a tensile load at the holes
2. The rivet shearing
3. The bearing on the bars directly below the rivet

As the holes are punched, the diameter of the hole will be taken as .12 in. larger than the
rivet diameter for calculating tensile loads.
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Area 1 Bars failing under a tensile load.

Area of plate at centerline of hole = .50 x (2.00 - .87) = .565 in.%.
Allowable unit stress = 22 kips/in.2. See Fig. 29-1-8. Therefore:
Allowable load = S x A =22 000 x .565 =12 430 Ib

Area 2 Rivet shearing. See Fig. 29-2- 1.
Single shear for ¢.75 rivet = 6.63 kips or 6 630 Ib

Area 3 Bearing on plate below rivet. A ¢.75 rivet is bearing on .50-in. thick steel.

Allowable load = (33.75 x .50) = 16 875 Ib (see note at bottom of bearing table, Fig. 29-2-1).
The weakest area would be the shear on the rivet. Therefore, allowable tensile load that

joint could support = 6 630 Ib.

1B
Fig. 29-2-5 Single-riveted butt joint on a boiler.

EXAMPLE 2 Single-riveted butt joint (Fig. 29-2-5). A boiler has a single riveted butt joint.
The boiler plate is .44 in., and the two cover plates are .31 in. thick. The rivets are ¢.75 in.
and are spaced 3.00 in. apart. Calculate the main stresses that could safely be applied to this
joint. Plate material is A36 steel.

Solution Since the pitch of the rivets is 3.00 in., it is assumed that the width of the section
taken for calculation purposes is 3.00 in. As in Example 1, there are three areas to be
checked:

1. The section failing under a tensile load
2. The rivet shearing
3. The bearing on the steel plate below the rivet.
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As previously mentioned, for boilerplate construction, the finished rivet is assumed to be the
same size as the drilled hole, namely, .81 in.

Area 1 Plate failing under a tensile load. Since the area of the two outside plates is greater
than the area of the middle plate, the middle plate will fail first. Diameter of rivet hole = .81
in. Area of middle plate = (3.00 - .81) x .44 = .959 in.%. Allowable unit stress = 22 kips. See
Fig. 29-1-8. Therefore

Allowable load =S x A =22 000 x .959 = 21 100 Ib

Area 2 Rivet shear. Since the rivet would have to shear in two places, it is considered to be
in double shear.

7 % 812

Shear area = x2=1.03in.?

Allowable shear stress = 14.5 Kips.
Therefore

Allowable load =S x A =14500x1.03=149351b

Area 3 Bearing on plates. Middle plate (double shear) area = .44 x .31 = .356 in. 2. Outside
plates (single shear) have an area equal to

Area=2x.31x.31=.502in.?

The weaker area would be the middle plate failing under bearing. Allowable unit stress =
45 kips per in.2. Allowable load S x A = 45 000 x .356 = 16 020 Ib.

Therefore, the weakest area of the three areas checked would be the rivet shearing.
Allowable load on joint = 14 935 Ib.

EXAMPLE 3 Roof truss (Fig. 29-2-6). A roof truss has loads of 75 and 64 Kips acting on the
upper and lower chord members. Calculate the number of ¢.75-in. rivets required to safely
carry these loads.

Solution Since the .38 in. gusset is enclosed by two .31-in.-thick angles, the rivets are in
double shear. In calculating the bearing stress, it will be noted that the two outer angles
having a combined thickness of .62 in. (two .31-in.-thick angles) are stronger than the
.38-in.-thick gusset. Since the problem is one of determining the number of rivets required to
carry the load, it can be assumed that the size of the steel is satisfactory for the applied loads.
Refer to Fig. 29-2-1.

1. Number of ¢.75-in. rivets in double shear required for

Upper chord = 75 + 13.25 = 6 rivets
Lower chord = 64 + 13.25 = 5 rivets

2. Number of ¢.75-in. rivets bearing on .38-in. plate required for
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Upper chord = 75 + 12.66 = 6 rivets
Lower chord = 64 + 12.66 = 5 rivets

Therefore, the minimum allowable rivets required for the upper and lower chords are 6 and
5 rivets, respectively.

F 215 4.00X%3.00 % 3
\'\.
38 THICK
/2 L5 3.50 X 250 X 3|
? .
oeoee/ | JHL
£ i

Fig. 29-2-6 Roof truss.

EXAMPLE 4 Double-riveted butt joint (Fig. 29-2-7). A boiler has a double-riveted butt joint.
The boiler plate is .38 in. thick, and the two cover plates are .25 in. The rivets are ¢.75 in. A
section of the riveted joint is shown. Calculate the main stresses in the joint when the boiler
plate is subject to a tensile strength of 6000 psi.

L~ SECTION &
-/ l-"? SECTION I3
= 1 T -
| O |
Ll'l | K | / .00
D | q) I|I |
II I_ G -+-il
L s
i
.3 -
= L o WO - \l""'jl =-F
— 3
Wﬁ/}h T I
A5 RIVETS SE
RECTION €0 SECTION D-[

1] | B}

Fig. 29-2-7 Double-riveted butt joint on a boiler.

Solution The length of the repeated section is 6.00 in. Since both sides of the joint are the
same, only one side of the joint (shown in Fig. 29-2-7B) is used in computing the stresses.
There are two rivets in double shear and one rivet in single shear. The rivets are .75 in. in
diameter and are placed in .81-in. drilled holes. As mentioned earlier in boiler work, finished
rivets are assumed to be the same size as the drilled holes; thus for calculation purposes the
rivets will be .81 in. in diameter. The total force exerted on the repeated section is

F=SxA=6000x6.00x.38=13680Ib

There are two rivets in double shear and one rivet in single shear, comprising shear areas. It
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will be assumed that each shear area will carry one-fifth of the load. Shear force on each rivet
=13 680 + 5= 2736 Ib. Therefore the unit shear stress on rivets is

2736 2736

5=
A |rx.812)+4] 515

= 5313 psi

The upper cover plate transmits two-fifths of the load. Therefore F; = .4 x 13 680 = 5472 Ib.
The lower cover plate transmits three-fifths of the load. Therefore F, = .6 x 13 680 = 8208
Ib. Stress on boiler plate taken at section A

_F 13680 13680

=—= = = 6944 psi
A (6.00-.81)x.38 1.97

Since one-fifth of the total load has been transmitted to the lower cover plate at section A,
the load on the boiler plate at section B is .8 x 13 680 = 10 944 Ib. Stress on .38-in. boiler
plate taken at section B is

_F 10944 10944
A (6.00-1.62)x.38 1.664

= 6577 psi

Since the lower cover plate transmits three-fifths of the total load, the largest stress on the
two cover plates will occur on the lower cover plate at section B. Stress on the bottom cover
plate at section B is

_F 8208 _ 8208 o osi
A (6.00-1.62)x.25 1.095

In calculating the bearing stresses, the bearing area for the rivet in single shear is the rivet
diameter times the thickness of the thinner plate connected (the cover plate). The bearing
area for the rivet in double shear is the rivet diameter times the thickness of the boiler plate.
The rivets in double shear are subjected to twice the bearing load of those in single shear.
Bearing stress at a rivet in single shear (section A) is

g F__ 2736 _ 2136 qc0n
A 81x.25 .20

Bearing stress at a rivet in double shear (section B) is

F, 5472 5472
A .81x.38 .308

=17 766 psi

Stresses in Thin-Wall Cylinders. An important application of riveted and welded joints is in
the construction of boilers and tanks. The pressure of gases or liquids upon the walls of a
tank acts outwardly in all directions and uniformly. Therefore, the cylinder shell on a
thin-wall vessel is designed with the assumption that the stress is uniform throughout the wall
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thickness.

The tensile stress in the ends of the cylinder, caused by the pressure inside, is called
longitudinal stress, or tension. The tensile stress acting in the circumferential direction is
called hoop stress, or tension.

CIRCUMFERENTIAL
JOMNT o,

AIVET FITCH

LOMGITUDIRMAL JOINT

{A) TERMINOQLOGY {B} HALF SECTION

Fig. 29-2-8 Thin-wall cylinder.

EXAMPLE 5 A tank of 48.00-in. diameter is made of .25-in. steel plate. The internal pressure
is 150 psi. Calculate the size of rivets required if the pitch on the longitudinal and
circumferential joints is 3.00 in.
Solution

1. Calculate rivet size for longitudinal seam. Figure 29-2-8 shows a half-section of the
tank. The internal pressure of 150 psi acts on the shell surface at every point. The total force
acting on the half of the tank shown would be equal to the area of the tank taken at its center
times the pressure, or (48.00 x 72.00) in.? x 150 psi = 518 400 Ib. The combined equal
pressures of F; and F; acting on the tank wall are equal in magnitude to P but act in opposite
directions.

Only the pitch distance of 3.00 in. the repeated section, need be used in calculating the size
of the rivet along the joint. Therefore:

F, for repeated section = 48.00>3.00x150 _ 108001b

2

or load acting on each rivet. As previously mentioned, in boiler construction the diameter of
the rivet hole, which is .06 in. larger than the diameter of the rivet, is used in computing all
the stresses. Refer to Fig. 29-2-1. The allowable stress in single shear is 15 kips per in>. The
chart shows values of 9.02 and 11.78 kips for rivet sizes of ¢.875 and ¢1.00 in., respectively.
Since the finished size of the .875-in. diameter rivet will be. 938 in. in diameter, the
allowable load will be computed on the final size. Therefore the allowable load for a .938-in.
diameter rivet will be

Area x stress = ( x .938% = 4) in.? x 15 kips = .69 in.? x 15 000 = 10 365 Ib

Since this is less than the load acting on the rivet, the next size larger rivet must be used, and
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therefore the ¢1.00 in. rivet is required. The allowable load in bearing for a $1.00-in. rivet on
.25-in. steel plate is 11 250 Ib. Therefore the size of rivet required along the longitudinal
seam is ¢1.00 in.

