
C H A P T E R 8

PRACTICE SET
Questions
Q8-1. In dictionary coding, the number of iterations in the loop is one less than the

number of characters in the message. In this case, the number of iterations is
59.

Q8-3. In a Huffman tree, the number of leaves is the same as the number of symbols.
Therefore, we have 20 leaves in the tree.

Q8-5. The encoding table can be the following:

Huffman coding cannot help here because we could have encoded each char-
acter as two bits. Huffman coding will help if the occurrence probabilities of
the characters in the messages are different and we can send fewer bits for
characters with high probability and more bits for characters with low proba-
bility.

Q8-7. ADM is a variation of DM in which the value of may change from one step
to another.

Q8-9. The answer is given for each case for both PCM and DM.

a. PCM: 4 (because 24 = 16) and DM: 1

b. PCM: 5 (because 25 = 32) and DM: 1

c. PCM: 6 (because 26 = 64) and DM: 1

Q8-11. In DM, only the immediate previous yn value is used in the calculation of en.
In DPCM, weighted averages of several previous yn values are used in the cal-
culation of en.

Q8-13. The answer is no. The value of the T matrix entries, for each value of N, is
fixed. The receiver either has the matrix or can generate it.

Q8-15. The value of Q(m, n) becomes larger and larger when we move toward the
higher frequencies in the matrix, from M(0, 0) to M(N1, N1) diagonally.
This is done to reduce the effect of higher frequencies. Human eyes cannot
recognize the higher frequencies when their amplitude (strength) is outside of

A 00 B 01 C 10 D 11
1

2

an upper and a lower threshold. The values in the Q(m, n) matrix are selected
based on this property. Dividing the amplitude of higher frequencies by a
larger number makes these amplitudes smaller and smaller, finally moving
them toward zero values and elimination (better compression).

Q8-17. The whole idea is to change the real numbers (values with fractions) to integer
values to reduce the number of transmitted bits. The real value 14.125 or
(1110.001)2 needs seven bits to send; the integer value 14 or (1110)2 needs
only four bits to send. The number of bits to send tremendously increases if
we want to use a high level of precision.

Q8-19. The answer is no. Multimedia data encoded in JPEG cannot be recovered
using GIF and vice versa. If two entities want to communicate, they must use
the same encoding and decoding scheme.

Q8-21. In the second approach, the whole multimedia file is downloaded using HTTP
as the application-layer protocol. In the third approach, HTTP is only respon-
sible for downloading the metafile; the actual multimedia file is normally
downloaded using a specific application program that may use the service of
UDP/RTP.

Q8-23. In live audio/video, the multimedia data is being sent on the Internet no matter
whether we use it or not. In real-time interactive audio/video, two parties start
exchanging multimedia when they both agree to do so.

Q8-25. The answer is yes. The protocol defines a server as a process running at the
application level. The two servers can be on the same machine or different
machines.

Q8-27. The answer is yes because the distance between each codeword and the others
is three or more. According to the Hamming distance principle, the code can
correct one single-bit error (dmin 2t 1).

Q8-29. In this scheme each packet is independent. The scheme still works, but more
packets lose their high-level resolution.

Q8-31. One of the main tasks of a transport-layer protocol, such as UDP or TCP, is to
provide many-to-many end-to-end communication between application-layer
processes. In UDP and TCP, this task is done using source and destination
socket addresses. RTP lacks such a capability because it does not define
socket addresses. RTP assumes that the underlying protocol, UDP, provides
the multiplexing and demultiplexing; RTP is assigned other tasks specific to
multimedia applications.

Q8-33. A real-time interactive multimedia application needs a few services that are
not provided by UDP, such as timestamping, sequence numbers, synchroniza-
tion of audio and video, and defining the payload type. If a new application
can provide these services and somehow create a session with the receiver, it
can use the service of UDP and ignore the services provided by RTP. The RTP

3

protocol has been devised to remove the burden of creating these services for
each the application-layer protocol.

Q8-35. Encoding and decoding of the multimedia data is done by the application pro-
gram. RTP only carries information in the payload that defines the type of
encoding performed on the payload. The receiver needs to use the same
decoding to obtain the original data.

Q8-37. The two applications at the two ends, the sender and the receiver, need to first
create a session using other protocols such as SIP before using the service of
RTP. During the session establishment, the two ends agree on two port num-
bers that need to be used for connection. As long as the session is not torn
down, the UDP packets carrying the same port numbers belong to the same
session.

Q8-39. RTP plus UDP provides about the same services as TCP without the latter’s
retransmission policy. However, the combination of RTP plus UDP is more
suitable for multimedia transmission because it can provide boundaries of
chunks, encoding type, and timestamping. In addition, UDP does not resend
the lost packets, so it is appropriate for real-time multimedia applications.

Q8-41. The answer is negative. SIP is an application-layer protocol that is designed to
directly use the services of UDP, TCP, or even STCP. It listens to the regis-
tered port 5060.

Q8-43. SIP is a signaling protocol that initiates, terminates, and modifies a session
between two parties. It doesn’t care about the actual data exchange. Audio,
video, or other multimedia data can be transmitted. One drawback could be
the low level of efficiency.

Q8-45. The sender can handle the situation more easily in a unicast session because
there is only one receiver. In a multicast situation, the feedback from multiple
receivers can be different and the sender needs to use a strategy to analyze the
feedback and respond to the situation.

Q8-47. SIP can provide all of these services:

a. The INVITE message in SIP provides several pieces of information about
the caller. The SIP interface software can be set to display all or some of
these pieces before the callee can answer the call.

b. The SIP interface software can be set to show all pieces of information in a
new call when the user is busy handling the current call.

c. SIP is designed to provide multiparty and multicasting service.

Q8-49. SIP just sets up and terminates a session between two parties. H.323 is a pro-
tocol suite that covers everything pertaining to the session. SIP is more flexi-
ble in its address formats. H.323 setup is more complicated than that of SIP.

4

Q8-51. In this case, we have two queues, but we also have two separate servers. This
is not an example of priority queuing; it is an example of FIFO queuing with
two independent queues.

Q8-53. This is an example of priority queuing. The business customers have priority
over the regular customers.

Problems
P8-1. We replace each run of the same character with a count and the symbol as

shown below.

The compression rate is 26/14 or almost 1.86.

P8-3. Let us show how the dictionary for each case is made using the knowledge
about the previous case.

a. Dictionary is 0 A; the code is 0.

b. Dictionary is 0 A and 1 AA; the code is 00.

c. Dictionary is 0 A and 1 AA; the code is 01.

d. Dictionary is 0 A, 1 AA, and 2 AAA; the code is 010.

e. Dictionary is 0 A, 1 AA, and 2 AAA; the code is 011.

f. Dictionary is 0 A, 1 AA, and 2 AAA; the code is 012.

