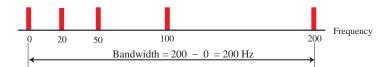
PRACTICE SET

Questions

- **Q7-1.** The period of a signal is the inverse of its frequency: T = 1/f.
- Q7-3. A signal is periodic if its time domain plot repeats itself; a signal is non-periodic if its time domain plot does not repeat.
- Q7-5. Attenuation and noise are two out of three causes of transmission impairment; distortion is the third one.
- Q7-7. This is baseband transmission because there is no modulation.
- Q7-9. Baseband transmission means sending a digital or an analog signal without modulation using a low-pass channel.
- **Q7-11.** The Nyquist theorem defines the maximum bit rate of a noiseless channel.
- Q7-13. In general, block coding changes a block of m bits into a block of n bits, where n is larger than m. Block coding provides redundancy to ensure synchronization and to provide inherent error detecting.
- **Q7-15.** Normally, analog transmission refers to the transmission of analog signals using a band-pass channel. Baseband digital or analog signals are converted to a complex analog signal with a range of frequencies suitable for the channel.
- Q7-17. ASK is more susceptible to noise because amplitude is more affected by noise than frequency.

Q7-19.

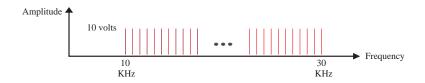
- a. FM changes the frequency of the carrier.
- **b.** PM changes the phase of the carrier.
- **Q7-21.** In multiplexing, the word *link* refers to the physical path. One link can be divided into *n* channels.
- **Q7-23.** In synchronous TDM, each input has a reserved slot in the output frame. This can be inefficient if some input lines have no data to send. In statistical TDM, slots are dynamically allocated to improve bandwidth efficiency.


- Q7-25. The transmission media is located beneath the physical layer and controlled by the physical layer.
- Q7-27. The three major categories of guided media are twisted-pair, coaxial, and fiber-optic cables.
- Q7-29. In sky propagation radio waves radiate upward into the ionosphere and are then reflected back to earth.

Problems

P7-1.

a.	T=1/f	= 1/(24 Hz)	= 0.0417 s	$=41.7 \times 10^{-3} s$	=41.7 ms
b.	T=1/f	=1/(8MHz)	=0.000000125 s	$=0.125 \times 10^{-6}$ s	=0.125 µs
c.	T=1/f	=1/(140 kHz)	$= 7.14 \times 10^{-6} s$	$=7.14 \times 10^{-6} \text{ s}$	= 7.14 μs


P7-3. See below:

P7-5. Each signal is a simple signal in this case. The bandwidth of a simple signal is zero. So the bandwidth is the same for both signals.

P7-7.

- **a.** (10 / 1000) s = **0.01** s
- **b.** (8 / 1000) s = 0. 008 s = 8 ms
- c. $((100,000 \times 8) / 1000) s = 800 s$
- **P7-9.** The signal makes 8 cycles in 4 ms. The frequency is 8/(4 ms) = 2 kHz
- **P7-11.** The signal is periodic, so the frequency domain is made of discrete frequencies with the bandwidth of 30 10 = 20 kHz. See below:

P7-13. We can calculate the attenuation as shown below:

 $dB = 10 \log_{10} (90 / 100) = -0.46 dB$

P7-15. The total gain is $3 \times 4 = 12$ dB. To find how much the signal is amplified, we can use the following formula:

 $12 = 10 \log (P_2/P_1) \rightarrow \log (P_2/P_1) = 1.2 \rightarrow P_2/P_1 = 10^{1.2} = 15.85$

The signal is amplified almost 16 times.

P7-17. Each cycle moves the front of the signal λ meter ahead (definition of the wavelength). In this case, we have

 $1 \ \mu m \times 1000 = 1000 \ \mu m = 1 \ mm$

P7-19. SNR is the ratio of the powers. The power is proportion to the voltage square $(P = V^2/R)$. Therefore, we have SNR = $(10)^2 / (10 \times 10^{-3})^2 = 10^6$. We then use the Shannon capacity to calculate the maximum data rate.

 $C = 4,000 \log_2 (1 + 10^6) \approx 80 \text{ Kbps}$

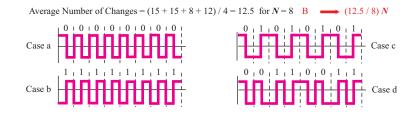
P7-21. To represent 1024 color levels, we need $\log_2 1024 = 10$ bits. The total number of bits are, therefore,

Number of bits = $1200 \times 1000 \times 10 = 12,000,000$ bits

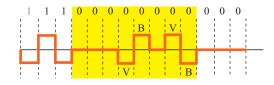
P7-23. We have **SNR** = (**signal power**)/(**noise power**). However, power is proportional to the square of voltage. This means we have

SNR = $[(\text{signal voltage})^2] / [(\text{noise voltage})^2] = 20^2 = 400$ SNR_{dB} = $10 \log_{10} \text{SNR} = 10 \log_{10} 400 = 26$

P7-25. We have (transmission time) = (packet length)/(bandwidth)


(transmission time) = (8,000,000 bits) / (200,000 bps) = 40 s

P7-27.


a. Number of bits = bandwidth \times delay = 1 Mbps \times 2 ms = 2000 bits

- **b.** Number of bits = bandwidth \times delay = 10 Mbps \times 2 ms = 20,000 bits
- **P7-29.** The number of bits is calculated as $(0.2/100) \times (1 \text{ Mbps}) = 2000 \text{ bits.}$

P7-31. Bandwidth is proportional to (12.5/8)*N*. The following figure shows the signal in each case.

