
CHAPTER 29 

Strength of Materials 
 
UNIT 29-1 
Stresses and Strain 
 
Relationship Between Mass and Force 
Mass is the quantity of matter in a body. The mass of an object remains constant, 
regardless of its location on earth. Mass is measured in ounces, pounds, and tons (U.S. 
Customary), or grams, kilograms, and metric tons (metric). 
 

Some examples of the use of these units of measurement are in 
 
• Defining quantities of material, packaged in bulk, such as bags of mortar and tons of 

sand 
• Defining physical characteristics of material such as 210-lb asphalt shingles and 18-oz, 

24-oz, or 32-oz glass 
• Defining load capacities for building elements, elevator cranes, hoists, bridges, roads, 

supports, and bearing surfaces 
• Specifying application of materials such as 20-lb roofing asphalt per mopping per 100 

ft2 (U.S. Customary) or 10-kg roofing asphalt per mopping per 100 m2 (metric) 
• Establishing costs for materials, unit prices, and rates on an ounce, pound, or ton (U.S. 

Customary) or gram, kilogram, or metric ton basis (metric) 
 

Force is the external agent that changes or tends to change the condition of rest of a 
body. Force is measured in ounce-force, pound-force, ton-force and kip-force (U.S. 
Customary) or in newtons (N) for light forces, kilonewtons (kN) for intermediate forces, 
and meganewtons (MN) for heavy forces (metric). 

Forces related to the design and construction processes are numerous: bearing capacity, 
applied weight (mass under the influence of gravity) of live, dead, and mobile loads, 
connection load, etc. Force may be concentrated on a tiny spot or applied over an 
immense area. 

To convert kilograms to a force value, multiply the mass value (in kilograms) by  
9.806 65 to obtain the force in newtons. 

 
STRESSES 
When a force acts on a piece of material, internal resistance or forces are set up in the 
material to resist the external force. The resisting forces are called stresses and are 
measured in pounds per square inch or square foot (U.S. Customary) or pascals (metric). 
A pascal (Pa) is a pressure or stress produced when a force of one newton (N) is applied 
to an area of one square meter (m2). 
 

Pa N
m2=
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The pascal is a very small unit of measure. It is used for very low-stress applications. In 

most instances the kilopascal (kPa) and megapascal (MPa) are used. 
 

In solving stress problems the following formulas can be used: 
 

stress force
area

or area force
stress

= =
 

 
force = stress x area 
 

There are three kinds of stresses: tension, compression, and shear. Tension, or tensile 
stress, is caused by an external force that tends to pull apart or stretch the material. Tie 
bars supporting heating units or fans from ceiling members are examples of parts subject 
to tensile stress. See Fig. 29-1-1. 
 
 

 
Fig. 29-1-1 Stresses. 
 

Compression, or compressive stress, is caused by external forces that tend to crush or 
push the material together. Basement posts and walls are parts subject to compressive 
stress. 

Shear stress is caused by external forces that tend to cause the particles within the 
material to slide past one another. Rivets holding metal plates together are subject to 
shear stress. 

These stresses often appear in combination. In a simple beam supporting a load, all 
three stresses occur. There is a tensile stress along the bottom of the beam, a compressive 
stress along the top of the beam, and a shear stress at each side at the abutments. 

The ultimate strength of a material is the highest unit of stress that the material can 
withstand without breaking. 
 
LOADS 
 
The external forces acting on a body, called loads and measured in pounds, tons, and kips 
(U.S. Customary) or newtons, kilonewtons, and meganewtons (metric), are classified 
according to the manner in which they are applied. 
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A static load is one that is applied gradually to a part and that remains practically 
constant once the maximum load is reached. The weight (mass) of a building acting on its 
foundation is an example of a static load. Static loads are also referred to as dead loads. 

An impact or shock load is one that is applied suddenly on an object for a short time. 
When a nail is struck by a hammer or a train passes over a portion of track, the loads 
resulting from these actions are known as impact loads. 

Repeated loads are loads that are alternately applied and removed many times. An 
example of a part that is subjected to this type of load is a connecting rod in an 
automobile engine. 

Only static and impact loads will be dealt with in this unit. 
 
TYPES OF STRESS 
 
Since there are three types of stresses, a material will have three different ultimate 
strengths. When machine parts are designed, it is not feasible to work precisely to the 
ultimate strength of the material since the addition of any shock or unforeseen load would 
cause breaking. 

Therefore, when parts are designed, another stress known as the safe working stress 
(allowable unit stress) is used. This stress is obtained by dividing the ultimate strength of 
the material by a number called the factor of safety. Hence 

 

Safe working stress (S) ultimate strength (Su)
factor of safety (FS)

=
 

 
 
Fig. 29-1-2 Common terms, symbols, and formulas. 
 

Other common terms and formulas are shown in Fig. 29-1-2. The number used for the 
factor of safety varies according to the material, the proposed location of the part, and the 
type of force that it must withstand. For example, a wooden part that is subjected to a 
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shock force would have a greater factor of safety than a steel part that is subjected to a 
dead load. Factors of safety are not used as frequently as they were in the past since many 
of today's codes for structures and machines list the allowable unit or working stresses to 
be used. However, in certain applications, such as aircraft design, the ultimate strength 
and factors of safety are often used. Allowable unit stresses for steel will be covered in 
greater detail later in the chapter. 

Figure 29-1-3 shows the average values of the ultimate strengths of various materials. 

 
Fig. 29-1-3 Physical properties of common materials. 

 
EXAMPLE 1 A 2-ton weight is suspended from a 1.25 x 2.00-in. steel bar. What is the unit 
stress in pounds per square inch (psi)? 
 
Solution The unit stress will be the force divided by the area. 
 

stress force
area

=
 

S F
=

=
×
×

=

A

1600 psi

2 2000
125 2 00. .

 
 
EXAMPLE 2 What tensile force would cause a φ2.00 A572-50 steel rod to fail?  
Solution The cross-sectional area of the rod is equal to πR2 = 3.1416 x 1.00 x 1.00 = 
3.1416 in.2. From the table shown in Fig. 29-1-3, A572-50 steel has an ultimate strength 
of 65 000 psi. Therefore, the tensile force that would cause the rod to fail is 
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Area x ultimate strength = 3.1416 x 65 000 = 204 204 lb 
 
EXAMPLE 3 What is the maximum permissible tensile load an A572M-350 structural 
steel column, having a cross-sectional area of 300 mm2, can carry if the factor of safety is 
given as 5? 
Solution From the table shown in Fig. 29-1-3, A572M-350 structural steel has an ultimate 
tensile strength of 450 MPa. 
 

Working stress ultimate strength
factor of safety

= 450
5

90 MPa

=

=
 

Therefore, maximum allowable load = S x A = working stress x area = (90 x 106) Pa x 
(300 x 10-6) = 27 kN. 
 
EXAMPLE 4 A 10" x 10" x 8'-0 Western hemlock construction-grade post supports a 
weight of 75 000 lb. Does this meet the minimum requirements as recommended by the 
Institute of Timber Construction (ITC)? 
Solution From the table shown in Fig. 29-1-4 under the headings Carrying Load 
Independently, Compression, and Parallel to Grain, we find the allowable unit stress for 
Western hemlock, construction grade, is 1100 psi. Therefore 
 
Maximum allowable load = A x S = 10 x 10 x 1100 = 110 000 lb 
 
The load is acceptable. 
 
Next check for buckling, using the formula 1/d ≤ 10, where L = length in inches and d = 
least dimension of compression member in inches. 1/d = (8 x 12) ÷ 10 = 9.6. Therefore, 
the post carrying this load would meet ITC requirements. 

 

Fig. 29-1-4 Allowable unit stresses for sawn timber members. 
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EXAMPLE 5 What force is required to punch a 1.50 in. diameter hole in a no. 12 USS 
gage sheet? 
Solution The sheared area will be equal to the circumference of the circle multiplied by 
the thickness of the sheet. Circumference of a 1.50 in. diameter hole = 4.71 in. Thickness 
of a no. 12 USS plate (see Appendix) = .109 in. Sheared area = 4.71 x .109 = .513 in2. 
Ultimate shear strength of steel (see Fig. 29-1-3) is 50 000 psi. Therefore the force 
required to punch the hole = A x S = .513 x 50 000 = 25 650 lb. 
 
DEFORMATION 
When an object is subjected to a load or force, the shape of the material is changed 
slightly. This change in length is called strain, or deformation. See Fig. 29-1-5. The 
length of an object is shortened by a compressive force or lengthened by a tensile force. 
The change in size is called total elongation and is normally measured in inches (U.S. 
Customary) or millimeters (metric) while the change in length per inch or millimeter is 
called unit elongation and is normally measured in inches per inch (U.S. Customary), or 
millimeters per millimeter (metric). Normally the deformation is so small that it cannot 
be detected by the naked eye. The deformation or sag that occurs on a beam when a load 
is applied is called deflection. 
 

 
Fig. 29-1-5 Deformation due to loads. 
 
Stress-Strain Diagram 
The relationship between stress and strain for any material is best shown by a diagram; 
see Fig. 29-1-6. A piece of carbon steel 1.00 in. x 1.00 in. having an area of 1.00 in.2 was 
subjected to a tensile load which was increased each time by 5000 lb, and the results were 
recorded. Up to point A on the graph, the elongation of the bar was proportional to the 
stress. Point A, which was recorded at 29 000 lb, was the elastic limit for that steel. After 
point A, the elongation increased at a faster rate. At a stress slightly higher than the elastic 
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limit, deformation occurred without an increase in stress. This is known as the yield point 
of the material. As the tension increased, the bar elongated until point B was reached. 
This was the largest load applied, which was recorded at 65 000 lb. Beyond this point the 
bar continued to stretch or elongate with less tension. Point B was the ultimate strength of 
the material. The breaking point of the bar was point C, which was recorded at 48 000 lb. 
 The strength of any material may be plotted and calculated in a similar manner, 
although not all materials act in the same way. An example of this would be a cast-iron 
part. Since the ultimate strength and the breaking point would be the same, the part would 
break at the maximum load. 

 
Fig. 29-1-6 Stress-Strain diagram for A572-42 carbon steel. 
 

If a force acting on an object is not great, the material will return to its original shape 
when the force is removed. This tendency to return to the original shape after being 
deformed is called elasticity and varies greatly in different materials. For example, lead is 
said to have little or no elasticity, while spring steel has a great amount. If, however, the 
material does not return to its original shape after it has been subjected to a force, it is 
said to be stressed beyond its elastic limit. Up to this elastic limit the deformation is 
proportional to the load; that is, the unit stress is proportional to the unit strain at any 
point in a material up to its elastic limit. This is known as Hooke's law. Beyond the 
elastic limit, the deformation ceases to be proportional to the load. The elastic limit of a 
material is difficult to determine accurately. 

The modulus of elasticity of a material is defined as the ratio of unit stress to unit 
deformation (the stress in 1 in. divided by the deformation in 1 in.) and is denoted by the 
letter E. It may be used for finding the elongation per inch or millimeter caused by any 
given load. 

In the metric system, the modulus of elasticity is the stress in pascals divided by the 
deformation in one millimeter. 
 
EXAMPLE 6 A steel bar 10 ft long elongates .075 in. under a tensile force. Calculate the 
unit deformation. 
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Solution 
 
Unit elongation (Du) 
 

in.per  in. 63 .000
1210

075.
(L)part  oflength 

(Dt)n  deformatioor strain  total

=
×

=

=
 

 
 
EXAMPLE 7 Find the unit deformation on a piece of steel produced by a stress of 45 
000 psi. 
Solution From Fig. 29-1-3 we find the modulus of elasticity for steel is 29 000 000. 
Therefore, 
 

in.per  in. 552 .001
000 00 290

000 45Du ===
E
S  

 
EXAMPLE 8 A .25 x 1.00 in. steel bar 15 ft in length supports a tensile load of 5000 lb. 
Find the total deformation. 
Solution 
 
S P= =

×
=A

5000
.25  1.00 20 000 psi

 
 
The modulus of elasticity for steel (see Fig. 29-1-3) = 29 000 000. 
Du = S/E = 20 000 ÷ 29 000 000 = .000 69 in. per in. Therefore, 
 
Dt = Du x L = .000 69 x 15 x 12 =.1242 in. 
 