P8-5. We follow the procedure in Table 8.2. The loop is shown inside the frame with
a thick border. We need to initialize the dictionary before reading the code.
The message is "AACCCBCCDDAB".

3A6C1B4C5D4A3B

PreC S C S + first char Dictionary Mes-
sage

0 A

1 B

2 C

3 D

0 A

if 0 A 0 AA 4 AA A

if 0 A 2 AC 5 AC C

else 2 C 6 CC 6 CC CC

if 6 CC 1 CCB 7 CCB B

if 1 B 6 BC 8 BC CC

if 6 CC 3 CCD 9 CCD D

if 3 D 3 DD 10 DD D

if 3 D 0 DA 11 DA A

if 0 A 1 AB 12 AB B

5

P8-7. We need to read the code, bit by bit, until we get a sequence of bits that can be
decoded using the table:

The decoded message is "AACCADBDDAB".

P8-9. The code 100110011 is interpreted as (0.100110011)2 or (0.599609375) in
decimal. We start with the half-open interval [0, 1) to see where this number
fits. The following shows how we narrow the intervals to find the location of
the received code. The result is "BBC*"; the actual message is "BBC".

P8-11. We first calculate the value of qn from the code. If the code is bit 1, the value
of qn is 1; otherwise, it is 1. The value of the yn can then be calculated as yn
yn1 + qn . Note that the value of y0 is not shown in the table, but is given
in the problem as y0 8.

P8-13. We first calculate the value of qn from the code. If the code is bit 1, the value
of qn is 1; otherwise, it is 1. The value of Mn can then be calculated depend-
ing on the change in qn. We can then calculate the value of n as defined in the
problem. The value of yn can then be calculated using yn = yn1 + qn n
Note that the value of y0 is not shown in the table, but is given in the problem
as y0 20.

0 0 1 1 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0

A A C C A D B D D A B

n 1 2 3 4 5 6 7 8 9 10 11

Cn 1 0 0 1 0 1 1 0 0 1 1

qn 1 1 1 1 1 1 1 1 1 1 1

yn 14 8 2 8 2 8 14 8 2 8 14

n 1 2 3 4 5 6 7 8 9 10 11

Cn 1 1 1 0 0 1 1 0 0 1 1

qn 1 1 1 1 1 1 1 1 1 1 1

Mn 1 1.5 2.25 1.13 1.70 0.85 1.28 0.64 0.96 0.48 0.72

n 4 6 13.5 15.3 26 22.1 28.3 18.1 17.4 8.4 6

yn 24 30 43.5 28.2 2.2 24.3 52.6 34.5 17.1 25.5 31.5

A CB *

A CB *

A CB *

A CB *

0.0 0.4

0.4

0.7

0.70.52

0.52

0.61

0.610.583

0.583 0.5902 0.5956 0.5992

0.601

0.601

0.556

0.67

0.9 1.0

6

P8-15. The answer is yes. We have T(m, n) C(m, n) cos(x). The value of cos(x) is
always between 1 and 1. We only need to prove that C(m, n) 1, which can
be done using two cases:

a. If m 0 C(m, n) (1/N)1/2 1because N 1.

b. If m 0 C(m, n) (2/N)1/2 1because N 2.

P8-17. The following shows the four matrices. The first one (N = 1) is actually a
number (scalar value). Note that we have rounded the values to two decimal
digits.

P8-19. The palette should have the combination of 2 2 2 8 rows, as shown
below with the bit index.

a. For each color in the palette we can send three bits (the index of the row).

b. The bit index for the red color is 100, for the blue color is 010, for the green
color is 001, for the black color is 000, for the white color is 111, and for
the magenta is 110.

P8-21. The receiver misses samples 21, 23, 25, 27, 29, 31, 33, 35, 37, and 39. How-
ever, the even-numbered samples are received and played. There may be some
glitches in the audio, but that passes immediately.

Red Blue Green

000 00000000 00000000 00000000 R 0, B 0, G 0

001 00000000 00000000 00000100 R 0, B 0, G 4

010 00000000 00000101 00000000 R 0, B 5, G 0

011 00000000 00000101 00000100 R 0, B 5, G 4

100 00000111 00000000 00000000 R 7, B 0, G 0

101 00000111 00000000 00000100 R 7, B 0, G 4

110 00000111 00000101 00000000 R 7, B 5, G 0

111 00000111 00000101 00000100 R 7, B 5, G 4

0.71 0.71
0.71 -0.711.00

N = 1 N = 2 N = 4

N = 8

0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.49 0.42 0.28 0.10 -0.10 -0.28 -0.42 -0.49
0.46 0.19 -0.19 -0.46 -0.46 -0.19 0.19 0.46
0.42 -0.10 -0.49 -0.28 0.28 0.49 0.10 -0.42
0.35 -0.35 -0.35 0.35 0.35 -0.35 -0.35 0.35
0.28 -0.49 0.10 0.42 -0.42 -0.10 0.49 -0.28
0.19 -0.46 0.46 -0.19 -0.19 0.46 -0.46 0.19
0.10 -0.28 0.42 -0.49 0.49 -0.42 0.28 -0.10

0.50 0.50 0.50 0.50
0.65 0.27 -0.27 -0.65
0.50 -0.50 -0.50 0.50
0.27 -0.65 0.65 -0.27

7

P8-23. The redundant bits in this case need to find (n 1) different states because the
corruption can be in any of the n bits or in no bits (no corruption). A set of r
bits can define 2r states. This means that we need to have the following rela-
tionship: 2r n + 1. We need to solve the equation for each value of k using
trial and error to find the minimum value of r.

a. If k 1, then r 2 and n 3 because (22 3 1), which meansC(3, 1).

b. If k 2, then r 3 and n 5 because (23 5 1), which meansC(5, 1).

c. If k 5, then r 4 and n 9 because (24 9 1), which meansC(9, 5).

d. If k 50, then r 6 and n 56 because (26 56 1), which means
C(56, 50).

e. If k 1000, then r 10 and n 1010 because 210 1010 + 1, which means
C(1010, 1000).

P8-25. If we need to correct m bits in an n bit codeword, we need to think about the
combination of n objects taking no object at a time or Com(n, 0), which means
the state of no error, the combination of n objects taking one object at a time or
Com (n, 1), which means the state of one-bit error, the combination of n
objects taking two objects at a time or Com(n, 2), which means the state of
two-bit error, and so on. We can have the following relationship between the
value of r (number of redundant bits) and the value of m (the number of
errors) we need to correct.