2. Calculate rivet size for circumferential joint. Number of pitches or repeated sections on
circumference equals

7 x diameter 7 x48.00
pitch 3.00

=503

Use 51 rivets.
Pressure exerted on head of tank = pressure x area = 150 psi x (r x 24.00%) in.? = 271 434
Ib. Therefore

271 434

Load per rivet = =53221b

Note: When the pitches on the longitudinal and the circumferential joints are equal, then the
load per pitch on the circumferential joint is one-half of the load per pitch on the longitudinal
joint,

Refer to Fig. 29-2-1. The allowable load in single shear for a ¢.62-in. rivet (use .69 in. for
calculations) is 5609 Ib and the allowable load in bearing for a ¢.62-in. rivet (use .69 in. for
calculations) on .25-in. steel is 7762 Ib. Therefore the size of rivet required along
circumferential joint is ¢.62 in.

BOLTS, SCREWS, AND STUDS
As mentioned at the beginning of this unit, the tensile stress permitted for A307 bolts and
threaded parts of A36 steel is equivalent to 22 000 psi applied at the root area of the threads.

EXAMPLE 6 What force is required to strip the threads on a 1.000-8 UNC regular hex nut and
bolt?

Solution The sheared area will be equal to the circumference of the root circle multiplied by
the height of the nut. Root diameter of 1.000-8 UNC thread = .847 in., circumference = 2.66
in. Height of 1.000 in. regular hex nut (see Appendix) = .875 in. Shear area = 2.66 x .875 =
2.33in.2. Ultimate tensile strength of A36 steel = 58 kips (see Fig. 29-1-8).

Therefore

Force required to strip threads =S x A =58 000 x 2.33=1351401b

EXAMPLE 7 A platform is supported by four A36 steel rods that are suspended from the
ceiling. The ends of the rods are threaded, and plate washers and nuts are attached. The
platform is to support a load of 16 000 Ib and any two of the four rods must be capable of
supporting the entire load.

Solution The design load for each rod is 16 000 + 2 = 8000 Ib. Allowable unit stress (see Fig.
29-1-8) = 22 000 Ib per in.2.
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A= 890 _ 364in:
S 22000

Note that in example 6 the shear area for a 1.000 in. threaded nut is 2.33 in.%. Therefore, a
smaller threaded nut is required. Try a .375 UNC style 1 hex nut.

Area = circumference of root diameter x height of nut = (m x .312) x .328 = .321 in.2. A
greater root area is required. A style 2 hex nut that is thicker or a .438 in. nut will be needed.
Area of a .375 UNC style 2 hex nut = (n x .312) x.406 = .398 in. 2. Therefore, ¢.375 rods
with UNC threads and style 2 hex nuts meet the design requirements.

As explained in Chap. 8, property class numbers that designate their strength defines
metric threaded fasteners. The first number of a two-digit symbol or the first two numbers of
a three-digit symbol approximates 1 percent of the minimum tensile stress in megapascals.

The last numeral approximates one-tenth of the ratio expressed as a percentage between
minimum yield stress and minimum tensile stress.

EXAMPLE 8

What mass can be supported by an M24 x 3 stud, property class 8.8, if a factor of safety of 4
is added to the requirements?

Solution Refer to Fig. 29-2-9. Under the 8.8 column, an M24 x 3 thread has a tensile strength
(the maximum force permitted) of 293 kN. Adding a factor of safety to this value we find the
permissible force is 293 + 4 = 73.25 kN. 1N = 0.102 kg

EE:::::ISE -gt}r:;: Tensile Strength [kM] For Property Class
Area Area
Thread mm2 mm2 46 48 58 8.8 98 10.9 12.9

MIO ®x 15 8 15.4 23.2 2.4 0.2 L22 &80.3 708
Mi2 = L.75 84 19 337 35.4 43.8 759 a7.7 103
M x 2 115 224 45 483 59.8 04 120 140
MT1& x 2 157 26.1 528 55.9 Bls 130 | 141 163 192
MIO = 25 245 333 98 127 203 255 299
Mid x 3 353 2.5 P47 154 293 367 431
M0 = 3.5 5al 518 224 464 583 [0
M35 = & B8I7 &3.1 327 &78 BS0 o7

Fig. 29-2-9 Load capacities of threaded fasteners.
Therefore, mass that can be supported = 73 250 x 0.102 = 7472 kg

References and Source Material
1. American Institute of Steel Construction
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ENGINEERING
CHAPTER 29 .D.*EE;_DE:ICN

Strength of Materials

UNIT 29-3
Welded Joints

In addition to riveting, welding is also employed in the joining of structural steel.
Fabricated steel construction has also replaced many parts formerly made by casting
because of the lower cost and the greater strength at a considerable reduction in size and
weight, or mass.

The two types of welds most frequently used are fillet and butt welds. Thus only these
types will be covered in this unit.

FILLET WELDS

The fillet weld is used to join two parts that either overlap or join at an angle, normally
perpendicular, to each other. In the calculations of strength of fillet welds, the effective
area is considered as the effective length of weld times the effective throat thickness, as
illustrated in Fig. 29-3-1.

EFFECTIVE THROAT
THICKMESS = 0.707 X LEG SIZE

EFFECTIVE
WELD LEMGTH

||
-—| |-——LEE SIZE= SIZE OF WELD

Fig. 29-3-1 Fillet weld nomenclature.

For example, a .38 in. fillet weld 6.00 in. long (effective length) has an effective area of
.38 .7 x 6.00, or 1.596 in.%,

For purposes of calculating the strength of welds in this unit, the shear stresses shown in
Fig. 29-3-2 will be used. The strength of the previous weld would be stress times
effective area.

Electrodes
LS. Customary Metric
Bl ET0M E4 10X | E4H0XK
I3 500 ks | 15 FOO Iefing | 185 MP | 216 MP3

Fig. 29-3-2 Shear stress for electrodes.
With E60xx electrodes the weld strength is

13500 x 1.596 = 21 546 Ib
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Using E70xx electrodes, the weld strength is
15700 x 1.596 = 25 057 Ib

Another method of calculating the strength of welds is to multiply the leg size of the
weld by effective length. The shear resistance factors (SRF) shown in Fig. 29-3-3 are
based on the shear stresses shown in Fig. 29-3-2.

The strength of the previous weld using E70xx electrodes would be 4.2 x 6 = 25.2 kips
or 25 200 Ib.

The strength value for specified weld sizes is the more convenient method to use.

The following recommendations should be adhered to when welded joints are
designed.

e Even-number-mm-size welds, such as shown in Fig. 29-3-3, should be used
whenever possible.

e For metric length of welds use lengths evenly divisible by 5, such as 40, 50, 60,
etc.

e Fillet welds should be at least .06 in. (2 mm) less than the thickness of the part
being welded.

e Welds should be located on both sides of T joints evenly spaced around the line
of action of the applied load.

Allowable Load Per Inch Allowable Load Per mm
Length in Kips Length in kM
- B -
E}"ﬁ; Metal Elettiodes Fillet Base, Eletal s
S-E A3e! ABT2 weld A267 aAs7zM4
: IZ::: EGOXX E7OxK2 Size E410X% E480%%
LTS Electrode Electrode mim Electrode Electrode
. ég ;-f iE'I 4 05 0&
31 ET: s & . 09
38 EYs 42 8 ; L
s 4.2 4.9 10 1.3 1.5
50 &8 546 12 1.6 1.3
&2 6.0 7o 16 2.1 Z4
75 T2 &4 20 X} 3

1. Based on shear resistance factor of 0131 ki permem of 3. Based on 600 b per 062 in. of weld thickness {13 500
weld for 1 mm of weld length [185 MPa ghear stress|. i/ shear stress).

2. Based o shear resistance factar of 0,153 kM permmof 4, Based an 700 i per 062 inof weld thickness 15 800
weld for 1 mm of weid length (215 MPa shear stress). ffin,2 shear stressl.

Fig. 29-3-3 Strength of fillet welds.

Aﬂ KIS M”f"
t -

§ .30

9

Fig. 29-3-4 Lap joint.
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EXAMPLE 1 Two .38 x 6.00 in. steel bars are welded with F70 electrodes as shown in Fig.
29-3-4. What size weld is required if a tensile load of 30 kips is applied?

Solution
Weld size = &
length x SRF
SRF = 3 =25
2x6.00

Refer to Fig. 29-3-3. A .25 in. fillet weld is required.

EXAMPLE 2 A .75 x 4.00 in. A572-50 bar is welded to a column. What are the size and
length of the fillet welds required if a tensile load of 40 Kips is applied?

Solution Since two fillet welds will be used, one on each side of the bar, each fillet weld
will be designed to resist a force of 40 kips + 2 = 20 kips.

With a weld running the entire length of 4.00 in., a weld having the strength of 20+4 or
5 kips per inch of length is required.

Refer to Fig. 29-3-3: a .50 in. fillet weld is selected. With a .62 in. weld, a weld length
of 20 + 7.0 = 2.85 in. (use 3.00 in.) would be required.

EXAMPLE 3 A 250 x 10 mm. A572M-380 steel plate is connected by a pair of fillet welds
to the bottom flange of a beam, as shown in Fig. 29-3-5. The plate is subjected to a
tensile load of 450 kN. What are the minimum size and length of weld recommended for
this connection, if the maximum stress on the plate is 220 MPa?

L ju
‘;‘;
/a—zﬁnam
hy A -
YYY Y v

Fig. 29-3-5 Bar fillet welded both sides.
Solution Before the weld size is chosen, the minimum plate area at the weld should be

established. The minimum plate area, for calculating purposes, at the welded area (see
Fig. 29-3-6) is width times plate thickness.
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A-AREA DF
1 STRESS
| CONCENTRATION

i
&
450 kN

Fig. 29-3-6 Plate area at weld.