Temperature Stresses. When the temperature of a piece of metal is changed, the length 
of the metal will be either decreased or increased, depending on whether the temperature 
of the metal is lowered or raised. If, however, the part is rigidly held and is restrained 
from changing its length, stresses known as temperature stresses will result. The main 
factors concerning temperature stress are (1) amount of heat involved, (2) material 
undergoing temperature change (aluminum, iron, etc.), and (3) length of part. In order to 
avoid these stresses, trusses or girders of long spans frequently have one end placed on a 
roller or a sliding plate. 

The linear change per inch or millimeter of length of a part for a degree of change in 
temperature is called the coefficient of linear expansion or contraction. The coefficients 
of common materials are shown in Fig. 29-1-7. Thus, the total deformation resulting from 
temperature change can be found as follows. Let total strain or deformation be Dt, the 
coefficient of linear expansion Ce, temperature change (°F)T, and length of part (in.) L. 
Then Dt = Ce x T x L. In the metric system, degrees Celsius (°C) is used. 
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Fig. 29-1-7 Coefficients of expansion. 
 
EXAMPLE 9 A medium steel bar 100 in. long is raised from 70 to 170°F. How much 
does it expand? 
Solution The coefficient of linear expansion for medium steel (see Fig. 29-1-7) is .000 
006 7. Therefore 
 
Total deformation (Dt) = Ce x T x L = .000 006 7 x 100 x 100 = .067 in. 
 
EXAMPLE 10 If the steel bar in Example 9 is restrained and is 2 in. square, what 
compressive stress is placed on the bar and what load is placed on the restraining 
members? 
Solution 
 

in.per  in. 67 000 .
100
.067 =strain Unit 

in. 0.67 =strain  Total

=
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E
Du S = strain)(unit   

Where  S = stress 
E = modulus of elasticity. 
See Fig. 29-1-3. 

 
Therefore 
   S  = Du x E 
  = .000 67 x 29 000 000 
  = 19 430 psi 
 
Therefore 

Load = stress x area 
= 19 430 x 2.00 x 2.00 
 = 77 720 lb 

 

 
Fig. 29-1-8 Allowable working stress for steel. 
 
UNIT STRESSES FOR STEEL 
The increasing use of high-strength steels no longer permits the continuation of a 
standard design specification based on the exclusive use of one grade of steel. These 
high-strength steels afford as much as a 50 percent increase in strength as compared to 
common structural carbon steel. 
 To simplify matters, permissible unit stresses for the various grades of steel are given 
in terms of a percentage of a specified minimum yield point. These unit stresses are not to 
exceed 61 percent of the yield point. For steel having a yield point of 36 kips/in.2, the 
permissible unit stress would be 22 kips/in.2, which provides for a factor of safety of 
1.64. Figure 29-1-8 lists the various grades of steels and their allowable unit stresses. In 
keeping with the inclusion of steels of several strength grades, a number of corresponding 
specifications for cast-steel forgings and other materials such as rivets, welding 
electrodes, and high-strength bolts have been introduced. 
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CHAPTER 29 

Strength of Materials 
 
UNIT 29-2 
Bolted and Riveted Joints 
 
It is assumed that the reader has a full understanding of the many advantages of bolted and 
riveted construction and possesses a knowledge of this type of working drawing and 
terminology. 

The factors of safety for fasteners used in tension are preferably based upon ultimate 
strength rather than yield point since ultimate strength is of much greater significance for fas-
teners. The permissible working stresses as shown in Fig. 29-2-1 represent working loads 
that are approximately one-third to one-half of the value of the ultimate loads observed in 
tests. 

For greater convenience in the proportioning of the bolted connections, permissible 
stresses for bolts are now given in terms applicable to their normal body area, i.e., the area of 
the unthreaded shank. 

The tensile stress permitted for A307 bolts and threaded parts of A36 steel is equivalent to 
22 000 psi (pounds per square inch) or 150 MPa (metric) applied at the root area of the 
threads. See Fig. 29-1-8. 

Permissible stresses for rivets are given in terms applicable to the nominal cross-sectional 
area of the rivet before driving. See Fig. 29-2-1. 

 
 

 
 

 
 
 
Fig. 29-2-1 Allowable load in kips per square inch (U.S. Customary) and kilonewtons (metric) for 
structural steel. (Continued on the next page.) 
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Fig. 29-2-1 Continued.  
 

The most common methods of bolting or riveting plates together are by lapping or butting 
the plates, as shown in Fig. 29-2-2. There are many areas where a failure may occur in this 
type of connection (Fig. 29-2-3). In the lap joint the rivet may shear between the two plates. 
Since the rivet would shear in only one plate, it is said to be in single shear. The area that 
would shear would be the cross-sectional area of the rivet. 

 
Fig. 29-2-2 Plate connections. 
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Fig. 29-2-3 Stress areas in lap and butt joints. 

 
There is a possibility that the plate may fail by tearing away at its weakest point, the 

section through the rivet or bolt hole. This would be a tension failure. The area that would 
fail would be the area of the plate at the center of the hole less the area of the hole. 

A third type of failure would be for the rivet or bolt to rip through or crush the plate 
directly beneath it. This is called a bearing failure, and the area that would fail in the plate 
would be equal to the diameter of the fastener times the plate thickness. If more than one bolt 
or rivet were used, the load would be divided equally on the fasteners. Since only two pieces 
of metal are joined, they are said to be in single bearing. 

In the butt joint shown in Fig. 29-2-3, the rivet would have to be sliced into two sections if 
the joint were to fail by shear. The rivet is said to be in double shear, and twice the area of 
the rivet is used in the shear calculations. 

If the joint fails by tension, that is, pulls or tears away, it will do so at its weakest point —
the section through the hole. Since the two outside plates are pulling in one direction and the 
center plate in the other, the smaller of the two areas must be used in calculating the tensile 
strength of the joint. 

In calculating for bearing failure, a greater allowable working stress is permissible for 
rivets and high-strength bolts over ordinary bolts. 
 
Rivet Holes 
In calculating the stresses in riveted and bolted joints, a distinction must be made between 
structural joints and joints in boilers, pipes, and tanks. In structural work, the steel members 
are generally punched and drilled .06 in. (1.5 mm) larger than the rivet in the shop and then 
taken to the site for assembly. In calculating the tensile stress in the joint, the size of the hole 
is taken as .12 in. (3 mm) greater than the nominal diameter of the rivet. This is to allow for 
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any unseen damage that may occur around the hole when it is punched and assembled. Areas 
for shear and bearing are based on the nominal rivet diameter. 

In the construction of boilers, where leakage may be a problem, it is essential that the rivet 
holes line up. These holes are often reamed at assembly. As the finished rivet fills the hole 
(which is larger than the rivet) completely, the diameter of the hole is used for computing all 
the stresses. 
 
Spacing of Rivets or Bolts 
The minimum distance between the centers of fastener holes is 3 times the diameter of the 
fastener, but when possible, the distance shall be not less than shown in Fig. 29-2-4. 
 

 
Fig. 29-2-4 Minimum edge distances and spacings for rivets and bolts. 
 
 The maximum pitch of rivets, or bolts, in line with the stress of compression members 
composed of plates and shapes does not exceed 16 times the thickness of the thinnest outside 
plate or shape or 20 times the thickness of the thinnest enclosed plate or shape, with a 
maximum of 12 in. (300 mm). When two or more gage center lines are used with rivets and 
bolts staggered, the maximum pitch of rivets or bolts in the line of stress in each gage line 
shall not exceed 24 times the thick ness of the thinnest plate or shape, with a maximum of 18 
in. (450 mm). 
 
  The distance between lines of rivets or bolts measured at right angles to the line of stress 
shall not exceed 32 times the thickness of the thinnest plate or shape. The minimum distance 
from the center of any punched hole to any edge shall be that given in Fig. 29-2-4. 
 
EXAMPLE 1 Lap joint. Two steel bars, .50 x 2.00 in. are lapped and joined by a .75-in. rivet. 
What is the allowable tensile load that could be applied to the joint? The holes for rivets are 
to be punched. Plate material is A36 steel. 
 
Solution: There are three areas that must be checked: 
 

1. The bars failing under a tensile load at the holes 
2. The rivet shearing 
3. The bearing on the bars directly below the rivet 

 
As the holes are punched, the diameter of the hole will be taken as .12 in. larger than the 
rivet diameter for calculating tensile loads. 
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Area 1 Bars failing under a tensile load.  
Area of plate at centerline of hole = .50 x (2.00 - .87) = .565 in.2. 
Allowable unit stress = 22 kips/in.2. See Fig. 29-1-8. Therefore:  
Allowable load = S x A = 22 000 x .565 = 12 430 lb 
 
Area 2 Rivet shearing. See Fig. 29-2- 1. 
Single shear for φ.75 rivet = 6.63 kips or 6 630 lb 
 
Area 3 Bearing on plate below rivet. A φ.75 rivet is bearing on .50-in. thick steel.  
Allowable load = (33.75 x .50) = 16 875 lb (see note at bottom of bearing table, Fig. 29-2-1). 

The weakest area would be the shear on the rivet. Therefore, allowable tensile load that 
joint could support = 6 630 lb. 

Fig. 29-2-5 Single-riveted butt joint on a boiler. 
 
EXAMPLE 2 Single-riveted butt joint (Fig. 29-2-5). A boiler has a single riveted butt joint. 
The boiler plate is .44 in., and the two cover plates are .31 in. thick. The rivets are φ.75 in. 
and are spaced 3.00 in. apart. Calculate the main stresses that could safely be applied to this 
joint. Plate material is A36 steel. 
 
Solution Since the pitch of the rivets is 3.00 in., it is assumed that the width of the section 
taken for calculation purposes is 3.00 in. As in Example 1, there are three areas to be 
checked: 

 
1. The section failing under a tensile load 
2. The rivet shearing 
3. The bearing on the steel plate below the rivet. 
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As previously mentioned, for boilerplate construction, the finished rivet is assumed to be the 
same size as the drilled hole, namely, .81 in. 
 
Area 1 Plate failing under a tensile load. Since the area of the two outside plates is greater 
than the area of the middle plate, the middle plate will fail first. Diameter of rivet hole = .81 
in. Area of middle plate = (3.00 - .81) x .44 = .959 in.2. Allowable unit stress = 22 kips. See 
Fig. 29-1-8. Therefore 
 
Allowable load = S x A = 22 000 x .959 = 21 100 lb 
 
Area 2 Rivet shear. Since the rivet would have to shear in two places, it is considered to be 
in double shear. 
 

Shear area 81
4

2 1.03 in.
2

2=
×

× =
π

 
Allowable shear stress = 14.5 kips.  
Therefore 
 
Allowable load = S x A = 14 500 x 1.03 = 14 935 lb 
 
Area 3 Bearing on plates. Middle plate (double shear) area = .44 x .31 = .356 in. 2. Outside 
plates (single shear) have an area equal to 
 
Area = 2 x .31 x .31 = .502 in. 2
 

The weaker area would be the middle plate failing under bearing. Allowable unit stress = 
45 kips per in.2. Allowable load S x A = 45 000 x .356 = 16 020 lb. 

Therefore, the weakest area of the three areas checked would be the rivet shearing. 
Allowable load on joint = 14 935 lb. 
 