P8-27. The answer follows:

a. At time 00:00:17

b. At time 00:00:20

c. At time 00:00:25

d. At time 00:00:30

2r Com(n, m) Com(n, m1) Com(n, 1) Com(n, 0)

first packet: 10 units arrived, 9 units played, 1 unit in buffer

second packet: 2 units arrived, none played, 3 units in buffer

first packet: none left

second packet: 5 units arrived, 2 units played, 3 units in buffer

first packet: none left

second packet: 10 units arrived, 7 units played, 3 units in buffer

first packet: none left

second packet: none left

third packet: 3 units arrived, 2 units played, 1 unit in buffer

8

P8-29. The first eight hexadecimal digits are in binary:

a. The first two bits define the version, which means the version is 2.

b. The third bit is the P bit, which means there is no padding.

c. The fourth bit is the X bit, which means there is no extension header.

d. The next four bits define the number of contributors, which is 6 in this
case.

e. The seven bits after the color bit (M) (with the value 3 in decimal) define
the payload type, which means GSM audio.

f. Since we have six contributors, the total size of the packet header is 12
bytes (first part of the header) plus 6 4 bytes for CSRCs, for a total of 36
bytes.

P8-31. We can mention several reasons.

a. Live or real-time streaming of multimedia requires that the data be sent in
chunks. A chunk of data is a sequence of bits that have been encoded
together and need to be decoded together; each bit may depend on the rest
of the bits. Although TCP collects eight bits in a byte and transfers each
byte as an atomic unit, the size of the byte is not enough to be a chunk of
multimedia data (even a single pixel in an image may need more than eight
bits). A chunk cannot be associated with several bytes because TCP may
split bytes, making a chunk into different segments, which means a chunk
of multimedia data may be in one segment and the other parts in other seg-
ments. What is needed in multimedia is that a chunk of data be carried in a
single packet. Although TCP may use push and urgent flags to artificially
create boundaries for each segment, it is not guaranteed that a TCP imple-
mentation will honor these flags all of the time. On the other hand, a UDP
user datagram is a packet with clear-cut boundaries. A UDP packet, when
combined with RTP/RCTP packets, can carry a single chunk of multimedia
payload, and the size of the UDP datagram is large enough to hold any
chunk of multimedia data as defined so far.

b. TCP is not an appropriate protocol for multicasting and multi-party com-
munication because it is a connection-oriented protocol in which a connec-
tion involves only two parties. UDP, on the other hand, is a connection-less
protocol. Multicasting and multi-party communication can be achieved
using UDP. Using the same multicast address, a UDP sender can send mul-
ticast packets to many receivers; several UDP senders can use the same
multicast addresses to create multi-party communication.

c. TCP delivers data bytes to the application program in order. This means
that if a segment is missing, the out-of-order bytes need to wait. This is not
appropriate for live or real-time interactive multimedia streaming, as dis-
cussed in the text. This problem does not exist in UDP. Each UDP packet is

1000 0110 0000 0011 0010 0001 0011 0010

9

independent, and the chunk of data carried in a UDP datagram can be
delivered to the application program as it arrives.

d. Since multimedia chunks can use different encoding methods, we need a
field to define the type of payload. A TCP segment lacks this field. A UDP
datagram can allow encapsulation of the RTP packet, which includes this
field.

e. For a live or real-time multimedia streaming, there is a need for synchroni-
zation using timestamps that define the temporal relationship between each
chunk and the other chunks. None of the three protocols, TCP, UDP, or
SCTP, provide timestamping. UDP, however, allows the encapsulation of
the RTP packets, which includes timestamping. Since an SCTP packet can
carry many data chunks in a single packet, timestamping may not be
needed if the stream is short.

f. Congestion control in multimedia communication is a big issue because of
the volume of data exchanged. Although TCP has a congestion control
mechanism, it is not suitable for multimedia communication, because it is
based on segments, not chunks. Congestion control in UDP/RTP is more
convenient for multimedia communication.

P8-33. We answer each question below:

a. The following shows the time lines and the contents of the priority queue
(Q1) and non-priority queue (Q2).

Arrival

Processing

Departure
t1t0 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16

t1t0 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16

1

1 2 4 5 67 89 103

2 3 4 5 6 7 8 9 10

10 10 10

10 10 10

1 2 3 4 5 6 8 107 9

Q1

Q2

t0
Q1

Q2

t1
Q1

Q2

t2
Q1

Q2

t3

Q1

Q2

t4
Q1

Q2

t5
Q1

Q2

t6
Q1

Q2

t7

Q1

Q2

t8
Q1

Q2

t9
Q1

Q2

t10
Q1

Q2

t11

Q1

Q2

t12
Q1

Q2

t13
Q1

Q2

t14
Q1

Q2

t15

2 3 34

4 4

5 5 5 5

5 5 5 5

6 6 6 6

6

6 6 6

7 7

8 8 8 8

8 8

8

9 9

10
b. For the packets in the priority class, we find the time spent in the router for
each class, which is the departure time minus the arrival time. We also find
the relative departure delay, as shown below. Since the relative delays are
the same for each packet, the router does not create jitter in this class.

c. For the packets in the non-priority class, we do the same, as shown below.
We notice that there is no jitter for the packets in this class because the pri-
ority packets blocked these packets and they all departed at the end.

P8-35. We show the list of packets transmitted in each situation:

a. In the first situation, four packets are sent from the top queue, two packets
from the middle queue, and one packet from the bottom.

b. In the second situation, the same pattern occurs as in part a, but the third
queue has no packet to send. The process stops when there is no packet to
send.

c. In the third situation, the same pattern occurs as in part a, but the first
queue has no packet to send. The process stops when there is no packet to
send. When there is no packet in the second queue, all packets from C are
transmitted one after another.

P8-37. The router can implement the leaky bucket algorithm with n = 1 packet in
each clock tick and set the clock tick to 1/2 second. In each clock tick, the
router sends out one packet. This can be implemented using a FIFO queue that
stores the packets and sends them out one each half second. The problem with
this approach is that, if the packets continue arriving, a time comes when the
queue is full and any new packet would be dropped. The problem occurs
because the rate of input is more than the rate of output.