Load = stress x area.

Therefore
Minimum width of plate = Ic.)ad .
stress x plate thickness in meters
B 450000
~ (220x10°)Pax0.01m
=0.2045 m or 204.5 mm

Thus, the plate width of 250 mm is acceptable. If the minimum weld length is 210 mm
per side (min. plate width), the load per min of weld is 450 + (2 x 210) = 1.07 kN.

Refer to Fig. 29-3-3. An 8-mm fillet weld is required. If the fillet weld were to run
the entire length of the plate, then the load per mm of weld = 450 + (2 x 250) = 0.9 kN.
This would permit a 6-mm weld to be used, which is more economical.

|D|:|u—- —-—I ]—-—-—'znu

s—a

i.———lUﬁ' 00 —————-[
£ E 2001000

L

Fig. 29-3-7 Intermittent weld.
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Intermittent Fillet Welds

Intermittent fillet welds may be used to transfer calculated stress across a joint when the
strength required is less than that developed by a continuous fillet weld of the smallest
permitted size, and to join components of built-up members. The effective length of any
segment of intermittent fillet welding should be not less than 4 times the weld size, with a
minimum of 1.50 in. (40 mm).

EXAMPLE 4 Calculate the size of the intermittent weld shown in Fig. 29-3-7 to safely

carry a tensile load of 180 kips. Use F70xx electrodes.
Solution
Total length of welds = 11 x 2.00 x 2 = 44.00 in.

Load per inch length of weld = % = 4.09 kips.
Refer to Fig. 29-3-3. Size of fillet weld required is .38 in.

Fillet Welds for Angle Iron

When tension or compression members are connected by two side fillet welds as shown
in the previous examples, the weld should be placed in the same line of action as the
force being transmitted by the weld. For members having symmetrical cross sections, the
length of weld on each side of the member should be equal. For members having
unsymmetrical cross sections, as shown in Fig. 29-3-8 where an angle iron is welded to a
steel plate, the lengths of welds are so proportioned that the line of action of the force
transmitted by the weld will be along the axes of the two members. This is accomplished
by assuming that the line of action on the angle member is on the centroidal axis (center
of gravity) and by making the lengths of welds such that Ly x A = L, x B.

1 J
" UPI P2
S

B AR

N Lz T—s.nu
i 1 —--Il.?-:J=

— 1.4 ¢

A
CENTROIDAL sa s
MOMEMTS ABOLT A
fm—s5.00—=] #0INT ON WELD
LENGTH Lz

G KIPS
Fig. 29-3-8 Fillet weld on both sides of angle iron.

EXAMPLE 5 A 5.00 x 3.00 x .38 in. A572-45 angle welded to a steel plate transmits a load
of 54 kips. Calculate the length of welds on each side of the angle so that the load acts
along the centroidal axis of the angle. See Fig. 29-3-8.
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Solution The maximum fillet weld for .38-in.-thick material is .31 in. The allowable load
per inch length of a .31-in. weld is 3.5 kips. See Fig. 29-3-3. Therefore:

Minimum permissible length of weld = % =15.43 in.(use 15.50 in.)

Consider the 54 kip load being transferred to the plate by loads P; and P, where P; =
3.5 x L;; P, =3.5 x L, and Py and P, both equal 54 kips. Taking moments about a point
on length L, (refer to Fig. 29-4-3 for calculation of moments), we have

P, x5.00=54 x170
P, =54x170+500
=183=35x L
L, =5.23in.(use 5.25in.)

Therefore

L, =5.23in.(use 5.25in.)
L +L,=1550in.
L, =15.50-5.25=10.25in.

Therefore weld lengths of 5.25 (L;) and 10.25 in. (L) are selected.

EXAMPLE 6 Use the same members and load as in the previous example except that the
fillet weld is welded on three sides, as shown in Fig. 29-3-9.

..II.
Fy F3 2
A A A
| 250 -
i 1 i-- 50—
2 | &
= F L[] e
v . ._i
CEMTROIDAL | ——" = 1. T
ARIS —
170 T
54 KPS
i i MOMENTS ABOUT A
= 50— POINT O WELD
¥ ! LENGTH L3

Fig. 29-3-9 Fillet weld on sides and end of angle iron.
Solution The design calls for 15.50 in. of weld to be used; 5.00 in. of the weld lies along

the back of the angle so that the remaining 10.25 in. of weld is equal to the combined
length of welds L; and L..
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The 15.50-in. of weld should be located so that the line of action of the force transmitted
by the weld is along the centroidal axis of the angle.

For calculation purposes, assume there are three welds, P4, P,, and P; whose combined
loads equal 54 kips, and the allowable load per inch length of a .06 in. weld is 3.5 kips. P,
lies along distance L; and is equal to 3.5L, Kips. P, lies along distance L, and is equal to
3.5L; kips. P3 lies midway along the 5.00-in. width, or 2.50 in. from Py, and is equal to
5.00 x 3.5 =17.5 kips. At a point on line L,

Clockwise moments
= (Pl X 500) + (P3 X 250)
= (L1 x3.5x5.00) + (17.5 x 2.50)
=17.5L; + 43.75 in. Kips

Counterclockwise moments
=1.70 x 54 = 91.8 in. kips

Clockwise moments = counterclockwise moments
17.5L; +43.75in. kips = 91.8 in. Kips
17.5L; =48.05in. kips

Ly =275in.

L, +L, =10.50in.
L, =1050-2.75
L, = 7.75in.

Therefore weld lengths of 2.75-in. (L;) and 7.75 in. (L) are used on the sides of the
angle.

BUTT WELDS

The butt weld is used to join two pieces of metal that lie on the same plane. In the
calculations of strength of butt joints, the effective area of butt welds shall be considered
as the effective length of weld times the effective throat thickness. The effective throat
thickness depends on the metal thickness, the gap between the adjoining parts, the type of
butt weld, and whether the weld is on one or both sides. See Fig. 29-3-10.
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Fig. 29-3-10 Strength of butt welds.

EXAMPLE 7 An open-square butt weld, welded one side, is used to join two A36 steel
plates .25 x 10.00 in. Compute the safe tensile load that can be applied to the joint.
Solution Refer to Fig. 29-3-10. The effective throat thickness for an open-square butt
weld = 0.75T = 0.75 x .25 = .188 in. Next (refer to Fig. 29-1-8), the allowable unit tensile
stress for A36 steel is 22 kips. Therefore:

Safe load = area x unit stress
=(.188 x 10.00) x 22 000
= 141.36 Kips

Foa—
Fig. 29-3-11 Welded boiler section.

EXAMPLE 8 A ¢36 in. boiler, made of A36 steel, has to withstand a steam pressure of 350
psi. A single-V butt joint, welded one side, is to be used. What is the thickness of boiler

plate required?
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Solution Figure 29-3-11 shows a half section of the boiler. The total force P acting on the
cylinder is the resultant pressure of the internal pressure of 350 psi acting in all directions
on the cylinder wall. It will be assumed that for thin-walled cylinders the resultant force P
will equal the diameter of the cylinder in inches, times the length of the cylinder in
inches, times the pressure acting within the cylinder.

The total force P is resisted by two equal forces F; and F,. Taking a section of the tank
1in. in length and calculating the forces P, F;, and F,, we have

P =SxA
=350 x 1.00 x 36.00
=12 600 Ib
F1=12600 +2 =6300 Ib

The single-V butt weld will have to withstand a force of 6300 Ib for every inch of weld.
Allowable unit stress for A36 steel is 22 000 psi. Weld stress equals plate stress.
Therefore

Effective throat thickness of weld
=F; + (S x length of section)
= 6300 + (22 000 x 1.00)
=.28in.

Refer to Fig. 29-3-10; note that the effective throat thickness of a single-V butt weld,
welded one side, under tension is equal to T - .25 in., where T is equal to the thickness of
plate. Therefore, minimum plate thickness must be .25 + .28 = .53 in. to safely carry the
load. With a welded-both-sides joint, the plate thickness could be reduced to .28 in.,
which would be a considerable saving.

Reference and Source Material
1. American Institute of Steel Construction.
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CHAPTER 29

Strength of Materials
UNIT 29-4
Beams

DRAWING & DESIGN

A beam is a structural member or machine part which supports transverse (i.e.,
perpendicular) loads and reactions. Most beams are placed in a horizontal position with
vertical forces acting on them. Examples are floor and ceiling joists, lintels, and floor
beams. This unit covers the design of simple beams only where buckling and twisting are
not factors and where the beams are of uniform size and shape for the entire length.
Forces acting on the beams are assumed to be in the same plane.

2 P
¥ N S ¥ z
I -3:'\,\. - Fa

b 7 %

(D) SEAM WITH FIXED ENDS
[A) CANTILEVER BEAM

v ¥ NN
A SN

A

1 R2

(B SIMPLE BEAMNM—
SUPPORTED AT BOTH ENDS

Pj F‘z

¥
A

L

[E) BEAM FIXED AT ONE END,
SUPPORTED AT OTHER EMD

F| Pz

¥ ¥

y Ao = |
X 0y R,

(C) CVERHANGING BEAM
(F) CONTINUOLS BEAM

Fig. 29-4-1 Common types of beams.