EXAMPLE 3 Roof truss (Fig. 29-2-6). A roof truss has loads of 75 and 64 kips acting on the 
upper and lower chord members. Calculate the number of φ.75-in. rivets required to safely 
carry these loads. 
Solution Since the .38 in. gusset is enclosed by two .31-in.-thick angles, the rivets are in 
double shear. In calculating the bearing stress, it will be noted that the two outer angles 
having a combined thickness of .62 in. (two .31-in.-thick angles) are stronger than the 
.38-in.-thick gusset. Since the problem is one of determining the number of rivets required to 
carry the load, it can be assumed that the size of the steel is satisfactory for the applied loads. 
Refer to Fig. 29-2-1. 
 
1. Number of φ.75-in. rivets in double shear required for 
 

Upper chord = 75 + 13.25 = 6 rivets  
Lower chord = 64 + 13.25 = 5 rivets 

 
2. Number of φ.75-in. rivets bearing on .38-in. plate required for 
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Upper chord = 75 + 12.66 = 6 rivets  
Lower chord = 64 + 12.66 = 5 rivets 

 
Therefore, the minimum allowable rivets required for the upper and lower chords are 6 and 

5 rivets, respectively. 
 

 
Fig. 29-2-6 Roof truss. 
 
EXAMPLE 4 Double-riveted butt joint (Fig. 29-2-7). A boiler has a double-riveted butt joint. 
The boiler plate is .38 in. thick, and the two cover plates are .25 in. The rivets are φ.75 in. A 
section of the riveted joint is shown. Calculate the main stresses in the joint when the boiler 
plate is subject to a tensile strength of 6000 psi. 
 

Fig. 29-2-7 Double-riveted butt joint on a boiler. 
 
Solution The length of the repeated section is 6.00 in. Since both sides of the joint are the 
same, only one side of the joint (shown in Fig. 29-2-7B) is used in computing the stresses. 
There are two rivets in double shear and one rivet in single shear. The rivets are .75 in. in 
diameter and are placed in .81-in. drilled holes. As mentioned earlier in boiler work, finished 
rivets are assumed to be the same size as the drilled holes; thus for calculation purposes the 
rivets will be .81 in. in diameter. The total force exerted on the repeated section is 
 
F = S x A = 6000 x 6.00 x .38 = 13 680 lb 
 

There are two rivets in double shear and one rivet in single shear, comprising shear areas. It 
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will be assumed that each shear area will carry one-fifth of the load. Shear force on each rivet 
= 13 680 ÷ 5 = 2736 lb. Therefore the unit shear stress on rivets is 

 

( )[ ] .515
2736

4.81
2736S 2 =

÷×
==

πA
F = 5313 psi 

 
The upper cover plate transmits two-fifths of the load. Therefore F1 = .4 x 13 680 = 5472 lb. 

The lower cover plate transmits three-fifths of the load. Therefore F2 = .6 x 13 680 = 8208 
lb. Stress on boiler plate taken at section A 

 

( ) psi 6944
97.1

13680
38.81.00.6

680 13S ==
×−

==
A
F  

 
Since one-fifth of the total load has been transmitted to the lower cover plate at section A, 

the load on the boiler plate at section B is .8 x 13 680 = 10 944 lb. Stress on .38-in. boiler 
plate taken at section B is 
 

( ) psi 6577
664.1
944 10

38.62.100.6
944 10S ==

×−
==

A
F  

 
Since the lower cover plate transmits three-fifths of the total load, the largest stress on the 

two cover plates will occur on the lower cover plate at section B. Stress on the bottom cover 
plate at section B is 

 

( ) psi 4967
095.1

8208
25.62.100.6

8208S ==
×−

==
A

2F  

 
In calculating the bearing stresses, the bearing area for the rivet in single shear is the rivet 

diameter times the thickness of the thinner plate connected (the cover plate). The bearing 
area for the rivet in double shear is the rivet diameter times the thickness of the boiler plate. 
The rivets in double shear are subjected to twice the bearing load of those in single shear. 
Bearing stress at a rivet in single shear (section A) is 
 

psi 680 13
20.

2736
25.81.

2736S ==
×

==
A
F  

 
Bearing stress at a rivet in double shear (section B) is 
 

psi 766 17
308.

5472
38.81.

5472S ==
×

==
A

1F
 

 
Stresses in Thin-Wall Cylinders. An important application of riveted and welded joints is in 
the construction of boilers and tanks. The pressure of gases or liquids upon the walls of a 
tank acts outwardly in all directions and uniformly. Therefore, the cylinder shell on a 
thin-wall vessel is designed with the assumption that the stress is uniform throughout the wall 
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thickness. 
The tensile stress in the ends of the cylinder, caused by the pressure inside, is called 

longitudinal stress, or tension. The tensile stress acting in the circumferential direction is 
called hoop stress, or tension.  
 

 
Fig. 29-2-8 Thin-wall cylinder. 

 
 
EXAMPLE 5 A tank of 48.00-in. diameter is made of .25-in. steel plate. The internal pressure 
is 150 psi. Calculate the size of rivets required if the pitch on the longitudinal and 
circumferential joints is 3.00 in. 
Solution 

1. Calculate rivet size for longitudinal seam. Figure 29-2-8 shows a half-section of the 
tank. The internal pressure of 150 psi acts on the shell surface at every point. The total force 
acting on the half of the tank shown would be equal to the area of the tank taken at its center 
times the pressure, or (48.00 x 72.00) in.2 x 150 psi = 518 400 lb. The combined equal 
pressures of F1 and F1 acting on the tank wall are equal in magnitude to P but act in opposite 
directions. 

Only the pitch distance of 3.00 in. the repeated section, need be used in calculating the size 
of the rivet along the joint. Therefore: 
 

lb 800 10
2

15000.300.48section repeatedfor  =
××

=1F  

 
or load acting on each rivet. As previously mentioned, in boiler construction the diameter of 
the rivet hole, which is .06 in. larger than the diameter of the rivet, is used in computing all 
the stresses. Refer to Fig. 29-2-1. The allowable stress in single shear is 15 kips per in2. The 
chart shows values of 9.02 and 11.78 kips for rivet sizes of φ.875 and φ1.00 in., respectively. 
Since the finished size of the .875-in. diameter rivet will be. 938 in. in diameter, the 
allowable load will be computed on the final size. Therefore the allowable load for a .938-in. 
diameter rivet will be 
 

Area x stress = (π x .9382 ÷ 4) in.2 x 15 kips = .69 in. 2 x 15 000 = 10 365 lb 
 
Since this is less than the load acting on the rivet, the next size larger rivet must be used, and 
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therefore the φ1.00 in. rivet is required. The allowable load in bearing for a φ1.00-in. rivet on 
.25-in. steel plate is 11 250 lb. Therefore the size of rivet required along the longitudinal 
seam is φ1.00 in. 

2. Calculate rivet size for circumferential joint. Number of pitches or repeated sections on 
circumference equals 

 
π π×

=
×

=
diameter
pitch

48.
.

.00
300

50 3
 

 
Use 51 rivets. 
Pressure exerted on head of tank = pressure x area = 150 psi x (π x 24.002) in.2 = 271 434 

lb. Therefore 
 

lb 5322
51

434  271rivetper  Load ==  

 
Note: When the pitches on the longitudinal and the circumferential joints are equal, then the 
load per pitch on the circumferential joint is one-half of the load per pitch on the longitudinal 
joint. 

Refer to Fig. 29-2-1. The allowable load in single shear for a φ.62-in. rivet (use .69 in. for 
calculations) is 5609 lb and the allowable load in bearing for a φ.62-in. rivet (use .69 in. for 
calculations) on .25-in. steel is 7762 lb. Therefore the size of rivet required along 
circumferential joint is φ.62 in. 

 
 
BOLTS, SCREWS, AND STUDS 
As mentioned at the beginning of this unit, the tensile stress permitted for A307 bolts and 
threaded parts of A36 steel is equivalent to 22 000 psi applied at the root area of the threads. 
 
EXAMPLE 6 What force is required to strip the threads on a 1.000-8 UNC regular hex nut and 
bolt? 
Solution The sheared area will be equal to the circumference of the root circle multiplied by 
the height of the nut. Root diameter of 1.000-8 UNC thread = .847 in., circumference = 2.66 
in. Height of 1.000 in. regular hex nut (see Appendix) = .875 in. Shear area = 2.66 x .875 = 
2.33 in.2. Ultimate tensile strength of A36 steel = 58 kips (see Fig. 29-1-8). 
Therefore 
 
Force required to strip threads = S x A = 58 000 x 2.33 = 135 140 lb 
 
EXAMPLE 7 A platform is supported by four A36 steel rods that are suspended from the 
ceiling. The ends of the rods are threaded, and plate washers and nuts are attached. The 
platform is to support a load of 16 000 lb and any two of the four rods must be capable of 
supporting the entire load. 
Solution The design load for each rod is 16 000 ÷ 2 = 8000 lb. Allowable unit stress (see Fig. 
29-1-8) = 22 000 lb per in.2. 
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2in. 364.

000 22
8000

S
= ==

PA  

 
Note that in example 6 the shear area for a 1.000 in. threaded nut is 2.33 in.2. Therefore, a 
smaller threaded nut is required. Try a .375 UNC style 1 hex nut. 
 
 Area = circumference of root diameter x height of nut = (π × .312) × .328 = .321 in.2. A 
greater root area is required. A style 2 hex nut that is thicker or a .438 in. nut will be needed. 
Area of a .375 UNC style 2 hex nut = (π × .312) ×.406 = .398 in. 2. Therefore, φ.375 rods 
with UNC threads and style 2 hex nuts meet the design requirements. 
 As explained in Chap. 8, property class numbers that designate their strength defines 
metric threaded fasteners. The first number of a two-digit symbol or the first two numbers of 
a three-digit symbol approximates 1 percent of the minimum tensile stress in megapascals.  
 The last numeral approximates one-tenth of the ratio expressed as a percentage between 
minimum yield stress and minimum tensile stress. 
 
EXAMPLE 8 
What mass can be supported by an M24 × 3 stud, property class 8.8, if a factor of safety of 4 
is added to the requirements? 
Solution Refer to Fig. 29-2-9. Under the 8.8 column, an M24 × 3 thread has a tensile strength 
(the maximum force permitted) of 293 kN. Adding a factor of safety to this value we find the 
permissible force is 293 ÷ 4 = 73.25 kN. 1N = 0.102 kg 
 

 
Fig. 29-2-9 Load capacities of threaded fasteners. 
 
Therefore, mass that can be supported = 73 250 x 0.102 = 7472 kg 
 
References and Source Material 
1. American Institute of Steel Construction 
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CHAPTER 29 

Strength of Materials 
UNIT 29-3 
Welded Joints 
 
In addition to riveting, welding is also employed in the joining of structural steel. 
Fabricated steel construction has also replaced many parts formerly made by casting 
because of the lower cost and the greater strength at a considerable reduction in size and 
weight, or mass. 

The two types of welds most frequently used are fillet and butt welds. Thus only these 
types will be covered in this unit. 
 
FILLET WELDS 
The fillet weld is used to join two parts that either overlap or join at an angle, normally 
perpendicular, to each other. In the calculations of strength of fillet welds, the effective 
area is considered as the effective length of weld times the effective throat thickness, as 
illustrated in Fig. 29-3-1. 

 

 
Fig. 29-3-1 Fillet weld nomenclature. 

 
For example, a .38 in. fillet weld 6.00 in. long (effective length) has an effective area of 

.38 x .7 x 6.00, or 1.596 in.2. 
 

For purposes of calculating the strength of welds in this unit, the shear stresses shown in 
Fig. 29-3-2 will be used. The strength of the previous weld would be stress times 
effective area. 

 
Fig. 29-3-2 Shear stress for electrodes. 

 
With E60xx electrodes the weld strength is 

 
13 500 x 1.596 = 21 546 lb 
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Using E70xx electrodes, the weld strength is 

 
15 700 x 1.596 = 25 057 lb 
 

Another method of calculating the strength of welds is to multiply the leg size of the 
weld by effective length. The shear resistance factors (SRF) shown in Fig. 29-3-3 are 
based on the shear stresses shown in Fig. 29-3-2. 

The strength of the previous weld using E70xx electrodes would be 4.2 x 6 = 25.2 kips 
or 25 200 lb. 