Packets: 1 2 3 4 7 9

Arrival time: t0 t1 t2 t3 t6 t8

Departure time: t2 t4 t6 t8 t10 t12

Time spent in the router 2 3 4 5 4 4

Relative delay 2 2 2 2 2

Packets: 5 6 8 10

Arrival time: t4 t5 t7 t9

Departure time: t13 t14 t15 t16

Time spent in the router 9 9 8 7

Relative delay 1 1 1

AAAABBCAAAABBCAAAABBCAAAABBCAAAABBCAAAABBC

AAAABBAAAABBAA

BBCBBCBCCCCCCCC

11
P8-39. We discuss each case separately.

a. The first case is an example of a perfect situation. The sender has matched
its transmitting rate with the rate the switch can handle the flow. At the end
of each second, both the bucket and the queue are empty, as shown in the
following figure. Five packets have arrived each second and five packets
have departed each second. No packets have been dropped. Five tokens are
added to the bucket in each second and five tokens are removed in each
second. The bucket has never become full and has never dropped tokens.
Each packet departed with a delay which is equal to the processing time,
but there is no jitter (in case the packets belong to the same application);
the delay is the same for each packet.

b. The second case is an example in which the sender does not use the capac-
ity of the switch. The sender sends at a lower rate than the rate the switch
can handle. At the end of each second, the bucket has some tokens that
have not been used. After five seconds, the bucket is full and needs to drop
some new tokens added to it. At the end of each second the queue is empty.
Each packet departed with a delay which is equal to the processing time,
but there is no jitter (in case the packets belong to the same application);
the delay is the same for each packet.

c. The third case is an example in which the sender does not follow the capac-
ity of the switch; its rate is more than it should be. The sender sends at a
rate higher than the rate the switch can handle. At the end of each second,

Seconds

Buckets

Buffers

0 1 2 3 4 5 6 7

Seconds

Drop Drop

0 1 2 3 4 5 6 7

Buckets

Buffers

12
the bucket has consumed all of its tokens, which means some packets need
to wait in the queue until new tokens are injected into the bucket. After four
seconds, the queue is full and two packets need to be dropped at the end of
each following second. Some packets are lost. The packets that are not lost
encounter unequal delays because some need to remain in the queue longer
than the others. As the time goes on, each packet encounters more delay.
There are packet loss. There is definitely jitter if the packets belong to the
same application.

P8-41. We show the frames sent during each second.

a. First tick: n is set to 8000.
After sending frame 1, n 8000 4000 4000.
After sending frame 2, n 4000 4000 0.
No more frames can be sent (n < size of the next frame).

b. Second tick: n is set to 8000.
After sending frame 3, n 8000 4000 4000.
After sending frame 4, n 4000 4000 0.
No more frames can be sent (n < size of the next frame).

c. Third tick: n is set to 8000.
After sending frame 5, n 8000 3200 4800.
After sending frame 6, n 4800 3200 1600.
No more frames can be sent (n < size of the next frame).

d. Fourth tick: n is set to 8000.
After sending frame 7, n 8000 3200 4800.
After sending frame 8, n 4800 400 4400.
After sending frame 9, n 4400 400 4000.
After sending frame 10, n 4000 2000 2000.
After sending frame 11, n 2000 2000 0.
No more frames can be sent (n < size of the next frame).

e. Fifth tick: n is set to 8000.
After sending frame 12, n 8000 2000 6000.
There are no more frames to send.

Seconds

Dropped Dropped Dropped

0 1 2 3 4 5 6 7

13
P8-43. To better understand the behavior of the token bucket in this problem, we first
create a table in each case to show the movement of cells and tokens in the
system. The flow diagram can follow the table. Although adding and remov-
ing cells are done for each individual cell, we assume that the cells are first
added to the queue, the ones that can be transmitted are removed from the
queue, and at the end of each second, we show the number of cells left in the
queue. We do the same for the tokens, we first assume that the tokens are
added at the beginning of the second to the bucket, some are consumed during
each second, and some are discarded if the bucket is full. We need to say that
the number of cells transmitted in each second is determined by the following
rule.

 transmitted cells = min (number of cells in queue, number of available tokens)

a. The table for the first customer is shown below. We don’t have cell loss,
but we need to discard some tokens when the bucket is full (t5 to t7). Dis-
carding tokens means that the customer has not used its allocated rate.

Time Number of cells Number of Tokens

(ti)
previ-
ously

in
queue

arr-
ived
at

ISP

in
queue
after

adding

sent
by
ISP

left
in

queue

previ-
ously

 in
bucket

added
to

bucket

in
bucket
after

con-
sumed

for
cells

left
in

bucket

01 0 5 5 5 0 0 10 10 5 5

02 0 5 5 5 0 5 10 15 5 10

03 0 5 5 5 0 10 10 20 5 15

04 0 5 5 5 0 15 10 25 5 20

05 0 5 5 5 0 20 10 30 5 20

06 0 5 5 5 0 20 10 30 5 20

07 0 5 5 5 0 20 10 30 5 20

08 0 15 15 15 0 20 10 30 15 15

09 0 15 15 15 0 15 10 25 15 10

10 0 15 15 15 0 10 10 20 15 5

11 0 15 15 15 0 5 10 15 15 0

12 0 15 15 10 5 0 10 10 10 0

13 5 15 20 10 10 0 10 10 10 0

14 10 15 25 10 15 0 10 10 10 0

15 15 15 30 10 20 0 10 10 10 0

16 20 15 35 10 25 0 10 10 10 0

17 25 0 25 10 15 0 10 10 10 0

18 15 0 15 10 5 0 10 10 10 0

19 5 0 5 5 0 0 10 10 5 5

20 0 0 0 0 0 5 10 15 0 15

14
The following shows the movement of cells and tokens graphically. The
figure definitely shows that there are uneven delays for the cells after t8.
Some cells are stored in the queue for further transmission, but there is no
cell loss because the queue size if very large.

Cells arrived at ISP

Cells departed at ISP

Time1 2 3 4 5

5
10
15
20

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Cells

Cells in the queue
Time1 2 3 4 5

5
10
15
20
25

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time

Cell rate

Cell rate

1 2 3 4 5

5
10
15
20

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Tokens left in bucket

Discarding
tokens

Tokens

Time1 2 3 4 5

5
10

20
15

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

15
b. The table for the second customer is shown below. We don’t have cell loss,
but we need to discard some tokens when the bucket is full (t13 to t20). Dis-
carding of token means that the customer has not used its allocated rate.

Time Number of cells Number of Tokens

(ti)
previ-
ously

in
queue

arr-
ived
at

ISP

in
queue
after

adding

sent
by
ISP

left
in

queue

previ-
ously

 in
bucket

added
to

bucket

in
bucket
after
add-
ing

con-
sumed

for
cells

left
in

bucket

01 0 15 15 10 5 0 10 10 10 0

02 5 15 20 10 10 0 10 10 10 0

03 10 15 25 10 15 0 10 10 10 0

04 15 15 30 10 20 0 10 10 10 0

05 20 5 25 10 15 0 10 10 10 0

06 15 5 20 10 10 0 10 10 10 0

07 10 5 15 10 5 0 10 10 10 0

08 5 5 10 10 0 0 10 10 10 0

09 0 5 5 5 0 0 10 10 5 5

10 0 5 5 5 0 5 10 15 5 10

11 0 5 5 5 0 10 10 20 5 15

12 0 5 5 5 0 15 10 25 5 20

13 0 5 5 5 0 20 10 30 5 20

14 0 5 5 5 0 20 10 30 5 20

15 0 5 5 5 0 20 10 30 5 20

16 0 5 5 5 0 20 10 30 5 20

17 0 5 5 5 0 20 10 30 5 20

18 0 5 5 5 0 20 10 30 5 20

19 0 0 0 0 0 20 10 30 0 20

20 0 0 0 0 0 20 10 30 0 20

16
The following shows the movement of cells and tokens graphically. The
figure definitely shows that there are uneven delays for the cells. . Some
cells are stored in the queue for further transmission, but there is no cell
loss because the queue size is very large.