Types of Beams

Beams are classified according to the manner in which they are supported. Some of the
more common types of beams are shown in Fig. 29-4-1. They are

1. Cantilever beam: a beam that has one fixed end

2. Simple beam: a beam that is supported at each end

3. Overhanging beam: a beam that has one or both ends projecting beyond its supports

4. Beams with both ends fixed

5. Beams fixed at one end and supported at the other end

6. Continuous beam: a beam supported at more than two points

KINDS OF LOADS
Two types of loads commonly occur on beams: concentrated and uniformly distributed
loads. A concentrated load extends over a short length of the beam and for calculation
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purposes is considered as acting at one point. It is usually represented by a line with an
arrow indicating its direction of force and the letter P as shown in Fig. 29-4-2A.
Concentrated loads are generally expressed in pounds or kips (U.S. Customary), or
kilonewtons or meganewtons (metric). One Kkip equals 1000 pounds. A uniformly
distributed load is one in which the load is distributed uniformly over a given length or
over the entire length of the beam. The weight or mass of the beam is an example of a
uniformly distributed load. This type of load is generally expressed in pounds or kips per
foot (U.S. Customary), or newtons per meter or kilonewtons per meter (metric). The load
is represented in the figure by a rectangular block resting on the beam, as shown in Fig.
29-4-2B.

P ESniEs 20 KIPS

¥ .
' Y

{A) THREE METHODS OF INDICATING
COMCEMNTRATED LOADS

(TOTAL LOAD)

B LBIFT, 500 LE

4 2

Ri Rz
(Bl UMIFQRMLY DISTRIBUTED LOADS

[T e T
+|=s| Rz

{C) COMBINATION OF CONCENTRATED
AND UNIFORMLY DISTRIBUTED LOADS

Fig. 29-4-2 Representation on beam drawings of loads.

The upward forces, or supports, that hold the beam in a state of equilibrium are called the
reactions and are designated by the letters Ry (left side) and R; (right side). The sum of
the reactions R; + Ry, known as the forces acting upward, are equal and opposite to the
downward forces or loads.

MOMENTS

When a force acts upon an object at a distance from the object, as through a beam, the
force is called a moment. See Fig. 29-4-3. A moment is the tendency of a force to cause
rotation about a given point or axis. The magnitude of a moment is equal to the magni-
tude of the force times the perpendicular distance to the point. Since the force is
measured in pounds and the distance in feet or inches, moments are measured in
foot-pounds (ft-lb) or inch-pounds (in.-Ib). In the metric system the moments are
measured in newton-meters (N-m).
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Fig. 29-4-3 Application of moments.

If a number of forces acting on a point are in equilibrium, the sum of the moments of all
the forces about that point is zero. Therefore, the sum of the moments of all forces that
tend to produce clockwise moments about a given point is equal and opposite to the sum
of all the forces that tend to produce counterclockwise moments at that given point. This
law of equilibrium is very helpful in solving beam reaction.

EXAMPLE 1 A force of 20 Ib is applied at the end of a wrench 12 in. from the center of
the bolt that is being held by the wrench. Calculate the moment.

Solution The moment may be found by multiplying the force times the distance: 20 x 12
=240 in-1b.

EXAMPLE 2 A cantilever beam supports a concentrated load of 500 Ib located 12 ft from
the support. Neglecting the mass of the beam, calculate the moment at the wall.

Solution The moment taken at the wall or support may be found by multiplying the force
times the distance: 500 x 12 = 600 ft-Ib.

1200 LE
s ¥
L |
A 5 A
Ay Az
1200 LB
5
.
Ay IS A

Ra
MOMENT DIAGRAM ABOUT Ry

Fig. 29-4-4 Simple beam with concentrated load.
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EXAMPLE 3 A beam 15 ft long has a concentrated load of 1200 Ib acting 5 ft away from
the left reaction. Neglecting the mass of the beam, calculate the reaction forces. See Fig.
29-4-4.

Solution Taking moments about reactions R; and R, we have

Clockwise moments using pounds and feet = 5 x 1200 = 6000 ft-Ib.

Counterclockwise moments = 15 x R,

Clockwise moments = Counterclockwise moments

6000 ft-Ib = 15 x R

Therefore

R, = 9990 _ 400 1
15

R + R, =1200 Ib
Thus

R1 =1200 - 400 = 800 Ib

EXAMPLE 4
Use the same data given in Example 3, but include the force of gravity acting on the
beam, which is 40 Ib/ft. See Fig. 29-4-5.
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IE’ * * TG i
& 15 rF 3

R 18 Rz

78

_._5fa_|

200 LE ¥ W oo e

Ry ‘.

R
15 |7

{C) MOMENT DIAGRAM ABCOUT R

Fig. 29-4-5 Simple beam with uniformly distributed and concentrated loads.
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Solution Since the force of gravity acting on the beam is uniformly distributed, a
concentrated load of 600 Ib located midway on the beam, as shown in Fig. 29-4-5B,
would have the same effect on the reactions R; and Ry.
Therefore by substituting the 600-lb concentrated load 7'-6 from the reactions for the
uniformly distributed load, the reaction forces can now be found.
Taking moments about reaction Ry,

(Fig. 29-4-5C), we have
Clockwise moments using pounds and feet

= (1200 x 5) + (600 x 7.5)

= 6000 + 4500

=10 500 ft-1b

Clockwise moments = Counterclockwise moments

10500 ft-lb = 15 x R,
Therefore:

R, =10500 +15=700 Ib
R;+ R, =1800 1b
Thus

R1=1800 - 700 = 1100 Ib
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CHAPTER 29
Strength of Materials

DRAWING & DESIGN

UNIT 29-5
Shear Diagrams

When a beam supports a load, there is a tendency for the beam to fail by shear. In design
work, it is essential to know what shear force a beam must resist at any section. The
vertical shear force at a section of a beam is the algebraic sum of all the external forces
acting on either side of the section. This can be further simplified by stating that the
vertical shear at any section is equal to the product of the reaction minus the loads. The
section is the name given to the cross section of the beam where the calculations are
made. For simplification, only the forces acting to the left of the section will be
calculated in this unit.

Shear is designated as either positive shear or negative shear. When the sum of the
vertical forces to the left of the section is upward, the shear is positive. When the sum of
the vertical forces to the left of the section is downward, the shear is negative. See Fig.
29-5-1.

-~ SHEAR SECTION

EERERE
/FC'HCE TOTHE LEFT F

SECTION ACTING UPWARDS

FORCE TO THE LEFT QIF
SECTION ACTING DOWMNWARDS

~3HEAR SECTIOMN

(8) POSITIVE SHEAR [Bl NEGATIVE SHEAR

Fig. 29-5-1 Designation of positive and negative shear.

This information is represented in a shear force diagram that is normally drawn below
the loading diagram of the beam. A horizontal zero base line is drawn to the same
horizontal scale as the loading diagram, and the positive shear is shown above this line
while the negative shear is drawn below it. The magnitude of the shear at each section is
shown by vertical lines drawn to a convenient scale.

In order to identify the section at which the shear is taken, a symbol (the letter V
followed by a number) is used. The letter V refers to the magnitude of the vertical shear,
and the number refers to the horizontal distance from the left end of the beam. Thus V,
refers to the shear force taken at a section 4 ft away from the left reaction (R;) of a simple
beam, or 4 ft away from the free end of a cantilever beam. The mass of the beam will not
be considered unless specified in the examples or problems.
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CANTILEVER BEAMS

Cantilever beams should be drawn with the support shown at the RH side.
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Fig. 29-5-2 Construction of shear diagram for cantilever beams.
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EXAMPLE 1 Figure 29-5-2A represents a cantilever beam with a concentrated load at the
free end. Construct the shear diagram.

Solution Taking sections at various points along the beam and calculating V, the vertical
shear to the left of the section, we have

Vo =0-300=-300Ib
V3 =0-300=-300Ib
Ve =0-300=-300Ib
Vo =0-300=-300Ib
V12=0-300=-300 Ib

Since there is no reaction to the left of the section, the shear values are all negative and
are drawn below the base line.

EXAMPLE 2 Figure 29-5-2B illustrates a cantilever beam with a uniformly distributed
load. Construct the shear diagram.

Solution Taking sections at various points along the beam, starting at the free end, we
have

Vo=0-0=01b

V3 =0 - (800 x 3) = -2400 Ib
Vs =0 - (800 x 6) = - 4800 Ib
Ve =0 - (800 x 9) = -7200 Ib
Vi = 0 - (800 x 12) = -9600 Ib
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Fig. 29-5-3 Shear diagrams for cantilever beams.

EXAMPLE 3 Figure 29-5-3A illustrates a cantilever beam with a uniformly distributed
load at the end of the beam. Construct the shear diagram.

Solution Taking sections at various points along the beam, starting at the free end, we
have

Vo=0-0=0N
V1=0-800=-800 N
V,=0-800x2=-1600 N
V25=0-800x2.5=-2000 N
V3=0-800x2.5=-2000 N
V,=0-800x2.5=-2000 N

EXAMPLE 4 Figure 29-5-3B shows a cantilever beam with a concentrated load at the free
end of the beam and a uniformly distributed load at the fixed end. Construct the shear
diagram.

Solution Taking sections at various points along the beam, starting at the

free end, we have

Vo =0-500 = - 500 Ib

V4 =0-500 = - 500 Ib

Vg =0-500 - (1 x 60) = -560 Ib

V12 =0 - 500 - (5 X 60) = -800 Ib
V16 =0 - 500 - (9 X 60) = -1040 Ib
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EXAMPLE 5 Figure 29-5-3C shows a cantilever beam with a uniformly distributed load
and a concentrated load acting in the middle section of the beam. Construct the shear
diagram.

Solution Taking sections at various points along the beam, starting at the free end, we
have

Vo=0-0=01b

V4=0-(4x80)=- 320 1Ib
Vg=0- (8 x80)=- 1290 Ib
Vi =0 (12 x 80) = - 1610 Ib
V15 = 0 (18 x 80) = - 2090 Ib

SIMPLE BEAMS

In constructing the shear diagram for a simple beam, the magnitude of the reactions must
be calculated first. The shear diagram is constructed in the same manner as for a
cantilever beam. For calculation purposes Vo will be considered as the section where the
beam leaves the reaction R;, and the shear section taken at R, will be considered as the
section where the beam leaves the reaction Ry.