The strength value for specified weld sizes is the more convenient method to use. 
The following recommendations should be adhered to when welded joints are 

designed. 
 

• Even-number-mm-size welds, such as shown in Fig. 29-3-3, should be used 
whenever possible.  

• For metric length of welds use lengths evenly divisible by 5, such as 40, 50, 60, 
etc. 

• Fillet welds should be at least .06 in. (2 mm) less than the thickness of the part 
being welded.  

• Welds should be located on both sides of T joints evenly spaced around the line 
of action of the applied load. 

 
Fig. 29-3-3 Strength of fillet welds. 
 

 
Fig. 29-3-4 Lap joint. 
 
 

Copyright © McGraw-Hill.  All rights reserved. 2



EXAMPLE 1 Two .38 x 6.00 in. steel bars are welded with F70 electrodes as shown in Fig. 
29-3-4. What size weld is required if a tensile load of 30 kips is applied?  
 
Solution 
 

Weld size =  load
length  SRF

SRF 3
2 6.00

2.5

×

=
×

=
 

 
Refer to Fig. 29-3-3. A .25 in. fillet weld is required. 
 
EXAMPLE 2 A .75 x 4.00 in. A572-50 bar is welded to a column. What are the size and 
length of the fillet welds required if a tensile load of 40 kips is applied? 
 
Solution Since two fillet welds will be used, one on each side of the bar, each fillet weld 
will be designed to resist a force of 40 kips ÷ 2 = 20 kips.  

With a weld running the entire length of 4.00 in., a weld having the strength of 20÷4 or 
5 kips per inch of length is required. 

Refer to Fig. 29-3-3: a .50 in. fillet weld is selected. With a .62 in. weld, a weld length 
of 20 ÷ 7.0 = 2.85 in. (use 3.00 in.) would be required.  
 
EXAMPLE 3 A 250 x 10 mm. A572M-380 steel plate is connected by a pair of fillet welds 
to the bottom flange of a beam, as shown in Fig. 29-3-5. The plate is subjected to a 
tensile load of 450 kN. What are the minimum size and length of weld recommended for 
this connection, if the maximum stress on the plate is 220 MPa? 
 

 
Fig. 29-3-5 Bar fillet welded both sides. 
 
Solution Before the weld size is chosen, the minimum plate area at the weld should be 
established. The minimum plate area, for calculating purposes, at the welded area (see 
Fig. 29-3-6) is width times plate thickness. 
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Fig. 29-3-6 Plate area at weld. 
 
Load = stress x area. 
 
Therefore 
 

( )
mm 204.5or  m 0.2045

m .010Pa 10 220
000 450

metersin   thicknessplate  stress
load =plate of width Minimum

6

=
××

=

×

 

 
Thus, the plate width of 250 mm is acceptable. If the minimum weld length is 210 mm 
per side (min. plate width), the load per min of weld is 450 ÷ (2 x 210) = 1.07 kN. 
  Refer to Fig. 29-3-3. An 8-mm fillet weld is required. If the fillet weld were to run 
the entire length of the plate, then the load per mm of weld = 450 + (2 x 250) = 0.9 kN. 
This would permit a 6-mm weld to be used, which is more economical. 

 
Fig. 29-3-7 Intermittent weld. 
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Intermittent Fillet Welds 
Intermittent fillet welds may be used to transfer calculated stress across a joint when the 
strength required is less than that developed by a continuous fillet weld of the smallest 
permitted size, and to join components of built-up members. The effective length of any 
segment of intermittent fillet welding should be not less than 4 times the weld size, with a 
minimum of 1.50 in. (40 mm). 
 
EXAMPLE 4 Calculate the size of the intermittent weld shown in Fig. 29-3-7 to safely 
carry a tensile load of 180 kips. Use F70xx electrodes. 
Solution 
Total length of welds = 11 x 2.00 x 2 = 44.00 in. 

kips. 4.09
44

180 =  weldoflength inch per  Load =  

Refer to Fig. 29-3-3. Size of fillet weld required is .38 in. 
 
Fillet Welds for Angle Iron 
When tension or compression members are connected by two side fillet welds as shown 
in the previous examples, the weld should be placed in the same line of action as the 
force being transmitted by the weld. For members having symmetrical cross sections, the 
length of weld on each side of the member should be equal. For members having 
unsymmetrical cross sections, as shown in Fig. 29-3-8 where an angle iron is welded to a 
steel plate, the lengths of welds are so proportioned that the line of action of the force 
transmitted by the weld will be along the axes of the two members. This is accomplished 
by assuming that the line of action on the angle member is on the centroidal axis (center 
of gravity) and by making the lengths of welds such that L1 x A = L2 x B. 

 
Fig. 29-3-8 Fillet weld on both sides of angle iron. 
 
EXAMPLE 5 A 5.00 x 3.00 x .38 in. A572-45 angle welded to a steel plate transmits a load 
of 54 kips. Calculate the length of welds on each side of the angle so that the load acts 
along the centroidal axis of the angle. See Fig. 29-3-8. 
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Solution The maximum fillet weld for .38-in.-thick material is .31 in. The allowable load 
per inch length of a .31-in. weld is 3.5 kips. See Fig. 29-3-3. Therefore: 
 

Minimum permissible length of weld =  54
3.5

15.43 in.(use 15.50 in.)=
 

 
Consider the 54 kip load being transferred to the plate by loads P1 and P2 where P1 = 

3.5 x L1; P2 = 3.5 x L2; and P1 and P2 both equal 54 kips. Taking moments about a point 
on length L2 (refer to Fig. 29-4-3 for calculation of moments), we have 

 
P

P
L

L

1

1

1

1 5.23 in.(use 5.25 in.)

× = ×
= × ÷
= = ×
=

500 54 170
54 170 500
18 3 35

. .
. .

. .

 
 
Therefore 
 

L
L L

L

1

1 2

2

5.23 in.(use 5.25 in.)
15.50 in.
15.50 5.25 10.25 in.

=
+ =

= − =  
 
Therefore weld lengths of 5.25 (L1) and 10.25 in. (L2) are selected. 
 
EXAMPLE 6 Use the same members and load as in the previous example except that the 
fillet weld is welded on three sides, as shown in Fig. 29-3-9. 
 

 
Fig. 29-3-9 Fillet weld on sides and end of angle iron. 
 
Solution The design calls for 15.50 in. of weld to be used; 5.00 in. of the weld lies along 
the back of the angle so that the remaining 10.25 in. of weld is equal to the combined 
length of welds L1 and L2. 
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The 15.50-in. of weld should be located so that the line of action of the force transmitted 
by the weld is along the centroidal axis of the angle. 
 

For calculation purposes, assume there are three welds, P1, P2, and P3 whose combined 
loads equal 54 kips, and the allowable load per inch length of a .06 in. weld is 3.5 kips. P1 
lies along distance L1 and is equal to 3.5L2 kips. P2 lies along distance L2 and is equal to 
3.5L2 kips. P3 lies midway along the 5.00-in. width, or 2.50 in. from P1, and is equal to 
5.00 x 3.5 = 17.5 kips. At a point on line L2
 
Clockwise moments 
 = (P1 x 5.00) ÷ (P3 x 2.50) 
 = (L1 x 3.5 x 5.00) + (17.5 x 2.50) 
 = 17.5L1 + 43.75 in. kips 
 
Counterclockwise moments 
 = 1.70 x 54 = 91.8 in. kips 
 
     Clockwise moments = counterclockwise moments 
17.5 L1 + 43.75 in. kips = 91.8 in. kips 
    17.5 L1 = 48.05 in. kips 
 L1 = 2.75 in. 
 L1 + L2 = 10.50 in. 
 L2 = 10.50 - 2.75 
 L2 =  7.75 in. 
 
Therefore weld lengths of 2.75-in. (L1) and 7.75 in. (L2) are used on the sides of the 
angle. 
 
BUTT WELDS 
The butt weld is used to join two pieces of metal that lie on the same plane. In the 
calculations of strength of butt joints, the effective area of butt welds shall be considered 
as the effective length of weld times the effective throat thickness. The effective throat 
thickness depends on the metal thickness, the gap between the adjoining parts, the type of 
butt weld, and whether the weld is on one or both sides. See Fig. 29-3-10. 
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Fig. 29-3-10 Strength of butt welds. 
 
EXAMPLE 7 An open-square butt weld, welded one side, is used to join two A36 steel 
plates .25 x 10.00 in. Compute the safe tensile load that can be applied to the joint. 
Solution Refer to Fig. 29-3-10. The effective throat thickness for an open-square butt 
weld = 0.75T = 0.75 x .25 = .188 in. Next (refer to Fig. 29-1-8), the allowable unit tensile 
stress for A36 steel is 22 kips. Therefore: 
 
Safe load = area x unit stress 

 = (.188 x 10.00) x 22 000 
 = 141.36 kips 
 

 
Fig. 29-3-11 Welded boiler section. 
 
EXAMPLE 8 A φ36 in. boiler, made of A36 steel, has to withstand a steam pressure of 350 
psi. A single-V butt joint, welded one side, is to be used. What is the thickness of boiler 
plate required? 
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Solution Figure 29-3-11 shows a half section of the boiler. The total force P acting on the 
cylinder is the resultant pressure of the internal pressure of 350 psi acting in all directions 
on the cylinder wall. It will be assumed that for thin-walled cylinders the resultant force P 
will equal the diameter of the cylinder in inches, times the length of the cylinder in 
inches, times the pressure acting within the cylinder. 

 
The total force P is resisted by two equal forces F1 and F2. Taking a section of the tank 

1 in. in length and calculating the forces P, F1, and F2, we have 
 
P = S x A 
 = 350 x 1.00 x 36.00 
 = 12 600 lb 
F1 = 12 600 2 = 6300 lb ÷
 
The single-V butt weld will have to withstand a force of 6300 lb for every inch of weld. 
Allowable unit stress for A36 steel is 22 000 psi. Weld stress equals plate stress. 
Therefore 
 
Effective throat thickness of weld  

= F1   (S x length of section) ÷
= 6300  (22 000 x 1.00)  ÷
=.28 in. 

 
Refer to Fig. 29-3-10; note that the effective throat thickness of a single-V butt weld, 
welded one side, under tension is equal to T - .25 in., where T is equal to the thickness of 
plate. Therefore, minimum plate thickness must be .25 + .28 = .53 in. to safely carry the 
load. With a welded-both-sides joint, the plate thickness could be reduced to .28 in., 
which would be a considerable saving. 
 
Reference and Source Material 
1. American Institute of Steel Construction. 
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CHAPTER 29 

Strength of Materials 
UNIT 29-4 
Beams 
 
A beam is a structural member or machine part which supports transverse (i.e., 
perpendicular) loads and reactions. Most beams are placed in a horizontal position with 
vertical forces acting on them. Examples are floor and ceiling joists, lintels, and floor 
beams. This unit covers the design of simple beams only where buckling and twisting are 
not factors and where the beams are of uniform size and shape for the entire length. 
Forces acting on the beams are assumed to be in the same plane. 

 
Fig. 29-4-1 Common types of beams. 
 
Types of Beams 
 Beams are classified according to the manner in which they are supported. Some of the 
more common types of beams are shown in Fig. 29-4-1. They are 
1. Cantilever beam: a beam that has one fixed end 
2. Simple beam: a beam that is supported at each end 
3. Overhanging beam: a beam that has one or both ends projecting beyond its supports 
4. Beams with both ends fixed 
5. Beams fixed at one end and supported at the other end 
6. Continuous beam: a beam supported at more than two points 
 
KINDS OF LOADS 
Two types of loads commonly occur on beams: concentrated and uniformly distributed 
loads. A concentrated load extends over a short length of the beam and for calculation 
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purposes is considered as acting at one point. It is usually represented by a line with an 
arrow indicating its direction of force and the letter P as shown in Fig. 29-4-2A. 
Concentrated loads are generally expressed in pounds or kips (U.S. Customary), or 
kilonewtons or meganewtons (metric). One kip equals 1000 pounds. A uniformly 
distributed load is one in which the load is distributed uniformly over a given length or 
over the entire length of the beam. The weight or mass of the beam is an example of a 
uniformly distributed load. This type of load is generally expressed in pounds or kips per 
foot (U.S. Customary), or newtons per meter or kilonewtons per meter (metric). The load 
is represented in the figure by a rectangular block resting on the beam, as shown in Fig. 
29-4-2B. 