Cells arrived at ISP

Cells departed at ISP

T1 2 3 4 5

5

10

15

20

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Cells

Cells in the queue
1 2 3 4 5

5

10

15

20

25

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Cell r te

Cell rate

1 2 3 4 5

5

10

15

20

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Tokens left in bucket

Tokens discarded

Tokens

1 2 3 4 5

5

10

15

20

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

17
c. The table for the third customer is shown below. We don’t have cell loss;
no tokens are discarded. This means that customer has used its full allo-
cated rate. It does not send cells for two seconds, but it sends two times its
rate for the next two seconds.

Time Number of
cells

 Number of
Tokens

(ti)
previ-
ously

in
queue

arrive
d
at

ISP

in
queue
after

adding

sent
by
ISP

left
in

queue

previ-
ously

 in
bucket

added
to

bucket

in
bucket
after
add-
ing

con-
sumed

for
cells

left
in

bucket

01 0 0 0 0 0 0 10 10 0 10

02 0 0 0 0 0 10 10 20 0 20

03 0 20 20 20 0 20 10 30 20 10

04 0 20 20 20 0 10 10 20 20 0

05 0 0 0 0 0 0 10 10 0 10

06 0 0 0 0 0 10 10 20 0 20

07 0 20 20 20 0 20 10 30 20 10

08 0 20 20 20 0 10 10 20 20 0

09 0 0 0 0 0 0 10 10 0 10

10 0 0 0 0 0 10 10 20 0 20

11 0 20 20 20 0 20 10 30 20 10

12 0 20 20 20 0 10 10 20 20 0

13 0 0 0 0 0 0 10 10 0 10

14 0 0 0 0 0 10 10 20 0 20

15 0 20 20 20 0 20 10 30 20 10

16 0 20 20 20 0 10 10 20 20 0

17 0 0 0 0 0 0 10 20 0 10

18 0 0 0 0 0 10 10 20 0 20

19 0 0 0 0 0 20 10 30 0 20

20 0 0 0 0 0 20 10 30 0 20

18
The following shows the movement of cells and tokens graphically. This is
a situation in which there is no jitter (comparing the customer and ISP cell-
rate transmission. No tokens are discarded until the 18th second.

Cells arrived at ISP

Cells departed at ISP

Time1 2 3 4 5

5

10

15

20

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Cells

Cells in the queue
Time1 2 3 4 5

5

10

15

20

20

25

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time

Cell r te

Cell rate

1 2 3 4 5

5

10

15

20

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Tokens left in bucket

Tokens
discarded

Tokens

Time1 2 3 4 5

5

10

15

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Cells arrived at ISP

Cells departed at ISP

Time1 2 3 4 5

5

10

15

20

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Cells

Cells in the queue
Time1 2 3 4 5

5

10

15

20

20

25

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time

Cell r te

Cell rate

1 2 3 4 5

5

10

15

20

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Tokens left in bucket

Tokens
discarded

Tokens

Time1 2 3 4 5

5

10

15

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

	PRACTICE SET
	Questions
	Q8 -1. In dictionary coding, the number of iterations in the loop is one less than the number of characters in the message. In this case, the number of iterations is 59.
	Q8 -3. In a Huffman tree, the number of leaves is the same as the number of symbols. Therefore, we have 20 leaves in the tree.
	Q8 -5. The encoding table can be the following:

	A ® 00
	B ® 01
	C ® 10
	D ® 11
	Q8 -7. ADM is a variation of DM in which the value of D may change from one step to another.
	Q8 -9. The answer is given for each case for both PCM and DM.
	a. PCM: 4 (because 24 = 16) and DM: 1
	b. PCM: 5 (because 25 = 32) and DM: 1
	c. PCM: 6 (because 26 = 64) and DM: 1

	Q8 -11. In DM, only the immediate previous yn value is used in the calculation of en. In DPCM, weighted averages of several previous yn values are used in the calculation of en.
	Q8 -13. The answer is no. The value of the T matrix entries, for each value of N, is fixed. The receiver either has the matrix or can generate it.
	Q8 -15. The value of Q(m, n) becomes larger and larger when we move toward the higher frequencies in the matrix, from M (0, 0) to M (N-1, N-1) diagonally. This is done to reduce the effect of higher frequencies. Human eyes cannot recognize the higher...
	Q8 -17. The whole idea is to change the real numbers (values with fractions) to integer values to reduce the number of transmitted bits. The real value 14.125 or (1110.001)2 needs seven bits to send; the integer value 14 or (1110)2 needs only four bi...
	Q8 -19. The answer is no. Multimedia data encoded in JPEG cannot be recovered using GIF and vice versa. If two entities want to communicate, they must use the same encoding and decoding scheme.
	Q8 -21. In the second approach, the whole multimedia file is downloaded using HTTP as the application-layer protocol. In the third approach, HTTP is only responsible for downloading the metafile; the actual multimedia file is normally downloaded usin...
	Q8 -23. In live audio/video, the multimedia data is being sent on the Internet no matter whether we use it or not. In real-time interactive audio/video, two parties start exchanging multimedia when they both agree to do so.
	Q8 -25. The answer is yes. The protocol defines a server as a process running at the application level. The two servers can be on the same machine or different machines.
	Q8 -27. The answer is yes because the distance between each codeword and the others is three or more. According to the Hamming distance principle, the code can correct one single-bit error (dmin = 2t + 1).
	Q8 -29. In this scheme each packet is independent. The scheme still works, but more packets lose their high-level resolution.
	Q8 -31. One of the main tasks of a transport-layer protocol, such as UDP or TCP, is to provide many-to-many end-to-end communication between application-layer processes. In UDP and TCP, this task is done using source and destination socket addresses....
	Q8 -33. A real-time interactive multimedia application needs a few services that are not provided by UDP, such as timestamping, sequence numbers, synchronization of audio and video, and defining the payload type. If a new application can provide thes...
	Q8 -35. Encoding and decoding of the multimedia data is done by the application program. RTP only carries information in the payload that defines the type of encoding performed on the payload. The receiver needs to use the same decoding to obtain the...
	Q8 -37. The two applications at the two ends, the sender and the receiver, need to first create a session using other protocols such as SIP before using the service of RTP. During the session establishment, the two ends agree on two port numbers that...
	Q8 -39. RTP plus UDP provides about the same services as TCP without the latter’s retransmission policy. However, the combination of RTP plus UDP is more suitable for multimedia transmission because it can provide boundaries of chunks, encoding typ...
	Q8 -41. The answer is negative. SIP is an application-layer protocol that is designed to directly use the services of UDP, TCP, or even STCP. It listens to the registered port 5060.
	Q8 -43. SIP is a signaling protocol that initiates, terminates, and modifies a session between two parties. It doesn’t care about the actual data exchange. Audio, video, or other multimedia data can be transmitted. One drawback could be the low lev...
	Q8 -45. The sender can handle the situation more easily in a unicast session because there is only one receiver. In a multicast situation, the feedback from multiple receivers can be different and the sender needs to use a strategy to analyze the fee...
	Q8 -47. SIP can provide all of these services:
	a. The INVITE message in SIP provides several pieces of information about the caller. The SIP interface software can be set to display all or some of these pieces before the callee can answer the call.
	b. The SIP interface software can be set to show all pieces of information in a new call when the user is busy handling the current call.
	c. SIP is designed to provide multiparty and multicasting service.