EXAMPLE 6 Figure 29-5-4A illustrates a simple beam with a concentrated load of 800 Ib
at the center of the span. Construct the shear diagram.

Solution From the figure it is apparent that the reactions are 400 Ib each, because of the
symmetrical loading. As previously mentioned, only the forces acting to the left of the
section will be used for calculating the shear diagram. At the left end of the beam, the
only force acting on the beam is the upward force of the reaction R;. Therefore the shear
force at Vo = 1400 - 0 = + 400 Ib. Taking sections along the beam, we find that

V4=400-0=+4001b
V7=400-0=+4001Ib

Up to and including the section just to the left of the center of the beam, no new forces
are encountered; therefore from Vg to V799 the shear force is +400 Ib. At the center of the
beam the downward force of 800 Ib occurs; thus

Vg =400 - 800 = - 400 Ib
Since no new loads are encountered for the remainder of the beam unit R; is reached,
V12 =400 - 800 = -400 Ib
V14 =400 - 800 = -400 Ib

Just before R is reached, the shear force from Vg to Vg is - 400 Ib.
Note that the shear diagram passes through zero, from + 400 Ib to - 400 Ib at the 800-Ib
load.

Copyright © McGraw-Hill. All rights reserved. 5



BOD LB e e e <t e e

g & i A0 MM
I | [ - ]
4 K f § A am 4
) {1} LOADING DIAGRANM Rz fi (1 LOADING DIAGRAM Rz
BOD LS I —_—
¥ TR [T
1 ] il - - - 1
: £ 5 A
400 LB 400 LS 1200 N 1200 i
=400 LB | =-SHEAR FORCE +1200 M SHEAR FORCE
W] #vsecon 0 A
0 a [y
3 SHEAR FORCE AT R|
121 SECTION TAKENM 4' FROM Ry {2} SECTION TAKEN 1.5 m FROM R,
0O LA ERETITI R INTEA 111 ”:!'H| HIH |
2 angsen 1
1 ] 1 T
,‘ B Im
atpLd 400 LB 1200 M 1200 N
+400 LB ==SHEAR FORCE JUST +I 00 M HEAR EORCE
! I I il BEFORE SECTION AT SECTION
‘o o 0 a
SHEAR FORCE
A LE AT SECTION
(3] SECTIDN TARKEN B' FROM R 13} SECTION TAKEN 3 m FROM R
BOD LB P L =
i _E! . SR HEHAE I i ”T
P aoasrm
1 | | L
. 2 1 * A5m
400 LB 400 Le 1200 N S 1200N
+400 LB 1200 N ;
. SHEAR FORCE
HAHIAAN TR ATSECTIO
o ] 1
SHEAR
(LT ostean ~s00n
=400 LB AT SECTION
4| SECTION TAKEN 12° FROM R, {4} SECTION TAKEN 4.5 m FROM R,
EOOLE | !l-iiil T ISR | |
T nli s oo sim 1 ity
T 1| i |
B S % £ o
400 LB 400 LB | 200 M 1200
I | I |
o i ] L]
r 0 0
PLETED
swear rorce LI AR FORCE AT
AT SECTON o iE - SHEAR DIAGRAM SHE ORC T
15) SECTION TAKEN AT Rz (5} SECTION TAREN AT Ay
(A) WITH CONCENTRATED LOAD (B) WITH UNIFORMILY DISTRIBUTED LOAD

Fig. 29-5-4 Construction of shear diagram for simple beams.
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EXAMPLE 7 Figure 29-5-4B illustrates a simple beam with a uniformly distributed load.
Construct the shear diagram.
Solution Taking sections at intervals along the beam, we have

Vo =1200-0=+1200 N
Vis = 1200 — (1.5 x 400) = + 600 N
Vs =1200-(3x400)=+0N
V45= 1200 — (4.5 X 400) = - 600 N
Ve =1200 - (6 x 400) = - 1200 N

20°
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it

oo M,

1
AN 20° A
1600 LB . 400 LB
CALCULATING REACTION

+1600 LB

° IIITIIITIIImm®
—400 LB
SHEAR DIAGRAM

Fig. 29-5-5 Simple beam with partial, uniformly distributed load.

EXAMPLE 8 Figure 29-5-5 illustrates a simple beam with a partial, uniformly distributed
load starting at reaction R;. Construct the shear diagram.

Solution The values of reactions Ry and R, must first be found. For calculation purposes,
a concentrated load of 250 x 8, or 2000 Ib, acting at the center of the uniformly

distributed load will be used in place of the uniformly distributed load. Taking moments
about Ry, we have:

Clockwise moments =4 x (8 x 250) = 8000 ft-Ib

Counterclockwise moments =20 x R,
R,=8000 +20 =400 1b

Copyright © McGraw-Hill. All rights reserved. 7



R1=2000 — 400 = 1600 Ib

Taking sections at intervals along the beam starting at reaction R,, we have:

Vo = 1600 - 0 = + 1600 Ib

Vs = 1600 - (4 X 250) = + 600 Ib
Vg = 1600 - (8 X 250) = - 400 Ib

V12 = 1600 - (8 X 250) = - 400 Ib
Va0 = 1600 - (8 X 250) = - 400 Ib

From the shear diagram it can be seen that the shear passes from positive shear to
negative shear between V, and Vg. How to locate the position of zero shear will be
discussed in Unit 29-6.

JBO LB 600 LB

LOADING DIAGR AM

750 LB 600 LB

= =

850 LB 500 LB

CALCULATING REACTIONS

+100 LB
11

L

500 LB
SHEAR DIAGRADM

Fig. 29-5-6 Simple beam with two concentrated loads.

EXAMPLE 9 Figure 29-5-6 illustrates a simple beam with two concentrated loads.
Construct the shear diagram.

Solution The reactions must first be calculated. Taking moments about reaction Ry, we
have
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Clockwise moments
= (4 x 750) + (10 x 600)
= 3000 + 6000 = 9000 ft-Ib

Counterclockwise moments = 18 x R,
Clockwise moments = Counterclockwise moments
18 x Rz = 9000 ft-Ib
R, = % _5001b
R: + R, =750+ 600 =1350 Ib
Therefore
R; = 1350 - 500 = 850 1b
Taking sections at intervals along the beam, we have

Vp=850-0=+8501Ib
V4 =850-750=+ 100 Ib
V10 =850 - 750 - 600 = - 500 Ib
V1 =850 - 750 - 600 = - 500 Ib

1200 LB
1 8’
150 LBSFT
L= 1
A % A
Ry R
LOADING DIAGRAM
200 LB
4 g
150 LB/FT
[ = |
A A
1700 LB 1300 LB

CALCULATING REACTIONS

+1100 LB

—I1300 LB

SHEAR DIAGRAM
Fig. 29-5-7 Simple beam with uniformly distributed load and concentrated load.
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EXAMPLE 10 Figure 29-5-7 illustrates a simple beam with a uniformly distributed load
and a concentrated load acting on it. Construct the shear diagram.

Solution The reactions must be calculated first. For calculation purposes, a concentrated
load of 12 x 150, or 1800 Ib, acting at the center of the beam, will be used in place of the
uniformly distributed load. Taking moments about R;, we have

Clockwise moments
= (4 x 1200) + (6 x 1800)
= 4800 + 10 800 = 15 600 ft-Ib

Clockwise moments = Counterclockwise moments
12 x R, =15 600 ft-1b

R, =15600 <+ 12 =1300 Ib
R; + R, =1200 + 1800 = 3000 Ib

Therefore
R; = 3000 - R, = 3000 - 1300 = 1700 Ib.
Taking sections at intervals along the beam gives us

Vo = 1700 - 0 = +17001b

V, = 1700 - (2 x 150) = + 1400 Ib

V4 = 1700 - (4 x 150) — 1200 = - 100 Ib

Vg = 1700 - (8 X 150) — 1200 = - 700 Ib
Vo= 1700 - (10 x 150) - 1200 = - 1000 Ib
Vi = 1700 - (12 x 150) - 1200 = - 1300 Ib
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= e E i |
+ 5 m Z
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L OADING DA R A n
23 k) 35 kM 3O kM
1.4 m 2.2
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SHEAS R [D4a G anda

Fig. 29-5-8 Overhanging beam.
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EXAMPLE 11 Figure 29-5-8 illustrates an overhanging beam. Construct the shear diagram.
Solution First the reactions must be calculated. Taking moments about R;, we have

Clockwise moments
= (1.4 x 24) + (3.6 x 35) + (7 x 30)
=33.6 +126 + 210
= 369.6 KN-m

Counterclockwise moments =5 x R,

Clockwise moments = Counterclockwise moments
5 x R, =369.6 kN-m
R, =369.6 + 5=73.92 kN
Ri+R,=24+35+30=89 kN

Therefore
R; =89 -73.92 = 15.08 kN

Taking sections at intervals along the beam gives us
Vo =15.08-0 =+ 15.08 kN
V14=15.08-24=-8.92 kN
V3 =15.08-24=-8.92kN
V36 =15.08- 24 - 35 =-43.92 kN
Vs =15.08-24-35+73.92= +30 kN
V; =15.08-24-35+73.92= +30 kN

Conclusion
From the examples given, the following conclusions can be drawn for shear diagrams.

e Where there are concentrated loads, the shear lines are straight horizontal lines
changing in value at the loads.

e Where there are uniformly distributed loads, the shear lines are straight inclined
lines, the slope of the line being proportional to the load.

e At each concentrated load, including reactions, the shear line rises or drops
vertically by an amount equal to the load at that section.
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CHAPTER 29
Strength of Materials | S

UNIT 29-6
Bending Moment Diagrams

DRAWING & DESIGN

As previously mentioned, when a load acts on a beam, the force tends to shear the beam.
In addition to producing this shearing action, the load tends to deflect or bend the beam.