 
Fig. 29-4-2 Representation on beam drawings of loads. 

 
The upward forces, or supports, that hold the beam in a state of equilibrium are called the 
reactions and are designated by the letters R1 (left side) and R2 (right side). The sum of 
the reactions R1 + R2, known as the forces acting upward, are equal and opposite to the 
downward forces or loads. 

 
MOMENTS 
When a force acts upon an object at a distance from the object, as through a beam, the 
force is called a moment. See Fig. 29-4-3. A moment is the tendency of a force to cause 
rotation about a given point or axis. The magnitude of a moment is equal to the magni-
tude of the force times the perpendicular distance to the point. Since the force is 
measured in pounds and the distance in feet or inches, moments are measured in 
foot-pounds (ft-lb) or inch-pounds (in.-lb). In the metric system the moments are 
measured in newton-meters (N-m). 
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Fig. 29-4-3 Application of moments. 
 
If a number of forces acting on a point are in equilibrium, the sum of the moments of all 
the forces about that point is zero. Therefore, the sum of the moments of all forces that 
tend to produce clockwise moments about a given point is equal and opposite to the sum 
of all the forces that tend to produce counterclockwise moments at that given point. This 
law of equilibrium is very helpful in solving beam reaction. 
 
EXAMPLE 1 A force of 20 lb is applied at the end of a wrench 12 in. from the center of 
the bolt that is being held by the wrench. Calculate the moment.  
 
Solution The moment may be found by multiplying the force times the distance: 20 x 12 
= 240 in-lb. 
 
EXAMPLE 2 A cantilever beam supports a concentrated load of 500 lb located 12 ft from 
the support. Neglecting the mass of the beam, calculate the moment at the wall. 
 
Solution The moment taken at the wall or support may be found by multiplying the force 
times the distance: 500 x 12 = 600 ft-lb. 

 
Fig. 29-4-4 Simple beam with concentrated load. 
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EXAMPLE 3 A beam 15 ft long has a concentrated load of 1200 lb acting 5 ft away from 
the left reaction. Neglecting the mass of the beam, calculate the reaction forces. See Fig. 
29-4-4. 
 
Solution Taking moments about reactions R1 and R2 we have 
 
Clockwise moments using pounds and feet = 5 x 1200 = 6000 ft-lb. 
 
Counterclockwise moments = 15 x R2 
 
Clockwise moments = Counterclockwise moments 
 
6000 ft-lb = 15 x R2
 
Therefore 

R2 = 400
15

6000
=  lb 

 
     R1 + R2 = 1200 lb 

Thus 
 

R1 = 1200 - 400 = 800 lb 
 

EXAMPLE 4  
Use the same data given in Example 3, but include the force of gravity acting on the 
beam, which is 40 lb/ft. See Fig. 29-4-5. 

 
Fig. 29-4-5 Simple beam with uniformly distributed and concentrated loads. 
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Solution Since the force of gravity acting on the beam is uniformly distributed, a 
concentrated load of 600 lb located midway on the beam, as shown in Fig. 29-4-5B, 
would have the same effect on the reactions R1 and R2. 

 
Therefore by substituting the 600-lb concentrated load 7'-6 from the reactions for the 
uniformly distributed load, the reaction forces can now be found. 
     Taking moments about reaction R1, 
(Fig. 29-4-5C), we have 
 
Clockwise moments using pounds and feet 
 
 = (1200 x 5) + (600 x 7.5) 
 = 6000 + 4500 

 = 10 500 ft-lb 
 

Clockwise moments = Counterclockwise moments 
 
10 500 ft-lb = 15 x R2
Therefore: 
 
 R2 = 10 500 15 = 700 lb ÷
 
R1 + R2 = 1800 1b 
 
Thus 
 
  R1 = 1800 - 700 = 1100 lb 
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CHAPTER 29 
Strength of Materials 

UNIT 29-5 
Shear Diagrams 
 
When a beam supports a load, there is a tendency for the beam to fail by shear. In design 
work, it is essential to know what shear force a beam must resist at any section. The 
vertical shear force at a section of a beam is the algebraic sum of all the external forces 
acting on either side of the section. This can be further simplified by stating that the 
vertical shear at any section is equal to the product of the reaction minus the loads. The 
section is the name given to the cross section of the beam where the calculations are 
made. For simplification, only the forces acting to the left of the section will be 
calculated in this unit.  

Shear is designated as either positive shear or negative shear. When the sum of the 
vertical forces to the left of the section is upward, the shear is positive. When the sum of 
the vertical forces to the left of the section is downward, the shear is negative. See Fig. 
29-5-1. 

 
Fig. 29-5-1 Designation of positive and negative shear. 

 
 This information is represented in a shear force diagram that is normally drawn below 
the loading diagram of the beam. A horizontal zero base line is drawn to the same 
horizontal scale as the loading diagram, and the positive shear is shown above this line 
while the negative shear is drawn below it. The magnitude of the shear at each section is 
shown by vertical lines drawn to a convenient scale. 
 In order to identify the section at which the shear is taken, a symbol (the letter V 
followed by a number) is used. The letter V refers to the magnitude of the vertical shear, 
and the number refers to the horizontal distance from the left end of the beam. Thus V4 
refers to the shear force taken at a section 4 ft away from the left reaction (R1) of a simple 
beam, or 4 ft away from the free end of a cantilever beam. The mass of the beam will not 
be considered unless specified in the examples or problems. 
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CANTILEVER BEAMS 
Cantilever beams should be drawn with the support shown at the RH side. 
 

 

  

 
 

 

 
 
 
 

(A) WITH CONCENTRATED LOAD  (B) WITH UNIFORMILY DISTRIBUTED LOAD 

Fig. 29-5-2 Construction of shear diagram for cantilever beams. 
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EXAMPLE 1 Figure 29-5-2A represents a cantilever beam with a concentrated load at the 
free end. Construct the shear diagram. 
 
Solution Taking sections at various points along the beam and calculating V, the vertical 
shear to the left of the section, we have 
 
V0 = 0 – 300 = -300 lb 
V3 = 0 – 300 = -300 lb 
V6 = 0 – 300 = -300 lb 
V9 = 0 – 300 = -300 lb  
V12 = 0 – 300 = -300 lb 
 
Since there is no reaction to the left of the section, the shear values are all negative and 
are drawn below the base line. 
 
EXAMPLE 2 Figure 29-5-2B illustrates a cantilever beam with a uniformly distributed 
load. Construct the shear diagram. 
Solution Taking sections at various points along the beam, starting at the free end, we 
have 
 
V0 = 0 - 0 = 0 lb 
V3 = 0 - (800 x 3) = -2400 lb 
V6 = 0 - (800 x 6) = - 4800 lb 
V9 = 0 - (800 x 9) = -7200 lb 
V12 = 0 - (800 x 12) = -9600 lb 
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Fig. 29-5-3 Shear diagrams for cantilever beams. 
 
EXAMPLE 3 Figure 29-5-3A illustrates a cantilever beam with a uniformly distributed 
load at the end of the beam. Construct the shear diagram. 
Solution Taking sections at various points along the beam, starting at the free end, we 
have 
 
V0 = 0 - 0 = 0 N 
V1 = 0 - 800 = -800 N 
V2 = 0 - 800 x 2 = -1600 N 
V2,5 = 0 - 800 x 2.5 = -2000 N 
V3 = 0 - 800 x 2.5 = -2000 N 
V4 = 0 - 800 x 2.5 = -2000 N 
 
EXAMPLE 4 Figure 29-5-3B shows a cantilever beam with a concentrated load at the free 
end of the beam and a uniformly distributed load at the fixed end. Construct the shear 
diagram. 
Solution Taking sections at various points along the beam, starting at the 
free end, we have 
 
V0 = 0 - 500 = - 500 lb 
V4 = 0 - 500 = - 500 lb 
V8 = 0 - 500 - (1 x 60) = -560 lb 
V12 = 0 - 500 - (5 x 60) = -800 lb 
V16 = 0 - 500 - (9 x 60) = -1040 lb 
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EXAMPLE 5 Figure 29-5-3C shows a cantilever beam with a uniformly distributed load 
and a concentrated load acting in the middle section of the beam. Construct the shear 
diagram. 
Solution Taking sections at various points along the beam, starting at the free end, we 
have 
 
V0 = 0 - 0 = 0 lb 
V4 = 0 - (4 x 80) = - 320 lb 
V8 = 0 - (8 x 80) = - 1290 lb 
V12 = 0 (12 x 80) = - 1610 lb 
V18 = 0 (18 x 80) = - 2090 lb 
 
SIMPLE BEAMS 
In constructing the shear diagram for a simple beam, the magnitude of the reactions must 
be calculated first. The shear diagram is constructed in the same manner as for a 
cantilever beam. For calculation purposes V0 will be considered as the section where the 
beam leaves the reaction R1, and the shear section taken at R2 will be considered as the 
section where the beam leaves the reaction R2. 
 
EXAMPLE 6 Figure 29-5-4A illustrates a simple beam with a concentrated load of 800 lb 
at the center of the span. Construct the shear diagram. 
 
Solution From the figure it is apparent that the reactions are 400 lb each, because of the 
symmetrical loading. As previously mentioned, only the forces acting to the left of the 
section will be used for calculating the shear diagram. At the left end of the beam, the 
only force acting on the beam is the upward force of the reaction R1. Therefore the shear 
force at V0 = 1400 - 0 = + 400 lb. Taking sections along the beam, we find that 
 
V4 = 400 - 0 = + 400 1b 
V7 = 400 - 0 = + 400 lb 
 
Up to and including the section just to the left of the center of the beam, no new forces 
are encountered; therefore from V0 to V7.99 the shear force is +400 lb. At the center of the 
beam the downward force of 800 lb occurs; thus 
 
V8 = 400 - 800 = - 400 lb 
 
Since no new loads are encountered for the remainder of the beam unit R2 is reached, 
 
V12 = 400 - 800 = -400 lb 
 
V14 = 400 - 800 = -400 lb 
 
Just before R2 is reached, the shear force from V8 to V16 is - 400 lb. 

Note that the shear diagram passes through zero, from + 400 lb to - 400 lb at the 800-lb 
load.
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Fig. 29-5-4 Construction of shear diagram for simple beams. 

(A) WITH CONCENTRATED LOAD   (B) WITH UNIFORMILY DISTRIBUTED LOAD 
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EXAMPLE 7 Figure 29-5-4B illustrates a simple beam with a uniformly distributed load. 
Construct the shear diagram.  
Solution Taking sections at intervals along the beam, we have 
 
V0   = 1200 - 0 = + 1200 N 
V1.5 = 1200 – (1.5 x 400) = + 600 N 
V3   = 1200 – (3 x 400) = + 0 N 
V4.5 = 1200 – (4.5 x 400) = - 600 N 
V6   = 1200 – (6 x 400) = - 1200 N 

 
Fig. 29-5-5 Simple beam with partial, uniformly distributed load. 
 
EXAMPLE 8 Figure 29-5-5 illustrates a simple beam with a partial, uniformly distributed 
load starting at reaction R1. Construct the shear diagram. 
 