	Q8 -49. SIP just sets up and terminates a session between two parties. H.323 is a protocol suite that covers everything pertaining to the session. SIP is more flexible in its address formats. H.323 setup is more complicated than that of SIP.
	Q8 -51. In this case, we have two queues, but we also have two separate servers. This is not an example of priority queuing; it is an example of FIFO queuing with two independent queues.
	Q8 -53. This is an example of priority queuing. The business customers have priority over the regular customers.
	Problems
	P8 -1. We replace each run of the same character with a count and the symbol as shown below.

	3A6C1B4C5D4A3B
	P8 -3. Let us show how the dictionary for each case is made using the knowledge about the previous case.
	a. Dictionary is 0 ® A; the code is 0.
	b. Dictionary is 0 ® A and 1 ® AA; the code is 00.
	c. Dictionary is 0 ® A and 1 ® AA; the code is 01.
	d. Dictionary is 0 ® A, 1 ® AA, and 2 ® AAA; the code is 010.
	e. Dictionary is 0 ® A, 1 ® AA, and 2 ® AAA; the code is 011.
	f. Dictionary is 0 ® A, 1 ® AA, and 2 ® AAA; the code is 012.

	P8 -5. We follow the procedure in Table 8.2. The loop is shown inside the frame with a thick border. We need to initialize the dictionary before reading the code. The message is "AACCCBCCDDAB".

	PreC
	S
	C
	S + first char
	Dictionary
	Message
	0
	A
	1
	B
	2
	C
	3
	D
	0
	A
	if
	0
	A
	0
	AA
	4
	AA
	A
	if
	0
	A
	2
	AC
	5
	AC
	C
	else
	2
	C
	6
	CC
	6
	CC
	CC
	if
	6
	CC
	1
	CCB
	7
	CCB
	B
	if
	1
	B
	6
	BC
	8
	BC
	CC
	if
	6
	CC
	3
	CCD
	9
	CCD
	D
	if
	3
	D
	3
	DD
	10
	DD
	D
	if
	3
	D
	0
	DA
	11
	DA
	A
	if
	0
	A
	1
	AB
	12
	AB
	B
	P8 -7. We need to read the code, bit by bit, until we get a sequence of bits that can be decoded using the table:

	0
	0
	1
	1
	0
	1
	1
	0
	0
	1
	1
	1
	1
	0
	1
	1
	1
	1
	1
	1
	0
	1
	0
	A
	A
	-
	-
	C
	-
	-
	C
	A
	-
	-
	D
	-
	B
	-
	-
	D
	-
	-
	D
	A
	-
	B
	P8 -9. The code 100110011 is interpreted as (0.100110011)2 or (0.599609375) in decimal. We start with the half-open interval [0, 1) to see where this number fits. The following shows how we narrow the intervals to find the location of the received co...
	P8 -11. We first calculate the value of qn from the code. If the code is bit 1, the value of qn is 1; otherwise, it is -1. The value of the yn can then be calculated as yn = yn - 1 + qn ´ D. Note that the value of y0 is not shown in the table, but i...

	n
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	Cn
	1
	0
	0
	1
	0
	1
	1
	0
	0
	1
	1
	qn
	1
	-1
	-1
	1
	-1
	1
	1
	-1
	-1
	1
	1
	yn
	14
	8
	2
	8
	2
	8
	14
	8
	2
	8
	14
	P8 -13. We first calculate the value of qn from the code. If the code is bit 1, the value of qn is 1; otherwise, it is -1. The value of Mn can then be calculated depending on the change in qn. We can then calculate the value of Dn as defined in the p...

	n
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	Cn
	1
	1
	1
	0
	0
	1
	1
	0
	0
	1
	1
	qn
	1
	1
	1
	-1
	-1
	1
	1
	-1
	-1
	1
	1
	Mn
	1
	1.5
	2.25
	1.13
	1.70
	0.85
	1.28
	0.64
	0.96
	0.48
	0.72
	Dn
	4
	6
	13.5
	15.3
	26
	22.1
	28.3
	18.1
	17.4
	8.4
	6
	yn
	24
	30
	43.5
	28.2
	2.2
	24.3
	52.6
	34.5
	17.1
	25.5
	31.5
	P8 -15. The answer is yes. We have T (m, n) = C (m, n) cos (x). The value of cos (x) is always between -1 and 1. We only need to prove that C(m, n) £ 1, which can be done using two cases:
	a. If m = 0 ® C(m, n) = (1 / N)1/2 £ 1 because N ³ 1.
	b. If m > 0 ® C(m, n) = (2 / N)1/2 £ 1 because N ³ 2.

	P8 -17. The following shows the four matrices. The first one (N = 1) is actually a number (scalar value). Note that we have rounded the values to two decimal digits.
	P8 -19. The palette should have the combination of 2 ´ 2 ´ 2 = 8 rows, as shown below with the bit index.

	Red
	Blue
	Green
	000
	00000000
	00000000
	00000000
	R = 0, B = 0, G = 0
	001
	00000000
	00000000
	00000100
	R = 0, B = 0, G = 4
	010
	00000000
	00000101
	00000000
	R = 0, B = 5, G = 0
	011
	00000000
	00000101
	00000100
	R = 0, B = 5, G = 4
	100
	00000111
	00000000
	00000000
	R = 7, B = 0, G = 0
	101
	00000111
	00000000
	00000100
	R = 7, B = 0, G = 4
	110
	00000111
	00000101
	00000000
	R = 7, B = 5, G = 0
	111
	00000111
	00000101
	00000100
	R = 7, B = 5, G = 4
	a. For each color in the palette we can send three bits (the index of the row).
	b. The bit index for the red color is 100, for the blue color is 010, for the green color is 001, for the black color is 000, for the white color is 111, and for the magenta is 110.
	P8 -21. The receiver misses samples 21, 23, 25, 27, 29, 31, 33, 35, 37, and 39. However, the even-numbered samples are received and played. There may be some glitches in the audio, but that passes immediately.
	P8 -23. The redundant bits in this case need to find (n + 1) different states because the corruption can be in any of the n bits or in no bits (no corruption). A set of r bits can define 2r states. This means that we need to have the following relati...
	a. If k = 1, then r = 2 and n = 3 because (22 ³ 3 + 1), which means C (3, 1).
	b. If k = 2, then r = 3 and n = 5 because (23 ³ 5 + 1), which means C (5, 1).
	c. If k = 5, then r = 4 and n = 9 because (24 ³ 9 + 1), which means C (9, 5).
	d. If k = 50, then r = 6 and n = 56 because (26 ³ 56 + 1), which means C (56, 50).
	e. If k = 1000, then r = 10 and n = 1010 because 210 ³ 1010 + 1, which means C (1010, 1000).