To determine this deflection, which varies along the beam, the bending stresses must be
calculated. Just as the shear diagram shows the shear at any section along the beam, a
bending moment diagram is similarly constructed to show the bending moment at any
point along the beam and also to indicate where the maximum bending occurs.

The bending moment at any section along the beam is equal to the sum of all the
moments of the forces acting to the right or left of the beam. In drawing bending moment
diagrams, the following points should be noted:

1.

2.

Forces are taken to the left of the section.

Upward moments are considered positive and are shown above the base line on
the bending moment diagram.

Downward moments are considered negative and are shown below the base line.

The bending moment diagram is drawn directly below the shear diagram and to
the same scale.

Shear is equal to reaction minus loads.

Bending moments are equal to reaction moments minus load moments.

In calculating the bending moments at any given section along the beam, the
capital letter M is used to designate the bending moments. It is followed by a

subscript which indicates the distance from the LH end of the beam. Thus, My
indicates the bending moments 4 ft from the LH end of the beam.

Copyright © McGraw-Hill. All rights reserved. 1
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Fig. 29-6-1 Construction of bending moment diagram for cantilever beams.
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EXAMPLE 1 Figure 29-6-1A shows a cantilever beam with a concentrated load applied
to the free end. Figure 29-5-2A shows the shear diagram development for this beam.
Construct the bending moment diagram.

Solution Taking moments at intervals along the beam starting at the LH end, we find the
moments will be negative as the force is acting downward. Thus we have

Mo=-300x0=0

M3 =-300 x 3 =-900 ft:Ib
Mg = - 300 x 6 = - 1800 ft:Ib
Mgy =-300 x 9 =-2700 ft:Ib
M1, =-300 x 12 = - 3600 ft-1b

2.5 rm

8200 MSm

AN

g

LOADING DIAGRAM

i TTTTITT z|=i|-|'3'

- | | ‘ | I ‘
N 1 1

CURWED LINE
STRAIGHT LINE 5500 MN-m

EEMNDING MOMEMT DIAGR AM
Fig. 29-6-2 Cantilever beam with uniformly distributed load at end of beam.

EXAMPLE 2 Figure. 29-6-1B shows a cantilever beam with a uniformly distributed load.
Figure 29-5-2B shows the shear diagram development for this beam. Construct the
bending moment diagram.

Solution The bending moment at My is zero. The 3-ft section to the right of R; weighs

3 x 800 or 2400 Ib. The force of any uniform load can be considered as acting at its
center of gravity. Thus the 2400 Ib load can be considered as acting 1.5 ft away from R;.
Therefore, we have

M = - (800 x 3) x 1.5 = -3600 ft:Ib
Mg = - (800 X 6) X 3 = -14 400 ft-Ib
Mg = - (800 x 9) X 4.5 = -32 400 ft:Ib
M1z = - (800 x 12) X 6 = -57 600 ft-Ib
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EXAMPLE 3 Figure 29-6-2 shows a cantilever beam with a uniformly distributed load at
the end of the beam. The shear diagram development was explained in Unit 29-5,
Example 3, Fig. 29-5-3A. Construct the bending moment diagram.

Solution Taking moments at intervals along the beam starting from the LH end, we have

Mo =0

M; =-800x1x0.5=-400N-m

M; =-800x2x1=-1600 N:m
Mz5=-800x2.5x1.25=-2500 N-m

Ms =-800 X 2.5 X (3 - 1.25) = -3500 N-m

Note that at M3, the distance from the section to the center of gravity of the load is
3-1.25=1.75 m, since the center of gravity is 1.25 m from the LH end.

M4 =-800 x 2.5 x (4 - 1.25) = - 5500 N-m

Note that from My to M, the line on the bending moment diagram is straight.

500 LB -
60 LB/FT

=8

AN

LOADING DIAGRAM

e

SHEAR DIAGRAM

— 1040 LB

o]
|

—3.500 FT-LEBE

CSTRAIGHT LINE /
CURVED LINE— _|h a=6 Fr-L B
EEMNDING MOMENT DI AGRAM

Fig. 29-6-3 Cantilever beam with concentrated load and partial, uniformly distributed
loads.

EXAMPLE 4 Figure 29-6-3 shows a cantilever beam with a combination concentrated
and a partial, uniformly distributed load. The shear diagram development was explained
in Unit 29-5, Example 4, Fig. 29-5-3B. Construct the bending moment diagram.
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Solution The bending moments from My to Mg are calculated in the same manner as in
Example 1.

Mo=-500x0=0
M; =-500 x 1 =- 500 ft:Ib

M = - 500 x 4 = - 2000 ft.Ib

M7 =-500 X 7 = - 3500 ft.-Ib

Mo = - (500 X 9) - (60 X 2 X 1) = -4620 ft.Ib
Mz2 = - (500 x 12) - (60 X 5 x 2.5) = -6750 ft.Ib

Mzs = - (500 X 16) - (60 X 9 X 4.5) = -10 430 ft.Ib

G50 LB

80 LBS/FT

a8

N

LA DIMNG DILAG RO MM

o (o]
— G40 LE
— 1290 LB

—2090 LB
SHEAR DIAGR.AMN

14,140 FT-LB

BEEMNDING MOMEMNT DA GRS N

Fig. 29-6-4 Cantilever beam with concentrated and uniformly distributed loads.

EXAMPLE 5 Figure 29-6-4 shows a cantilever beam with a concentrated and uniformly
distributed load. The shear diagram development was explained in Unit 29-5, Example 5,
Fig. 29-5-3C. Construct the bending moment diagram.

Solution The bending moments from M to Mg are calculated in the same manner as in
Example 2.

MOZO

M,=-80x2x1=-160ftIlb
Ms=-80x4x2=-640ftlb

Mg =- (80 x 8 x 4) - (650 x 0) = - 2560 ft:lb
Mo =- (80 x 10 x 5) - (650 x 2) =- 5300 ft:lb
M1, =- (80 x 12 x 6) - (650 x 4) = - 8360 ft:Ib
My =- (80 x 14 x 7) - (650 x 6) = - 11 740 ft:Ib
Mg =- (80 x 16 x 8) - (650 x 6) = - 14 140 ft-Ib
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Fig. 29-6-5 Simple beam with partial, uniformly distributed load.

EXAMPLE 6 Figure 29-6-5 shows a simple beam with a partial, uniformly distributed
load. The development of the shear diagram was explained in Unit 29-5, Example 8, Fig.
29-5-5. Construct the bending moment diagram.

Solution Taking moments at intervals along the beam, starting at reaction R;, gives us
Mo=+1600x0=0

My =+ 1600 x 4 - 250 x 4 x 2 =+ 3400 ft-lb

M =+ 1600 x 6 - 250 x 6 x 3 = +5100 ft:Ib

Mg =+ 1600 x 8 - 250 x 8 x 4 = + 4800 ft:Ib

From the bending moment calculations it can be seen that the maximum bending
moment occurs somewhere between Mg and Mg where the zero shear takes place.

The distance between R; and zero shear can be found as follows. Let the distance from
R; to the point at zero shear be X. Thus, we have

Vx=+1600-250xX=0
X =1600 + 250 = 6.4 ft

Maximum bending moment occurs at Mg 4
Me.4 =+ (1600 x 6.4) — (250 x 6.4 x 3.2) = + 5120 ft:Ib

Copyright © McGraw-Hill. All rights reserved. 6
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For calculating the moments for the remaining sections, the uniformly distributed load
will be considered as a 2000 Ib concentrated load acting 4 ft from R.

My = + (1600 x 12) - (2000 x 8) = + 3200 ft-Ib
Mys = + (1600 x 16) — (2000 x 12) = + 1600 ft-Ib
Mao = + (1600 x 20) — (2000 x 16) = 0

EXAMPLE 7 Figure 29-6-6A shows a simple beam with a concentrated load acting in the
center of the beam. The development of the shear diagram was explained in Unit 29-5,
Example 6, Fig. 29-54A. Construct the bending moment diagram.

Solution Taking moments at intervals along the beam, starting at reaction R;, which is
acting upward, we have

Mo =+400x0-0

M, =+ 400 x 2 = + 800 ft:Ib

M4 =+ 400 x 4 = + 1600 ft-Ib

Mg =+ 400 x 8 - 800 x 0 = + 3200 ft:Ib
Mi2 =+ 400 x 12 - 800 x 4 = + 1600 ft-Ib
Mi4 = +400 x 14 - 800 x 6 = +800 ft:Ib
Mie =+ 400 x 16 -800x8=0

Note: The maximum bending moment occurs at the point where shear passes through
zero.

EXAMPLE 8 Fig. 29-6-6B shows a simple beam with a uniformly distributed load. The
development of the shear diagram was explained in Unit 29-5, Example 7, Fig. 29-5-4B.
Construct the bending moment diagram.

Solution The bending moment at My is zero. The 1-m section to the right of R; creates a
force of 400 N. The force of any uniform load can be considered as acting at its center of
gravity. Thus, the 400-N load can be considered as acting 0.5 m away from R; Therefore,
we have

M;=+1200x1-400x1x0.5=+1000 N-m
My=+1200x 2-400x 2 x 1=+ 1600 N-m
Ms;=+1200 x 3-400x 3 x1.5=+ 1800 N'‘m
My =+1200 x4 -400 x4 x 2=+ 1600 N-m
Ms =+ 1200 x 5-400 x5 x 2.5 =+ 1000 N-m
Ms=+1200x6-400x6Xx3=0

Note that the maximum bending moment of + 1800 N-m occurs at zero shear.

Copyright © McGraw-Hill. All rights reserved. 8



Fig. 29-6-7 Simple beam with two concentrated loads.