Solution The values of reactions R1 and R2 must first be found.  For calculation purposes, 
a concentrated load of 250 ×  8, or 2000 lb, acting at the center of the uniformly 
distributed load will be used in place of the uniformly distributed load.   Taking moments 
about R1, we have: 
 
Clockwise moments = 4 ×  (8 ×  250) = 8000 ft-lb 
  
Counterclockwise moments = 20 ×  R2
R2 = 8000 20 = 400 lb ÷
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R1 = 2000 – 400 = 1600 lb 
 
Taking sections at intervals along the beam starting at reaction R1, we have: 
  

V0 = 1600 - 0 = + 1600 lb 
V4 = 1600 - (4 x 250) = + 600 lb 
V8 = 1600 - (8 x 250) = - 400 lb 
V12 = 1600 - (8 x 250) = - 400 lb 
V20 = 1600 - (8 x 250) = - 400 lb 
 
From the shear diagram it can be seen that the shear passes from positive shear to 
negative shear between V4 and V8. How to locate the position of zero shear will be 
discussed in Unit 29-6. 
 

 
Fig. 29-5-6 Simple beam with two concentrated loads. 
 
EXAMPLE 9 Figure 29-5-6 illustrates a simple beam with two concentrated loads. 
Construct the shear diagram. 
Solution The reactions must first be calculated. Taking moments about reaction R1, we 
have 
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Clockwise moments 
 = (4 x 750) + (10 x 600) 
 = 3000 + 6000 = 9000 ft-lb 
 
Counterclockwise moments = 18 x R2
 
Clockwise moments = Counterclockwise moments 
 
 18 x R2 = 9000 ft-lb 

 lb 500
18

9000
2 ==R  

 R1  + R2 = 750 + 600 = 1350 lb 
 
Therefore 
 

R1 = 1350 - 500 = 850 1b 
 
Taking sections at intervals along the beam, we have 
 
V0 = 850 - 0 = + 850 lb 
V4 =850-750= + l00 lb 
V10 = 850 - 750 - 600 = - 500 lb  
V18 = 850 - 750 - 600 = - 500 lb 

Fig. 29-5-7 Simple beam with uniformly distributed load and concentrated load. 
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EXAMPLE 10 Figure 29-5-7 illustrates a simple beam with a uniformly distributed load 
and a concentrated load acting on it. Construct the shear diagram. 
Solution The reactions must be calculated first. For calculation purposes, a concentrated 
load of 12 x 150, or 1800 lb, acting at the center of the beam, will be used in place of the 
uniformly distributed load. Taking moments about R1, we have 
 
Clockwise moments 
 = (4 x 1200) + (6 x 1800) 
= 4800 + 10 800 = 15 600 ft-lb 
 
Clockwise moments = Counterclockwise moments  
12 x R2 = 15 600 ft-lb 

R2 = 15 600 ÷ 12 = 1300 lb 
R1 + R2 = 1200 + 1800 = 3000 lb 
 
Therefore 
 
R1 = 3000 - R2 = 3000 - 1300 = 1700 lb.  
 
Taking sections at intervals along the beam gives us 
 
V0 = 1700 - 0 = +17001b 
V2 = 1700 - (2 x 150) = + 1400 lb 
V4 = 1700 - (4 x 150) – 1200 = - 100 lb 
V8 = 1700 - (8 x 150) – 1200 = - 700 lb 
V10 = 1700 - (10 x 150) - 1200 = - 1000 lb 
V12 = 1700 - (12 x 150) - 1200 = - 1300 lb 

Fig. 29-5-8 0verhanging beam. 
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EXAMPLE 11 Figure 29-5-8 illustrates an overhanging beam. Construct the shear diagram.  
Solution First the reactions must be calculated. Taking moments about R1, we have 
 
Clockwise moments 

= (1.4 x 24) + (3.6 x 35) + (7 x 30) 
= 33.6 + 126 + 210 
= 369.6 kN-m 

 
Counterclockwise moments = 5 x R2
 
Clockwise moments = Counterclockwise moments 

5 x R2 = 369.6 kN-m 
      R2 = 369.6 ÷  5 = 73.92 kN 

 R1 + R2 = 24 + 35 + 30 = 89 kN 
 
Therefore 

R1 = 89 - 73.92 = 15.08 kN 
 
Taking sections at intervals along the beam gives us 

V0   = 15.08 - 0 = + 15.08 kN  
V1,4 = 15.08 - 24 = - 8.92 kN 
V3   = 15.08 – 24 = - 8.92 kN 
V3,6 = 15.08 - 24 - 35 = - 43.92 kN 
V5   = 15.08 - 24 - 35 + 73.92= +30 kN 
V7   = 15.08 - 24 - 35 + 73.92= +30 kN 

 
Conclusion 
From the examples given, the following conclusions can be drawn for shear diagrams. 
 

• Where there are concentrated loads, the shear lines are straight horizontal lines 
changing in value at the loads. 

• Where there are uniformly distributed loads, the shear lines are straight inclined 
lines, the slope of the line being proportional to the load. 

• At each concentrated load, including reactions, the shear line rises or drops 
vertically by an amount equal to the load at that section. 
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CHAPTER 29 

Strength of Materials 
 
UNIT 29-6 
Bending Moment Diagrams 
 
As previously mentioned, when a load acts on a beam, the force tends to shear the beam. 
In addition to producing this shearing action, the load tends to deflect or bend the beam.  
 
To determine this deflection, which varies along the beam, the bending stresses must be 
calculated. Just as the shear diagram shows the shear at any section along the beam, a 
bending moment diagram is similarly constructed to show the bending moment at any 
point along the beam and also to indicate where the maximum bending occurs. 

 
The bending moment at any section along the beam is equal to the sum of all the 

moments of the forces acting to the right or left of the beam. In drawing bending moment 
diagrams, the following points should be noted: 
 

1. Forces are taken to the left of the section. 
 

2. Upward moments are considered positive and are shown above the base line on 
the bending moment diagram. 

 
3. Downward moments are considered negative and are shown below the base line. 

 
4. The bending moment diagram is drawn directly below the shear diagram and to 

the same scale. 
 

5. Shear is equal to reaction minus loads. 
 

6. Bending moments are equal to reaction moments minus load moments. 
 

7. In calculating the bending moments at any given section along the beam, the 
capital letter M is used to designate the bending moments. It is followed by a 
subscript which indicates the distance from the LH end of the beam. Thus, M4 
indicates the bending moments 4 ft from the LH end of the beam. 
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Fig. 29-6-1 Construction of bending moment diagram for cantilever beams. 
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EXAMPLE 1 Figure 29-6-1A shows a cantilever beam with a concentrated load applied 
to the free end. Figure 29-5-2A shows the shear diagram development for this beam. 
Construct the bending moment diagram. 
 
Solution Taking moments at intervals along the beam starting at the LH end, we find the 
moments will be negative as the force is acting downward. Thus we have 
 
M0 = - 300 x 0 = 0 
M3 = - 300 x 3 = - 900 ft·lb 
M6 = - 300 x 6 = - 1800 ft·lb  
M9 = - 300 x 9 = - 2700 ft·lb  
M12 = - 300 x 12 = - 3600 ft·lb 

Fig. 29-6-2 Cantilever beam with uniformly distributed load at end of beam. 
 
EXAMPLE 2 Figure. 29-6-1B shows a cantilever beam with a uniformly distributed load. 
Figure 29-5-2B shows the shear diagram development for this beam. Construct the 
bending moment diagram. 
Solution The bending moment at M0 is zero. The 3-ft section to the right of R1 weighs 
3 x 800 or 2400 lb. The force of any uniform load can be considered as acting at its 
center of gravity. Thus the 2400 lb load can be considered as acting 1.5 ft away from R1. 
Therefore, we have 
 
M3 = - (800 x 3) x 1.5 = -3600 ft·lb 
M6 = - (800 x 6) x 3 = -14 400 ft·lb 
M9 = - (800 x 9) x 4.5 = -32 400 ft·lb 
M12 = - (800 x 12) x 6 = -57 600 ft·lb 
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EXAMPLE 3 Figure 29-6-2 shows a cantilever beam with a uniformly distributed load at 
the end of the beam. The shear diagram development was explained in Unit 29-5, 
Example 3, Fig. 29-5-3A. Construct the bending moment diagram. 
Solution Taking moments at intervals along the beam starting from the LH end, we have 
 
M0   = 0 
M1   = - 800 x 1 x 0. 5 = - 400 N·m 
M2   = - 800 x 2 x 1 = - 1600 N·m 
M2.5 = - 800 x 2.5 x 1.25 = - 2500 N·m 
M3    = - 800 x 2.5 x (3 – 1.25) = -3500 N·m 
 
Note that at M3, the distance from the section to the center of gravity of the load is 
3 - 1.25 = 1.75 m, since the center of gravity is 1.25 m from the LH end. 
 
M4 = -800 x 2.5 x (4 - 1.25) = - 5500 N·m 
 
Note that from M2.5 to M4, the line on the bending moment diagram is straight. 
 

 
Fig. 29-6-3 Cantilever beam with concentrated load and partial, uniformly distributed 
loads. 

 
EXAMPLE 4 Figure 29-6-3 shows a cantilever beam with a combination concentrated 
and a partial, uniformly distributed load. The shear diagram development was explained 
in Unit 29-5, Example 4, Fig. 29-5-3B. Construct the bending moment diagram. 
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Solution The bending moments from M0 to M16 are calculated in the same manner as in 
Example 1. 
 
M0 = - 500 x 0 = 0 
M1  = - 500 x 1 = - 500 ft·lb 
M4  = - 500 x 4 = - 2000 ft·lb 
M7  = - 500 x 7 = - 3500 ft·lb 
M9  =  - (500 x 9) - (60 x 2 x 1) =  -4620 ft·lb 
M12 =  - (500 x 12) - (60 x 5 x 2.5) = -6750 ft·lb 
M16 =  - (500 x 16) - (60 x 9 x 4.5) = -10 430 ft·lb 
 

 
Fig. 29-6-4 Cantilever beam with concentrated and uniformly distributed loads. 
 
EXAMPLE 5 Figure 29-6-4 shows a cantilever beam with a concentrated and uniformly 
distributed load. The shear diagram development was explained in Unit 29-5, Example 5, 
Fig. 29-5-3C. Construct the bending moment diagram. 
 
Solution The bending moments from M0 to M8 are calculated in the same manner as in 
Example 2. 
 
M0 = 0 
M2 = - 80 x 2 x I = - 160 ft·lb 
M4 = - 80 x 4 x 2 = - 640 ft·lb 
M8 = - (80 x 8 x 4) - (650 x 0) = - 2560 ft·lb 
M10 = - (80 x 10 x 5) - (650 x 2) = - 5300 ft·lb 
M12 = - (80 x 12 x 6) - (650 x 4) = - 8360 ft·lb 
M14 = - (80 x 14 x 7) - (650 x 6) = - 11 740 ft·lb 
M18 = - (80 x 16 x 8) - (650 x 6) = - 14 140 ft·lb 
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Fig. 29-6-5 Simple beam with partial, uniformly distributed load.  
 
EXAMPLE 6 Figure 29-6-5 shows a simple beam with a partial, uniformly distributed 
load. The development of the shear diagram was explained in Unit 29-5, Example 8, Fig. 
29-5-5. Construct the bending moment diagram. 
Solution Taking moments at intervals along the beam, starting at reaction R1, gives us 
M0 = + 1600 x 0 = 0 
M4 = + 1600 x 4 - 250 x 4 x 2 = + 3400 ft·lb 
M6 = + 1600 x 6 - 250 x 6 x 3 = +5100 ft·lb 
M8 = + 1600 x 8 - 250 x 8 x 4 = + 4800 ft·lb 
 

From the bending moment calculations it can be seen that the maximum bending 
moment occurs somewhere between M6 and M8 where the zero shear takes place. 

The distance between R1 and zero shear can be found as follows. Let the distance from 
R1 to the point at zero shear be X. Thus, we have 
 
VX = + 1600 - 250 x X = 0  
X = 1600 ÷  250 = 6.4 ft 
 
Maximum bending moment occurs at M6.4
M6.4 = + (1600 x 6.4) – (250 x 6.4 x 3.2) = + 5120 ft·lb 
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Fig. 29-6-6 Construction of bending moment diagram for simple beam. 
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For calculating the moments for the remaining sections, the uniformly distributed load 
will be considered as a 2000 lb concentrated load acting 4 ft from R1. 
 