P7-33. See the following figure. Since we specified that the last non-zero signal is positive, the first bit in our sequence is positive.

P7-35.

a.

 $f_{\text{max}} = 0 + 200 = 200 \text{ kHz} \rightarrow f_{\text{s}} = 2 \times 200,000 = 400,000 \text{ samples/s}$ $n_{\text{b}} = \log_2 1024 = 10 \text{ bits/sample} \rightarrow n = 400,000 \times 10 = 4 \text{ Mbps}$

b.

 $SNR_{dB} = 6.02 \times n_b + 1.76 = 61.96$

c.

 $B_{PCM} = n_b \times B_{analog} = 10 \times 200 \text{ kHz} = 2 \text{ MHz}$

P7-37. We can first calculate the sampling rate (f_s) .

 $f_{\text{max}} = 0 + 4 = 4 \text{ kHz} \longrightarrow f_{\text{s}} = 2 \times 4 \text{ kHz} = 8000 \text{ samples/s}$

We then calculate the number of bits per sample.

 $n_{\rm b} = 30,000 / 8000 = 3.75$

We need to use the next integer $n_b = 4$. The value of SNR_{dB} is

 $SNR_{dB} = 6.02 \times n_b + 1.72 = 25.8$

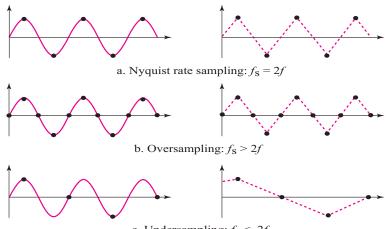
P7-39. We use the formula $S = (1/r) \times N$, but first we need to calculate the value of r for each case.

a. $r = \log_2 2$	= 1	\rightarrow S = (1/1) × (2000 bps)	= 2000 baud
b. $r = \log_2 2$	= 1	\rightarrow S = (1/1) × (4000 bps)	= 4000 baud
c. $r = \log_2 64$	= 6	→ $S = (1/6) \times (36,000 \text{ bps})$	= 6000 baud

P7-41. We use the formula $r = \log_2 L$ to calculate the value of *r* for each case.

a.
$$\log_2 8 = 3$$
 b. $\log_2 128 = 7$

P7-43. The number of points defines the number of levels, *L*. The number of bits per baud is the value of *r*. Therefore, we use the formula $r = \log_2 L$ for each case.

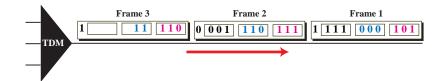

a. $\log_2 2 = 1$ **b.** $\log_2 4 = 2$ **c.** $\log_2 16 = 4$ **d.** $\log_2 1024 = 10$

P7-45. The bandwidth for each channel = (1 MHz) / 10 = 100 kHz. We then find the value of *r* for each channel:

$$B = (1 + d) \times (1/r) \times (N) \rightarrow r = N/B \rightarrow r = (1 \text{ Mbps}/100 \text{ kHz}) = 10$$

We can then calculate the number of levels: $L = 2^r = 2^{10} = 1024$. This means that we need a 1024-QAM technique to achieve this data rate.

P7-47. The following figure shows the result. It can be seen that sampling at the Nyquist rate can create a good approximation of the original sine wave (part a). Oversampling in part b can also create the same approximation, but it is redundant and unnecessary. Sampling below the Nyquist rate (part c) does not produce a signal that looks like the original sine wave.



P7-49. The bandwidth allocated to each voice channel is 20 kHz / 100 = 200 Hz. Each digitized voice channel has a data rate of 64 Kbps (8000 sample × 8 bit/ sample). This means that our modulation technique uses

64,000/200 = 320 bits/Hz.

P7-51.

- **a.** Frame size = $6 \times (8 + 4) = 72$ bits.
- b. We can assume that we have only 6 input lines. Each frame needs to carry one character from each of these lines. This means that the frame rate is 500 frames/s.
- c. Frame duration = 1 / (frame rate) = 1 / 500 = 2 ms.
- **d.** Data rate = $(500 \text{ frames/s}) \times (72 \text{ bits/frame}) = 36 \text{ kbps}$.
- **P7-53.** See figure below:

- P7-55. The Barker chip is 11 bits, which means that it increases the bit rate 11 times. A voice channel of 64 kbps needs 11×64 kbps = 704 kbps. This means that the bandpass channel can carry (10 Mbps) / (704 kbps) or approximately 14 channels.
- **P7-57.** SNR_{dB} = $6.02 \times 8 + 1.76 = 49.92$.
- **P7-59.** The loss of the cable for 10 Km is $-10 \text{ dB} = 10 \log_{10}(P_2/P_1)$. This means $\log_{10}(P_2/P_1) = -1$, or $(P_2/P_1) = 1/10$, resulting in $P_1 = 10 \times P_2 = 100$ mW.