	P8 -25. If we need to correct m bits in an n bit codeword, we need to think about the combination of n objects taking no object at a time or Com (n, 0), which means the state of no error, the combination of n objects taking one object at a time or Co...

	2r ³ Com (n, m) + Com (n, m - 1) + ¼ + Com (n, 1) + Com (n, 0)
	P8 -27. The answer follows:
	a. At time 00:00:17

	first packet:
	10 units arrived, 9 units played, 1 unit in buffer
	second packet:
	2 units arrived, none played, 3 units in buffer
	b. At time 00:00:20

	first packet:
	none left
	second packet:
	5 units arrived, 2 units played, 3 units in buffer
	c. At time 00:00:25

	first packet:
	none left
	second packet:
	10 units arrived, 7 units played, 3 units in buffer
	d. At time 00:00:30

	first packet:
	none left
	second packet:
	none left
	third packet:
	3 units arrived, 2 units played, 1 unit in buffer
	P8 -29. The first eight hexadecimal digits are in binary:

	1000 0110 0000 0011 0010 0001 0011 0010
	a. The first two bits define the version, which means the version is 2.
	b. The third bit is the P bit, which means there is no padding.
	c. The fourth bit is the X bit, which means there is no extension header.
	d. The next four bits define the number of contributors, which is 6 in this case.
	e. The seven bits after the color bit (M) (with the value 3 in decimal) define the payload type, which means GSM audio.
	f. Since we have six contributors, the total size of the packet header is 12 bytes (first part of the header) plus 6 ´ 4 bytes for CSRCs, for a total of 36 bytes.
	P8 -31. We can mention several reasons.
	a. Live or real-time streaming of multimedia requires that the data be sent in chunks. A chunk of data is a sequence of bits that have been encoded together and need to be decoded together; each bit may depend on the rest of the bits. Although TCP co...
	b. TCP is not an appropriate protocol for multicasting and multi-party communication because it is a connection-oriented protocol in which a connection involves only two parties. UDP, on the other hand, is a connection-less protocol. Multicasting and...
	c. TCP delivers data bytes to the application program in order. This means that if a segment is missing, the out-of-order bytes need to wait. This is not appropriate for live or real-time interactive multimedia streaming, as discussed in the text. Th...
	d. Since multimedia chunks can use different encoding methods, we need a field to define the type of payload. A TCP segment lacks this field. A UDP datagram can allow encapsulation of the RTP packet, which includes this field.
	e. For a live or real-time multimedia streaming, there is a need for synchronization using timestamps that define the temporal relationship between each chunk and the other chunks. None of the three protocols, TCP, UDP, or SCTP, provide timestamping....
	f. Congestion control in multimedia communication is a big issue because of the volume of data exchanged. Although TCP has a congestion control mechanism, it is not suitable for multimedia communication, because it is based on segments, not chunks. C...

	P8 -33. We answer each question below:
	a. The following shows the time lines and the contents of the priority queue (Q1) and non-priority queue (Q2).
	b. For the packets in the priority class, we find the time spent in the router for each class, which is the departure time minus the arrival time. We also find the relative departure delay, as shown below. Since the relative delays are the same for e...

	Packets:
	1
	2
	3
	4
	7
	9
	Arrival time:
	t0
	t1
	t2
	t3
	t6
	t8
	Departure time:
	t2
	t4
	t6
	t8
	t10
	t12
	Time spent in the router
	2
	3
	4
	5
	4
	4
	Relative delay
	-
	2
	2
	2
	2
	2
	c. For the packets in the non-priority class, we do the same, as shown below. We notice that there is no jitter for the packets in this class because the priority packets blocked these packets and they all departed at the end.

	Packets:
	5
	6
	8
	10
	Arrival time:
	t4
	t5
	t7
	t9
	Departure time:
	t13
	t14
	t15
	t16
	Time spent in the router
	9
	9
	8
	7
	Relative delay
	-
	1
	1
	1
	P8 -35. We show the list of packets transmitted in each situation:
	a. In the first situation, four packets are sent from the top queue, two packets from the middle queue, and one packet from the bottom.

	AAAABBCAAAABBCAAAABBCAAAABBCAAAABBCAAAABBC¼
	b. In the second situation, the same pattern occurs as in part a, but the third queue has no packet to send. The process stops when there is no packet to send.

	AAAABBAAAABBAA
	c. In the third situation, the same pattern occurs as in part a, but the first queue has no packet to send. The process stops when there is no packet to send. When there is no packet in the second queue, all packets from C are transmitted one after a...

	BBCBBCBCCCCCCCC
	P8 -37. The router can implement the leaky bucket algorithm with n = 1 packet in each clock tick and set the clock tick to 1/2 second. In each clock tick, the router sends out one packet. This can be implemented using a FIFO queue that stores the pac...
	P8 -39. We discuss each case separately.
	a. The first case is an example of a perfect situation. The sender has matched its transmitting rate with the rate the switch can handle the flow. At the end of each second, both the bucket and the queue are empty, as shown in the following figure. F...
	b. The second case is an example in which the sender does not use the capacity of the switch. The sender sends at a lower rate than the rate the switch can handle. At the end of each second, the bucket has some tokens that have not been used. After f...
	c. The third case is an example in which the sender does not follow the capacity of the switch; its rate is more than it should be. The sender sends at a rate higher than the rate the switch can handle. At the end of each second, the bucket has consu...

	P8 -41. We show the frames sent during each second.
	a. First tick: n is set to 8000. After sending frame 1, n = 8000 - 4000 = 4000. After sending frame 2, n = 4000 - 4000 = 0. No more frames can be sent (n < size of the next frame).
	b. Second tick: n is set to 8000. After sending frame 3, n = 8000 - 4000 = 4000. After sending frame 4, n = 4000 - 4000 = 0. No more frames can be sent (n < size of the next frame).
	c. Third tick: n is set to 8000. After sending frame 5, n = 8000 - 3200 = 4800. After sending frame 6, n = 4800 - 3200 = 1600. No more frames can be sent (n < size of the next frame).
	d. Fourth tick: n is set to 8000. After sending frame 7, n = 8000 - 3200 = 4800. After sending frame 8, n = 4800 - 400 = 4400. After sending frame 9, n = 4400 - 400 = 4000. After sending frame 10, n = 4000 - 2000 = 2000. After sending frame 11, n = 2...
	e. Fifth tick: n is set to 8000. After sending frame 12, n = 8000 - 2000 = 6000. There are no more frames to send.