M12 = + (1600 ×  12)  - (2000 ×  8) = + 3200 ft·lb 
M16 = + (1600 ×  16) – (2000 ×  12) = + 1600 ft·lb 
M20 = + (1600 ×  20) – (2000 ×  16) = 0  
 
EXAMPLE 7 Figure 29-6-6A shows a simple beam with a concentrated load acting in the 
center of the beam. The development of the shear diagram was explained in Unit 29-5, 
Example 6, Fig. 29-54A. Construct the bending moment diagram. 
Solution Taking moments at intervals along the beam, starting at reaction R1, which is 
acting upward, we have 
 
M0 = +400 x 0 - 0 
M2 = + 400 x 2 = + 800 ft·lb 
M4 = + 400 x 4 = + 1600 ft·lb 
M8 = + 400 x 8 - 800 x 0 = + 3200 ft·lb 
M12 = + 400 x 12 - 800 x 4 = + 1600 ft·lb 
M14 = +400 x 14 - 800 x 6 = +800 ft·lb 
M16 = + 400 x 16 - 800 x 8 = 0 
 
Note: The maximum bending moment occurs at the point where shear passes through 
zero. 
 
EXAMPLE 8 Fig. 29-6-6B shows a simple beam with a uniformly distributed load. The 
development of the shear diagram was explained in Unit 29-5, Example 7, Fig. 29-5-4B. 
Construct the bending moment diagram. 
 
Solution The bending moment at M0 is zero. The 1-m section to the right of R1 creates a 
force of 400 N. The force of any uniform load can be considered as acting at its center of 
gravity. Thus, the 400-N load can be considered as acting 0.5 m away from R1. Therefore, 
we have 
 
M1 = + 1200 x 1 - 400 x 1 x 0. 5 = +1000 N·m 
M2= + 1200 x 2 - 400 x 2 x 1 = + 1600 N·m 
M3 = + 1200 x 3 - 400 x 3 x 1. 5 = + 1800 N·m 
M4 = + 1200 x 4 - 400 x 4 x 2 = + 1600 N·m 
M5 = + 1200 x 5 - 400 x 5 x 2.5 = + 1000 N·m 
M6 = + 1200 x 6 - 400 x 6 x 3 = 0 
 
Note that the maximum bending moment of + 1800 N·m occurs at zero shear. 
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Fig. 29-6-7 Simple beam with two concentrated loads. 
 

 
 
EXAMPLE 9 Figure 29-6-7 shows a simple beam with two concentrated loads. The 
development of the shear diagram was explained in Unit 29-5, Example 9, Fig. 29-5-6. 
Construct the bending moment diagram. 
 
Solution Taking moments at intervals along the beam, starting at reaction R1, gives us 
M0 = +850 ×  0 = 0 
M2 = + 850 ×  2 = + 1700 ft·lb 
M4 = + 850 ×  4 - 750 ×  0 = +3400 ft·lb 
M5 = + (850 ×  5) – (750 ×  1) = + 3500 ft·lb 
M8 = + (850 ×  8) – (750 ×  4) = + 3800 ft·lb 
M10 =+ (850 ×  10) – (750 ×  6) – (600 x 0) = + 4000 ft·lb 
M12 = + (850 ×  12) – (750 ×  8) – (600 x 2) = + 3000 ft·lb 
M14 = +( 850 ×  14) – (750 ×  10) – (600 x 4) = + 2000 ft·lb 
M18 = +( 850 ×  18) – (750 ×  14) – (600 x 8) = 0  
 

Copyright © McGraw-Hill.  All rights reserved. 
 

9



 

 
Fig. 29-6-8 Simple beam with uniformly distributed and concentrated loads. 
 
EXAMPLE 10 Figure 29-6-8 shows a simple beam with a uniformly distributed load and 
a concentrated load. The development of the shear diagram was explained in Unit 29-5, 
Example 10, Fig. 29-5-7. Construct the bending moment diagram. 
Solution Taking moments at intervals along the beam, starting at reaction R1, we have 
 
M0 = + 1700 ×  0 = 0 
M2 = + (1700 ×2) – (150 ×  2) ×  1 = + 3 100 ft-lb 
M4 = + (1700 ×  4) – (150 ×  4 ×  2) – (1200 ×  0) = + 5600 ft-b 
M6 = + (1700 ×  6) – (150 ×  6 ×  3) – (1200 ×  2) = + 5100 ft-lb 
M8 = + (1700 ×  8) – (150 ×  8 ×  4) – (1200 ×  4) = + 4000 ft-lb 
M10 = + (1700 ×  10) – (150 ×  10 ×  5) – (1200 ×  6) = + 2300 ft-lb 
M12 = + (1700 ×  10) – (150 ×  12 ×  6) – (1200 ×  8) = 0 
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Fig. 29-6-9 Overhanging beam. 
 
EXAMPLE 11 Figure 29-6-9 shows an overhanging beam with three concentrated loads. 
The development of the shear diagram was explained in Unit 29-5, Example 11, Fig. 
29-5-8. Construct the bending moment diagram. 
Solution Taking moments at intervals along the beam, starting at reaction R1, we have 
 
M0 = + 15.08 ×  0 = 0 
M1 = + 15.08 ×  1 = + 15.08 kN·m 
M1.4 = + (15.08 ×  1.4) – (24 x 0) = + 21.1 kN.m 
M2 = + (15.08 ×  2) – (24 ×  0.6) = + 16.12 kN·m 
M3 = + (15.08 ×  3) – (24 ×  1.6) = + 6.84 kN-rn 
M3.6 = + (15.08 ×  3.6) – (24 ×  2.2)  – (35 ×  0) = + 1.39 kN·m 
M4 = + (15.08 ×  4) – (24 ×  2.6) – (35 ×  0.4) = – 16.08 kN·m 
M5 = + (15.08 ×  5) – (24 ×  3.6) – (35 ×  1.4) + (73.92 ×  0) = –60 kN·m 
M6 = + (15.08 ×  6) – (24 ×  4.6) – (35 ×  2.4) + (73.92 ×  1 = - 30 kN·m 
M7 = + (15.08 ×  7) – (24 ×  5.6) – (35 ×  3.4) + (73.92 ×  2) = 0 
 
From the bending moment diagram it can be seen that zero bending moment occurs to the 
right of the 35-kN load. Its exact location can be found as follows.   
Let the distance between R1 and the point where zero takes place be X. Then 
MX = 0 
MX = + (15.08 x X) – 24(X - 1.4) - 35 (X - 3.6) = 0 
MX = + 15.08X - 24X + 33.6 -35X + 126 
43.92X = 159.6 
X = 3.63 mm  
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Fig. 29-6-10 Simple beam with a partial, uniformly distributed load and a concentrated 
load. 
 
EXAMPLE 12 Figure 29-6-10 shows a simple beam with a partial, uniformly distributed 
load and a concentrated load. Find the position and magnitude of the maximum bending 
moment. 
Solution Reactions R1 and R2 must be calculated first. Taking moments about R1, we 
have 
 
Clockwise moments 

= 1.25 x 2 x 2.5 + 3.2 x 3 
= 15.85 kN·m 

 
Counterclockwise moments = 5 x R2
 
R2 = 15.85 ÷5 = 3.17 kN 
R1 = (2.5 x 2) + 3 - 3.17 = 4.83 kN 
 

Next construct the shear diagram, taking sections at intervals along the beam, starting 
at reaction R1: 
 
V0  = 4.83 – 0 = +4.83 kN 
V1  = 4.83 - 1 x 2 = +2.83 kN 
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V2  = 4.83 – 2 x 2 = +0.83 kN 
V2.5 = 4.83 - 2.5 x 2 = - 0.17 kN 
V3.2 = 4.83 - 2.5 x 2 - 3 = - 3.17 kN 
V5  = 4.83 – 2.5 x 2 - 3 = - 3.17 kN 
 

From the shear diagram, it is noted that the section having zero shear lies somewhere 
between R1 and the end of the 2.5-m uniformly distributed load. Its exact position, X 
distance from R1, may be found by taking the shear at VX, which is zero. 

Thus, VX = 4.83 - X x  2 = 0. Therefore, X = 4.83 ÷ 2 = 2.415m. 
The maximum bending moment will occur where the shear passes through zero or 

2.415 m from R1. Thus the maximum bending moment is 
 
M2.415 = (4.83 x 2.415) – (2 x 2.415 x 1.2075) = 5.83 kN·m 
 
EXAMPLE 13 A simple beam 8 m long carries a 3600-N concentrated load 2 m from the 
left abutment. Calculate the maximum bending moment and shear.  
Solution The maximum bending moment for a simple beam with a concentrated load at 
any point (see Fig. 29-6-11) is 
 

mN 5400
8

623600 ⋅=××=
L

FAB  

 
Maximum shear = 

N 2700
8

63600 =×=
L

FB  

 
 
Conclusion 
From the examples given, the following conclusions can be drawn from bending moment 
diagrams. 
 

1. Where there are no loads on a part of a beam, the bending moment line is a 
straight, sloping line. 

2. Where there is a uniformly distributed load, the bending moment line is a curve. 
3. The maximum bending moment occurs at a section on the beam at which the 

shear passes through zero. 
 

Standard beam formulas are shown in Fig. 29-6-11. 
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Fig. 29-6-11 Maximum bending moments, shear, and deflection for commonly occurring 
loads on beams.     
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CHAPTER 29 

Strength of Materials 
 
UNIT 29-7 
Beam Design 
 
It has been found from experience that beams normally fail at the section where the 
bending moment is maximum, rather than by shearing at the supports. Therefore, in beam 
design, it is customary first to select a suitable beam size to withstand the bending forces 
and then to check it for shear and deflection. The ability of a beam to resist bending 
depends on such factors as the material used, the shape of its cross section, and the way 
the cross section is turned with respect to the load. To illustrate this last point, one may 
bend a flat steel rule across its thin axis; but if the steel rule is set on its edge, then it is 
virtually impossible to bend the rule in the direction of its width. This resistance to 
bending can be measured in terms of a quantity called the section modulus of the section 
concerned. The theory and the mathematics behind the development of the section 
modulus of beams and shapes will not be covered in this text. 

Thus the ability of any beam to resist bending is directly related to its section modulus, 
which is expressed in cubic inches (U.S. Customary) or cubic millimeters (metric) and is 
denoted Z in calculations. The bending stress S, the bending moment M0, and the section 
modulus are related by the formula M0 = Z x S ÷106 in which the quantities are 
inch-pounds, cubic inches, and pounds (U.S. Customary) and newtonmillimeters, cubic 
millimeters, and pascals (metric), respectively. The  stress in pascals is divided by 106 to 
obtain the stress per square millimeter. The section modulus for certain regular sections 
can be found from the formulas given in Fig. 29-7-1. The values of Z for structural-steel 
shapes and many common circular and rectangular sizes are tabulated in most engineers' 
handbooks.  
 

Fig. 29-7-1 Formulas for section moduli for common shapes. 
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The letter S is frequently used in textbooks to designate section modulus. However, to 
avoid confusion with the letter S for stress, the letter Z will  be used to designate section 
modulus throughout this chapter.   

 
Fig. 29-7-2 Neutral axis. 
 
 Structural shapes may be placed in two general positions, as shown in Fig. 29-7-2. 
Since the resistance to bending will depend on the position of the beam with regard to its 
neutral axis, two section modulus values are generally shown in engineering tables. One 
value is used when the beam is in the upright position, as shown in Fig.  29-7-2C(l) 
where the X-X axis is the neutral axis; the other is used when the beam is in the flat 
position, as shown in Fig. 29-7-2C(2), where the Y- Y axis is the neutral axis. The neutral 
axis is defined as the axis that passes through the centroid of the cross-sectional area. 