FTEO LB (=20 N i =

- L2

S

EXAMPLE 9 Figure 29-6-7 shows a simple beam with two concentrated loads. The
development of the shear diagram was explained in Unit 29-5, Example 9, Fig. 29-5-6.
Construct the bending moment diagram.

Solution Taking moments at intervals along the beam, starting at reaction R;, gives us
Mo=+850 x 0=0

M, =+ 850 x 2=+ 1700 ft:Ib

My =+850 x 4 -750 x 0 =+3400 ft:Ib

Ms =+ (850 x 5) — (750 x 1) =+ 3500 ft:lb

Mg =+ (850 x 8) — (750 x 4) =+ 3800 ft:lb

Mio =+ (850 x 10) — (750 x 6) — (600 x 0) = + 4000 ft-Ib

My, =+ (850 x 12) — (750 x 8) — (600 x 2) = + 3000 ft-lb

Mi4 = +(850 x 14) — (750 x 10) — (600 x 4) = + 2000 ft:Ib

Mjg = +( 850 x 18) — (750 x 14) — (600 x 8) =0

Copyright © McGraw-Hill. All rights reserved. 9
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Fig. 29-6-8 Simple beam with uniformly distributed and concentrated loads.

EXAMPLE 10 Figure 29-6-8 shows a simple beam with a uniformly distributed load and
a concentrated load. The development of the shear diagram was explained in Unit 29-5,
Example 10, Fig. 29-5-7. Construct the bending moment diagram.

Solution Taking moments at intervals along the beam, starting at reaction R; we have

Mop=+1700 x 0=0

M, =+ (1700 x2) — (150 x 2) x 1 =+ 3100 ft-lb

Ms=+ (1700 x 4) — (150 x 4 x 2) — (1200 x 0) = + 5600 ft-b
Mg =+ (1700 x 6) — (150 x 6 x 3) — (1200 x 2) = + 5100 ft-lb
Mg =+ (1700 x 8) — (150 x 8 x 4) — (1200 x 4) = + 4000 ft-lb
Mo =+ (1700 x 10) — (150 x 10 x 5) — (1200 x 6) = + 2300 ft-Ib
My, =+ (1700 x 10) — (150 x 12 x 6) — (1200 x 8) =0

Copyright © McGraw-Hill. All rights reserved. 10
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Fig. 29-6-9 Overhanging beam.

EXAMPLE 11 Figure 29-6-9 shows an overhanging beam with three concentrated loads.
The development of the shear diagram was explained in Unit 29-5, Example 11, Fig.
29-5-8. Construct the bending moment diagram.

Solution Taking moments at intervals along the beam, starting at reaction R;, we have

Mo =+ 15.08 x 0 =0

M; =+ 15.08 x 1 =+ 15.08 kN-m

Mg =+ (15.08 x 1.4) — (24 x 0) = + 21.1 KN.m

M, = + (15.08 x 2) — (24 x 0.6) = + 16.12 KN-m

Ms = + (15.08 x 3) — (24 x 1.6) = + 6.84 kKN-n

Msg = + (15.08 x 3.6) — (24 x 2.2) — (35 x 0) = + 1.39 KN-m

M, = + (15.08 x 4) — (24 x 2.6) — (35 x 0.4) = — 16.08 kN-m

Ms = + (15.08 x 5) — (24 x 3.6) — (35 x 1.4) + (73.92 x 0) =-60 kN:m
Mg = + (15.08 x 6) — (24 x 4.6) — (35 x 2.4) + (73.92 x 1 =- 30 kN'm
My = + (15.08 x 7) — (24 x 5.6) — (35 x 3.4) + (73.92 x 2) =0

From the bending moment diagram it can be seen that zero bending moment occurs to the
right of the 35-kN load. Its exact location can be found as follows.

Let the distance between R; and the point where zero takes place be X. Then

Mx =0

Myx =+ (15.08 x X) —24(X-1.4)-35(X-3.6)=0

My =+ 15.08X - 24X + 33.6 -35X + 126

43.92X = 159.6

X =3.63mm

Copyright © McGraw-Hill. All rights reserved. 11



2.5 m b3 P ]
Z kM 1.8 m

A = A

LOADING DIAGRAM

2.5 3 kN
2 kMNSm
| i |
+ 5 m
4. 83 kM 307 kM
CALCULATIMNG REACTIONS
+4 83 kN

I

— 3217 ki

SHEAR DIAGR.ANM

+=5 .83 kMN-m

BEMNDIMNG MOMEMNT DIAGR.A M

Fig. 29-6-10 Simple beam with a partial, uniformly distributed load and a concentrated
load.

EXAMPLE 12 Figure 29-6-10 shows a simple beam with a partial, uniformly distributed
load and a concentrated load. Find the position and magnitude of the maximum bending
moment.

Solution Reactions R; and R, must be calculated first. Taking moments about R;, we
have

Clockwise moments
=1.25x2x25+32x3
=15.85 kN-m

Counterclockwise moments =5 x R,

R, = 15.85 +5=23.17 kN
Ri=(2.5%2)+3-3.17 = 4.83 kN

Next construct the shear diagram, taking sections at intervals along the beam, starting
at reaction Ry:

Vo =4.83-0=+4.83 kN
Vi =4.83-1x2=+2.83kN
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V, =4.83-2x2=+0.83kN
V25=4.83-25%x2=-0.17 kN
V3,=4.83-25%x2-3=-3.17kN
Vs =4.83-25%x2-3=-3.17kN

From the shear diagram, it is noted that the section having zero shear lies somewhere
between R; and the end of the 2.5-m uniformly distributed load. Its exact position, X
distance from Ry, may be found by taking the shear at Vx, which is zero.

Thus, Vx =4.83 - X x 2 =0. Therefore, X =4.83 + 2 =2.415m.

The maximum bending moment will occur where the shear passes through zero or
2.415 m from Ry. Thus the maximum bending moment is

Ma.15= (4.83 X 2.415) — (2 x 2.415 X 1.2075) = 5.83 kN:m

EXAMPLE 13 A simple beam 8 m long carries a 3600-N concentrated load 2 m from the
left abutment. Calculate the maximum bending moment and shear.

Solution The maximum bending moment for a simple beam with a concentrated load at
any point (see Fig. 29-6-11) is

Maximum shear =

FB _ 3600x6 _
. 5 2700 N

Conclusion

From the examples given, the following conclusions can be drawn from bending moment
diagrams.

1. Where there are no loads on a part of a beam, the bending moment line is a
straight, sloping line.

2. Where there is a uniformly distributed load, the bending moment line is a curve.

3. The maximum bending moment occurs at a section on the beam at which the
shear passes through zero.

Standard beam formulas are shown in Fig. 29-6-11.
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CHAPTER 29

Strength of Materials

DRAWING & DESIGN

UNIT 29-7
Beam Design

It has been found from experience that beams normally fail at the section where the
bending moment is maximum, rather than by shearing at the supports. Therefore, in beam
design, it is customary first to select a suitable beam size to withstand the bending forces
and then to check it for shear and deflection. The ability of a beam to resist bending
depends on such factors as the material used, the shape of its cross section, and the way
the cross section is turned with respect to the load. To illustrate this last point, one may
bend a flat steel rule across its thin axis; but if the steel rule is set on its edge, then it is
virtually impossible to bend the rule in the direction of its width. This resistance to
bending can be measured in terms of a quantity called the section modulus of the section
concerned. The theory and the mathematics behind the development of the section
modulus of beams and shapes will not be covered in this text.

Thus the ability of any beam to resist bending is directly related to its section modulus,
which is expressed in cubic inches (U.S. Customary) or cubic millimeters (metric) and is
denoted Z in calculations. The bending stress S, the bending moment My, and the section
modulus are related by the formula Mg = Z x S +10° in which the quantities are
inch-pounds, cubic inches, and pounds (U.S. Customary) and newtonmillimeters, cubic
millimeters, and pascals (metric), respectively. The stress in pascals is divided by 10° to
obtain the stress per square millimeter. The section modulus for certain regular sections
can be found from the formulas given in Fig. 29-7-1. The values of Z for structural-steel
shapes and many common circular and rectangular sizes are tabulated in most engineers'
handbooks.

BDZ2

~ BD3 - bd3

=
d 6D
Fs
3
£ 0 D
32
= (D4—d%)
& 32D

Fig. 29-7-1 Formulas for section moduli for common shapes.
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The letter S is frequently used in textbooks to designate section modulus. However, to
avoid confusion with the letter S for stress, the letter Z will be used to designate section
modulus throughout this chapter.

FIBERS ABOWE NEUTRHRAL AXIS
W AARE I COMPRESSIHOMN

= 3 el
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fFrieems LGapeER TENMSIOT

OCATION OF RNEUTRAL AXIS

NEUTR

(C) NEUTRAL AXES OF BEAMS

Fig. 29-7-2 Neutral axis.

Structural shapes may be placed in two general positions, as shown in Fig. 29-7-2.
Since the resistance to bending will depend on the position of the beam with regard to its
neutral axis, two section modulus values are generally shown in engineering tables. One
value is used when the beam is in the upright position, as shown in Fig. ~ 29-7-2C(l)
where the X-X axis is the neutral axis; the other is used when the beam is in the flat
position, as shown in Fig. 29-7-2C(2), where the Y- Y axis is the neutral axis. The neutral
axis is defined as the axis that passes through the centroid of the cross-sectional area.

The majority of engineering handbooks show only one illustration of the structural
shape with both the X-X and Y- Y axes shown as illustrated in Fig. 29-7-2C(3).

SHEARING STRESSES

IN BEAMS

In designing beams for vertical shear, it is customary to consider only the full height of
the webs of S, C, WT, and WWT beams to carry the full load; the flanges are not
considered.
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EXAMPLE I A cantilever beam 10 ft long supports a 5000-1b load at the end of the beam.
What size A36 beam is required?