	P8 -43. To better understand the behavior of the token bucket in this problem, we first create a table in each case to show the movement of cells and tokens in the system. The flow diagram can follow the table. Although adding and removing cells are ...
	a. The table for the first customer is shown below. We don’t have cell loss, but we need to discard some tokens when the bucket is full (t5 to t7). Discarding tokens means that the customer has not used its allocated rate.

	Time
	(ti)
	arr- ived at ISP
	01
	0
	5
	5
	5
	0
	0
	10
	10
	5
	5
	02
	0
	5
	5
	5
	0
	5
	10
	15
	5
	10
	03
	0
	5
	5
	5
	0
	10
	10
	20
	5
	15
	04
	0
	5
	5
	5
	0
	15
	10
	25
	5
	20
	05
	0
	5
	5
	5
	0
	20
	10
	30
	5
	20
	06
	0
	5
	5
	5
	0
	20
	10
	30
	5
	20
	07
	0
	5
	5
	5
	0
	20
	10
	30
	5
	20
	08
	0
	15
	15
	15
	0
	20
	10
	30
	15
	15
	09
	0
	15
	15
	15
	0
	15
	10
	25
	15
	10
	10
	0
	15
	15
	15
	0
	10
	10
	20
	15
	5
	11
	0
	15
	15
	15
	0
	5
	10
	15
	15
	0
	12
	0
	15
	15
	10
	5
	0
	10
	10
	10
	0
	13
	5
	15
	20
	10
	10
	0
	10
	10
	10
	0
	14
	10
	15
	25
	10
	15
	0
	10
	10
	10
	0
	15
	15
	15
	30
	10
	20
	0
	10
	10
	10
	0
	16
	20
	15
	35
	10
	25
	0
	10
	10
	10
	0
	17
	25
	0
	25
	10
	15
	0
	10
	10
	10
	0
	18
	15
	0
	15
	10
	5
	0
	10
	10
	10
	0
	19
	5
	0
	5
	5
	0
	0
	10
	10
	5
	5
	20
	0
	0
	0
	0
	0
	5
	10
	15
	0
	15
	The following shows the movement of cells and tokens graphically. The figure definitely shows that there are uneven delays for the cells after t8 . Some cells are stored in the queue for further transmission, but there is no cell loss because the que...
	b. The table for the second customer is shown below. We don’t have cell loss, but we need to discard some tokens when the bucket is full (t13 to t20). Discarding of token means that the customer has not used its allocated rate.

	Time
	(ti)
	arr- ived at ISP
	01
	0
	15
	15
	10
	5
	0
	10
	10
	10
	0
	02
	5
	15
	20
	10
	10
	0
	10
	10
	10
	0
	03
	10
	15
	25
	10
	15
	0
	10
	10
	10
	0
	04
	15
	15
	30
	10
	20
	0
	10
	10
	10
	0
	05
	20
	5
	25
	10
	15
	0
	10
	10
	10
	0
	06
	15
	5
	20
	10
	10
	0
	10
	10
	10
	0
	07
	10
	5
	15
	10
	5
	0
	10
	10
	10
	0
	08
	5
	5
	10
	10
	0
	0
	10
	10
	10
	0
	09
	0
	5
	5
	5
	0
	0
	10
	10
	5
	5
	10
	0
	5
	5
	5
	0
	5
	10
	15
	5
	10
	11
	0
	5
	5
	5
	0
	10
	10
	20
	5
	15
	12
	0
	5
	5
	5
	0
	15
	10
	25
	5
	20
	13
	0
	5
	5
	5
	0
	20
	10
	30
	5
	20
	14
	0
	5
	5
	5
	0
	20
	10
	30
	5
	20
	15
	0
	5
	5
	5
	0
	20
	10
	30
	5
	20
	16
	0
	5
	5
	5
	0
	20
	10
	30
	5
	20
	17
	0
	5
	5
	5
	0
	20
	10
	30
	5
	20
	18
	0
	5
	5
	5
	0
	20
	10
	30
	5
	20
	19
	0
	0
	0
	0
	0
	20
	10
	30
	0
	20
	20
	0
	0
	0
	0
	0
	20
	10
	30
	0
	20
	The following shows the movement of cells and tokens graphically. The figure definitely shows that there are uneven delays for the cells. . Some cells are stored in the queue for further transmission, but there is no cell loss because the queue size ...
	c. The table for the third customer is shown below. We don’t have cell loss; no tokens are discarded. This means that customer has used its full allocated rate. It does not send cells for two seconds, but it sends two times its rate for the next tw...

	Time
	(ti)
	arrive d at ISP
	01
	0
	0
	0
	0
	0
	0
	10
	10
	0
	10
	02
	0
	0
	0
	0
	0
	10
	10
	20
	0
	20
	03
	0
	20
	20
	20
	0
	20
	10
	30
	20
	10
	04
	0
	20
	20
	20
	0
	10
	10
	20
	20
	0
	05
	0
	0
	0
	0
	0
	0
	10
	10
	0
	10
	06
	0
	0
	0
	0
	0
	10
	10
	20
	0
	20
	07
	0
	20
	20
	20
	0
	20
	10
	30
	20
	10
	08
	0
	20
	20
	20
	0
	10
	10
	20
	20
	0
	09
	0
	0
	0
	0
	0
	0
	10
	10
	0
	10
	10
	0
	0
	0
	0
	0
	10
	10
	20
	0
	20
	11
	0
	20
	20
	20
	0
	20
	10
	30
	20
	10
	12
	0
	20
	20
	20
	0
	10
	10
	20
	20
	0
	13
	0
	0
	0
	0
	0
	0
	10
	10
	0
	10
	14
	0
	0
	0
	0
	0
	10
	10
	20
	0
	20
	15
	0
	20
	20
	20
	0
	20
	10
	30
	20
	10
	16
	0
	20
	20
	20
	0
	10
	10
	20
	20
	0
	17
	0
	0
	0
	0
	0
	0
	10
	20
	0
	10
	18
	0
	0
	0
	0
	0
	10
	10
	20
	0
	20
	19
	0
	0
	0
	0
	0
	20
	10
	30
	0
	20
	20
	0
	0
	0
	0
	0
	20
	10
	30
	0
	20
	The following shows the movement of cells and tokens graphically. This is a situation in which there is no jitter (comparing the customer and ISP cell- rate transmission. No tokens are discarded until the 18th second.