The majority of engineering handbooks show only one illustration of the structural 
shape with both the X-X and Y- Y axes shown as illustrated in Fig. 29-7-2C(3). 
 
SHEARING STRESSES 
IN BEAMS 
In designing beams for vertical shear, it is customary to consider only the full height of 
the webs of S, C, WT, and WWT beams to carry the full load; the flanges are not 
considered. 
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EXAMPLE I A cantilever beam 10 ft long supports a 5000-lb load at the end of the beam. 
What size A36 beam is required? 
 
Solution First select a beam to withstand the bending forces. Refer to Fig. 29-6-11; 
maximum bending moments = FL = 5000 x 10 x 12 = 600 000 in-lb. The allowable bend 
stress for A36 steel (see Fig. 29-1-8) is 24 kips/in.2. 
 
Section modulus required = Z = M ÷ S = 600 000 ÷ 24 000 = 25 in.3
 
Refer to Fig. 29-7-3. A W8 x 31 has a section modulus of 27.5 in.3, which is acceptable. 
If the depth of the beam is not an important design factor, then the W10 X 29 beam, 
which is lighter and has a section modulus of 30.9 in.3, would be the most economical. 

 
Next the beam must be checked for vertical shear. Maximum shear force = 5000 lb. 

Web area of a W8 x 31 beam (refer to the structural- steel handbook) = 8 x .31 = 2.48 in2. 
Vertical shear stress = 5000 ÷ 2.48 = 2016 lb or 2 kips/in.2. Permissible shear stress for 
steel (see Fig. 29-1-8) is 14.5 kips/in.2. Therefore the W8 x 31 beam is acceptable. 
 
EXAMPLE 2 A simple beam 6 m long supports a uniformly distributed load of 6 kN/m. 
Neglecting the mass of the beam, select the lightest A572M-310 beam to safely carry this 
load. 
 
Solution First select a beam to withstand the bending forces. Refer to Fig. 29-6-11. 
Maximum bending moments = NL2 ÷8 = (6000 x 62) ÷ 8 = 27 000 N-m, or 27 x 106 
N-mm. The allowable bending stress for A572M-310 steel (see Fig. 29-1-8) is 205 MPa. 
Section modulus required = Z = M ÷ (S ÷106) = 27 x 106 x 106 ÷ (205 x 106) =  
131 700 mm3. 

 
Referring to Fig. 29-7-3, we find that a W150 x 18 beam has a section modulus of 
136 000 mm3, which is acceptable. 
 
Next the beam must be checked for vertical shear. 

 
Maximum shear force (Fig. 29-6-11) 

 kN 18
2

6kN 6
2

=×=NL  

 
Web area of a W150 x 18 beam (refer to the structural- steel handbook) = 153 x 6 =  
918 mm2. Average vertical shear stress = 18 000 + 0.000 918 = 19.6 MPa. The 
permissible vertical shear stress for A572M-310 steel (see Fig. 29-1-8) is 125 Mpa. 
Therefore the W150 x 18 beam is acceptable. 
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U.S. CUSTOMARY METRIC* 
Section 
Modulus 
In.3

Shape Moment of Inertia I 
In.4**

Section 
Modulus 
103mm3

Shape Moment of Inertia = 
I 
106mm4**

157 
151 
151 
142 
 
140 
131 
125 
121 
 

118 
116 
116 
112 

 
107 
105 
97.5 
94.3 

 
92.2 
88 
80.9 
73.6 

 
70.6 
64.8 
64.8 
62.7 

 
60.5 
59.6 
54.7 
51.9 

 
50.8 
49.2 
43.3 
41.8 

 
36.3 
35.1 
30.9 
27.5 

 
24.8 
24.3 
21.6 
20.8 

 
16.2 
14.2 
13.4 
12 

 
10.1 
7.23 
5.43 
5.08 

W18 x 85 
W16 x 88 
W21 x 73 
W18 x 77 
 
W21 x 68 
W14 x 84 
W12 x 92 
W14 x 78 
 
W18 x 64 
W16 x 71 
W12 x 85 
W14 x 74 
 
W12 x 79 
W16 x 64 
W12 x 72 
W16 x 58 
 
W14 x 61 
W12 x 65 
W16 x 50 
W10 x 66 
 
W12 x 53 
W12 x 50 
S15 x 50 
W14 x 43 
 
W10 x 54 
S15 x 42.9 
W14 x 38 
W12 x 40 
 
S12 x 50 

WIO x 45 
W8 x 48 

W14 x 30 
 
S12 x 31.8 
W10 x 33 
W10 x 29 
W8 x 31 
 
SIO x 25.4 
W8 x 28 
WIO x 21 
W8 X 24 
 

S8 x 23 
W8 x 17 
W6 x 20 

M12 x 11.8 
 
W6 x 16 
W6 x 12 
W4 x 13 
W6 x 85 

1440 
1220 
1600 
1290 
 
1480 
928 
789 
851 

 
1050 
941 
723 
797 

 
663 
836 
597 
748 

 
641 
533 
657 
382 

 
426 
395 
486 
429 

 
306 
447 
386 
310 

 
305 
249 
184 
290 

 
218 
171 
158 
110 

 
124 
97.8 
107 
82.5 

 
64.9 
56.6 
41.5 
71.9 

 
31.7 
21.7 
11.3 
14.8 

3050 
2850 
2830 
2670 
 
2620 
2560 
2420 
2270 
 
2180 
2160 
2130 
2060 
 
1950 
1830 
1770 
1730 
 
1680 
1590 
1510 
1400 
 
1280 
1190 
1140 
1140 
 
1140 
1090 
1010 
1010 
 

941 
901 
803 
779 

 
690 
633 
602 
496 

 
465 
446 
424 
380 

 
316 
279 
244 
232 

 
192 
136 
103 

103 

W460 x 128 
W410 x 132 
W530 x 109 
W460 x 113 
 
W530 x 101 
W360 x 134 
W310 x 143 
W360 x 122 
 
W460 x 97 

W310 x 129 
W410 x 100 
W360 x 110 
 
W310 x 118 
W460 x 82 
W310 x 107 
W410 X 85 
 
W360 x 91 
W310 x 97  
W41 0 x 74 
W250 x 101 
 
W310 x 79 
W310 x 74 
S380 x 64 
W360 x 64 

 
S380 x 64 
W250 x 80 
W360 x 57 
S310 x 74 

 
W310 x 60 
W250 x 67 
W200 x 71 
W360 x 45 
 

S310 x 47 
W250 x 49 
W250 x 45 
W200 x 46 
 

S250 x 38 
W200 x 42 
W250 x 33 
W200 x 36 
 

S200 x 34 
W200 x 27 
W150 x 30 
M3 10 x 17.6 
 
W150 x 24 
W150 X 18 
W100 X 19 
W150 X 14 

637 
538 
667 
556 
 
617 
415 
348 
365 
 
445 
308 
398 
331 
 
275 
370 
248 
315 
 
267 
222 
275 
164 
 
177 
165 
187 
178 

 
187 
126 
161 
128 

 
129 
104 
76.6 
122 
 
91.1 
70.6 
71.1 
45.5 
 
51.4 
40.9 
48.9 
34.4 
 
27.0 
25.8 
17.2 
29.7 
 
13.4 
9.16 
4.76 
6.87 

*Soft Converted. *Taken at X-X axis. 
Fig. 29-7-3 Section modulus and moment of Inertia for shapes used as beams. 
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EXAMPLE 3 A simple beam 16 ft long supports a 30 000 lb concentrated load 4 ft from 
the left abutment. What size A36 beam is required? 
Solution First select a beam to withstand the bending forces. Refer to Fig. 29-6-11. 
Maximum bending moments = FAB ÷ L=30 000 x 4 x 12 ÷ 16 = 90 000 ft-lb, or 
1 080 000 in-lb. Allowable bending stress for A36 steel (see Fig. 29-1-8) is 24 kips/in.2. 
 
Section modulus required = Z 
 = M ÷ S 
 = 1080 000 + 24 000 
 = 45 in.3
 
Referring to Fig. 29-7-3, we find that a W10 x 45 beam has a section modulus of 49.2. 

Next the beam must be checked for vertical shear. 
 
Maximum shear force 
 

=  30 000  12
16

22 500 lb×
=

 
  

Web area of a W10 x 45 beam (refer to the structural-steel handbook) = 10.12 x .38 = 
3.85 in.2. 
 
Average vertical shear stress 

=  22 500
3.85

5844 lb=
 

 
The permissible vertical shear stress for A36 steel (see Fig. 29-1-8) is 14.5 kips/in.2. 
Therefore the W10 X 45 beam is acceptable. 
 
EXAMPLE 4 A floor 5 m wide has a uniformly distributed load of 3000 N-m. The floor 
joists are 38 mm wide and are spaced 400 mm center-to-center. If the allowable bending 
stress is not to exceed 9600 kPa, what depth of floor joists must be used? 
Solution On each floor joist, the uniformly distributed load is 3000 x (400 ÷1000) = 1200 
N-m. For a simple beam with a uniformly distributed load, the maximum bending 
moment = FL2  ÷ 8 = (1200 x 5 x 5) ÷ 8 = 3750 N-m, or 375 x 104 N-mm. Allowable 
bending stress = 10 MPa. Therefore 
 
Section modulus required = Z 

=  M  S
10

375 000 mm

6

3

÷

= × ×
×

=

375 10 10
10 10

4
6

6
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The section modulus for the joist  = bd2 ÷ 6 where b = width = 38 mm and d = depth, 
which is unknown. Therefore: 
 

mm 243
38

6000 375
=

×
=d  

Since standard joist sizes are 38 x 184, 38 x 235, and 38 x 286, the joist size of 38 x 286 
is selected. 
 
DEFLECTION OF BEAMS 
The vertical distance a horizontally placed beam moves when it bends under an applied 
load is called deflection. Since deflection may cause cracking in plastered ceilings or 
buckling of floors, the limitations placed on the deflection of the beam may be the 
governing factor in its selection. In building construction the maximum deflection of 
beams is limited to 1/360 of the span, or, for cantilever beams, 1/180 of the span. After 
the beam is selected to withstand the bending and shearing stresses, it must then be 
checked for deflection. The theory and the mathematics behind the development of beam 
defection will not be covered in this text. The formulas using the double-integration 
method for finding the deflection of simple beams are shown in Fig. 29-6-11. 
 
EXAMPLE 5 A W8 x 28 cantilever beam 8 ft long has a concentrated load of 5000 lb at its 
free end. Is the deflection excessive? 
Solution Refer to Fig. 29-6-11. The maximum deflection for a cantilever beam having a 
concentrated load at its free end is FL3 ÷3EI, where F = 5000 lb, L = 96 in., E = 29 x 106 
lb/in2 (see Fig. 29-1-3), and I = 97.8 in.4 (Fig. 29-7-3). Therefore 
 
Maximum deflection   

 
=

×
× × ×

=
500 96

3 97 8 29 10

3

6.
.52 in.

 
Allowable deflection = 1/180 of the span (for cantilever beams) = 96 ÷180 = .53 in. 
Therefore, since the maximum deflection is less than the allowable, the W8 x 28 beam is 
acceptable. 
 
EXAMPLE 6 A W310 x 60 simple beam has a concentrated load of 27 kN acting at the 
center of the beam. The beam span is 6 m. Check for deflection. 
Solution Refer to Fig. 29-6-11. The maximum deflection for a simple beam with a 
concentrated load is FL3 ÷ 48EI where F = 27 kN, L = 6000 mm, E = 200 000 MPa (Fig. 
29-1-3), and I = 129 x 106 mm4 (Fig. 29-7-3). Therefore 
 
Maximum deflection 

=
×

× × ×
=

27 000 6000
48 200 000 129 10

.7 mm
3

6 4
 

 
Allowable deflection = span ÷ 360 = 6000 360 = 16.7 mm. Since the maximum 
deflection is less than the allowable, the W310 x 60 beam is acceptable. 
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