Solution First select a beam to withstand the bending forces. Refer to Fig. 29-6-11;
maximum bending moments = FL = 5000 x 10 x 12 = 600 000 in-Ib. The allowable bend
stress for A36 steel (see Fig. 29-1-8) is 24 kips/in.?.

Section modulus required = Z = M =S = 600 000 =24 000 = 25 in.?

Refer to Fig. 29-7-3. A W8 x 31 has a section modulus of 27.5 in., which is acceptable.
If the depth of the beam is not an important design factor, then the W10 X 29 beam,
which is lighter and has a section modulus of 30.9 in.?, would be the most economical.

Next the beam must be checked for vertical shear. Maximum shear force = 5000 Ib.
Web area of a W8 x 31 beam (refer to the structural- steel handbook) = 8 x .31 = 2.48 in®.
Vertical shear stress = 5000 + 2.48 = 2016 Ib or 2 kips/in.2. Permissible shear stress for
steel (see Fig. 29-1-8) is 14.5 kips/in.2. Therefore the W8 x 31 beam is acceptable.

EXAMPLE 2 A simple beam 6 m long supports a uniformly distributed load of 6 kN/m.
Neglecting the mass of the beam, select the lightest A572M-310 beam to safely carry this
load.

Solution First select a beam to withstand the bending forces. Refer to Fig. 29-6-11.
Maximum bending moments = NL? =8 = (6000 x 6°) + 8 = 27 000 N-m, or 27 x 10°
N-mm. The allowable bending stress for A572M-310 steel (see Fig. 29-1-8) is 205 MPa.
Section modulus required = Z = M = (S +10°%) = 27 x 10° x 10° = (205 x 10°%) =

131 700 mm®,

Referring to Fig. 29-7-3, we find that a W150 x 18 beam has a section modulus of
136 000 mm?, which is acceptable.

Next the beam must be checked for vertical shear.

Maximum shear force (Fig. 29-6-11)

NL _ 6kNx6 _
> 5 <0 =18KN

Web area of a W150 x 18 beam (refer to the structural- steel handbook) = 153 x 6 =

918 mm?®. Average vertical shear stress = 18 000 + 0.000 918 = 19.6 MPa. The
permissible vertical shear stress for A572M-310 steel (see Fig. 29-1-8) is 125 Mpa.
Therefore the W150 x 18 beam is acceptable.
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U.S. CUSTOMARY METRIC*
Section Shape Moment of Inertia| | Section Shape Moment of Inertia =
Modulus In*" Modulus I
In2 10°mm® 10°mm*™”
157 W18 x 85 1440 3050 W460 x 128 637
151 W16 x 88 1220 2850 W410 x 132 538
151 W21 x 73 1600 2830 W530 x 109 667
142 W18 x 77 1290 2670 W460 x 113 556
140 W21 x 68 1480 2620 W530 x 101 617
131 W14 x 84 928 2560 W360 x 134 415
125 W12 x 92 789 2420 W310 x 143 348
121 W14 x 78 851 2270 W360 x 122 365
118 W18 x 64 1050 2180 W460 x 97 445
116 W16 x 71 941 2160 W310 x 129 308
116 W12 x 85 723 2130 W410 x 100 398
112 W14 x 74 797 2060 W360 x 110 331
107 W12 x 79 663 1950 W310 x 118 275
105 W16 x 64 836 1830 W460 x 82 370
97.5 W12 x 72 597 1770 W310 x 107 248
94.3 W16 x 58 748 1730 W410 X 85 315
92.2 W14 x 61 641 1680 W360 x 91 267
88 W12 x 65 533 1590 W310 x 97 222
80.9 W16 x 50 657 1510 W410x 74 275
73.6 W10 x 66 382 1400 W250 x 101 164
70.6 W12 x 53 426 1280 W310 x 79 177
64.8 W12 x 50 395 1190 W310 x 74 165
64.8 S15 x 50 486 1140 S380 x 64 187
62.7 W14 x 43 429 1140 W360 x 64 178
60.5 W10 x 54 306 1140 S380 x 64 187
59.6 S15x42.9 447 1090 W250 x 80 126
54.7 W14 x 38 386 1010 W360 x 57 161
51.9 W12 x 40 310 1010 S310x 74 128
50.8 S12 x 50 305 941 W310 x 60 129
49.2 WIO x 45 249 901 W250 x 67 104
43.3 W8 x 48 184 803 W200 x 71 76.6
41.8 W14 x 30 290 779 W360 x 45 122
36.3 S12 x 31.8 218 690 S310 x 47 91.1
35.1 W10 x 33 171 633 W250 x 49 70.6
30.9 W10 x 29 158 602 W250 x 45 711
27.5 W8 x 31 110 496 W200 x 46 455
24.8 SIO x 25.4 124 465 S250 x 38 51.4
24.3 W8 x 28 97.8 446 W200 x 42 40.9
21.6 WIO x 21 107 424 W250 x 33 48.9
20.8 W8 X 24 82.5 380 W200 x 36 34.4
16.2 S8x 23 64.9 316 S200 x 34 27.0
14.2 W8 x 17 56.6 279 W200 x 27 25.8
134 W6 x 20 415 244 W150 x 30 17.2
12 M12 x 11.8 71.9 232 M3 10 x 17.6 29.7
10.1 W6 x 16 317 192 W150 x 24 134
7.23 W6 x 12 21.7 136 W150 X 18 9.16
5.43 W4 x 13 11.3 103 W100 X 19 4.76
5.08 W6 x 85 14.8 103 W150 X 14 6.87

*Soft Converted.

*Taken at X-X axis.
Fig. 29-7-3 Section modulus and moment of Inertia for shapes used as beams.
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EXAMPLE 3 A simple beam 16 ft long supports a 30 000 Ib concentrated load 4 ft from
the left abutment. What size A36 beam is required?

Solution First select a beam to withstand the bending forces. Refer to Fig. 29-6-11.
Maximum bending moments = FAB +=L=30 000 x 4 x 12 + 16 = 90 000 ft-Ib, or

1 080 000 in-Ib. Allowable bending stress for A36 steel (see Fig. 29-1-8) is 24 kips/in.2.

Section modulus required = Z
=M =S
=1080 000 + 24 000
=45in?

Referring to Fig. 29-7-3, we find that a W10 x 45 beam has a section modulus of 49.2.
Next the beam must be checked for vertical shear.

Maximum shear force

_ 30000 x 12 22500 1b
16

Web arga of a W10 x 45 beam (refer to the structural-steel handbook) = 10.12 x .38 =
3.85in.%.

Average vertical shear stress

22 520 =5844 Ib

The permissible vertical shear stress for A36 steel (see Fig. 29-1-8) is 14.5 kips/in.2.
Therefore the W10 X 45 beam is acceptable.

EXAMPLE 4 A floor 5 m wide has a uniformly distributed load of 3000 N-m. The floor
joists are 38 mm wide and are spaced 400 mm center-to-center. If the allowable bending
stress is not to exceed 9600 kPa, what depth of floor joists must be used?

Solution On each floor joist, the uniformly distributed load is 3000 x (400 +1000) = 1200
N-m. For a simple beam with a uniformly distributed load, the maximum bending
moment = FL? + 8 = (1200 x 5 x 5) = 8 = 3750 N-m, or 375 x 10* N-mm. Allowable
bending stress = 10 MPa. Therefore

Section modulus required = Z
S

10°

10°
10 x 10°
=375 000 mm?®

= 375x10* x
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The section modulus for the joist = bd? + 6 where b = width = 38 mm and d = depth,
which is unknown. Therefore:

d- /375000 % 6 _243mm
38

Since standard joist sizes are 38 x 184, 38 x 235, and 38 x 286, the joist size of 38 x 286
is selected.

DEFLECTION OF BEAMS

The vertical distance a horizontally placed beam moves when it bends under an applied
load is called deflection. Since deflection may cause cracking in plastered ceilings or
buckling of floors, the limitations placed on the deflection of the beam may be the
governing factor in its selection. In building construction the maximum deflection of
beams is limited to 1/360 of the span, or, for cantilever beams, 1/180 of the span. After
the beam is selected to withstand the bending and shearing stresses, it must then be
checked for deflection. The theory and the mathematics behind the development of beam
defection will not be covered in this text. The formulas using the double-integration
method for finding the deflection of simple beams are shown in Fig. 29-6-11.

EXAMPLE 5 A W8 x 28 cantilever beam 8 ft long has a concentrated load of 5000 Ib at its
free end. Is the deflection excessive?

Solution Refer to Fig. 29-6-11. The maximum deflection for a cantilever beam having a
concentrated load at its free end is FL® +3EI, where F = 5000 Ib, L = 96 in., E = 29 x 10°
Ib/in® (see Fig. 29-1-3), and | = 97.8 in.* (Fig. 29-7-3). Therefore

Maximum deflection
_ 500x96°
 3x97.8x29x10°
Allowable deflection = 1/180 of the span (for cantilever beams) = 96 +180 = .53 in.

Therefore, since the maximum deflection is less than the allowable, the W8 x 28 beam is
acceptable.

=52 in.

EXAMPLE 6 A W310 x 60 simple beam has a concentrated load of 27 kN acting at the
center of the beam. The beam span is 6 m. Check for deflection.

Solution Refer to Fig. 29-6-11. The maximum deflection for a simple beam with a
concentrated load is FL* + 48E1 where F = 27 kN, L = 6000 mm, E = 200 000 MPa (Fig.
29-1-3), and | = 129 x 10° mm* (Fig. 29-7-3). Therefore

Maximum deflection
3 27 000 x 6000°
48 x 200 000 x 129 x 10°

=4.7mm

Allowable deflection = span + 360 = 6000 360 = 16.7 mm. Since the maximum
deflection is less than the allowable, the W310 x 60 beam is acceptable.
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