
C H A P T E R 11

PRACTICE SET

Questions

Q11-1. An IP address is represented in Java as an instance of the InetAddress class.

Q11-3. An integer in Java is in the range (231) and (231 1). We need to be sure that
the port number is always between (0 to 2161). For this reason, we need to
set the 16 leftmost bits of the integer to 0.

Q11-5. All pieces of information in an InetAddress object are somehow bound
together. A user cannot just insert an IP address or a domain name in an
instance of this class. These two pieces of information are bound together in
the corresponding DNS record. A user can only create a variable of type Inet-
Address and call one of the appropriate static methods to fill the related val-
ues. Even if we know the IP address of a host (for example 23.12.56.8) we
cannot create an InetAddress object out of this value; we should let all pieces
of information be filled by calling the appropriate static method.

Q11-7. We first need to create a variable of type InetAddress and then call the static
method that accepts the name of the computer and returns an object of type
InetAddress. Note that the given IP address (as a string) in this case is inter-
preted as another name for the computer. So we need to call the static method
that takes the name of the computer and returns an instance of the InetAddress
class. This means that the method still sends a request to a DNS server and if
the corresponding IP address is not assigned to any host, the UnknownHost-
Exception will be thrown.

Q11-9. We first need to create an array in which each element is an object of type Ine-
tAddress. We then call the corresponding static method to fill the array.

InetAddress addr InetAddress.getByName ("23.14.76.44");

InetAddress [] addrAll InetAddress.getAllByName ("14.26.89.101");
1

2

Q11-11. There is no static method to return all of the InetAddress objects associated
with the local computer. We can first find one of the InetAddress instances,
get the canonical name of the computer, and then use the canonical name to
get all InetAddress objects.

Q11-13. The answer is negative. All of the three constructors of the InetSocketAddress
(Table 11.4) are based on the fact that the IP address should belong to a host.
In the first constructor, the IP address comes from an InetAddress object,
which can only exist if the IP address is assigned to a host. In the second con-
structor, the IP address is the IP address of the local computer. In the third
constructor, the IP address comes from the DNS record, which is called by the
first parameter in the constructor.

Q11-15. We can use the second constructor of the InetSocketAddress and use the port
number 56000.

Q11-17. We can use the appropriate constructor of the InetSocketAddress and use the
port number 23.

Q11-19. We can use the appropriate method of InetSocketAddress class to do so.

Q11-21. Both classes are used in TCP communication for creating sockets. The Server-
Socket class is used at the server site as the listening socket to wait for a client
to make a connection. The Socket class is used at both client and server sites
to create sockets for data transfer.

Q11-23. We need to use the second constructor in Table 11.7, which includes the IP
address and the port number of the remote site.

Q11-25. The DatagramPacket object is designed to handle an array of bytes. The
request (in any format) first needs to be converted to a sequence of bytes and
stored in the sendBuff to be accepted by the DatagramPacket object. Conver-
sion needs to be done in the makeRequest method.

Q11-27. The client program executes the client.getResponse() statement (Line 76).
This statement is blocking because it calls the receive (...) method of the Data-
gramSocket, which is blocking. The program is blocked until the response
arrives.

InetAddress addrLocal InetAddress.getLocalHost ();

String name addrLocal.getCanonicalHostName ();

InetAddress [] addrAll InetAddress.getAllByName (name);

InetSocketAddress sockAd new InetSocketAddress (56000);

InetSocketAddress sockAd new InetSocketAddress (addr, 23);

int port sockAd. getPort ();

3

Q11-29. The input stream in the TCP client program needs to be attached to the Socket
object. None of the input stream classes in Java have a method to do so. This
input stream needs to be created in conjunction with the Socket object.

Problems

P11-1. The following shows an approach. Since the standard Java has no unsigned
integer, we have used a long data type, in which the leftmost 32 bits are set to
0s and the rightmost 32 bits represent the numeric value of the address.

P11-3. The following shows an approach.

1 public static long strAddrToNumAddr (String strAddr)

2 {

3 long numAddr = 0L;

4 StringTokenizer tokenizer = new StringTokenizer (strAddr, ".", false);

5 for (int i = 0; i < 4; i++)

6 {

7 String token = tokenzier.nextToken();

8 numAddr = numAddr * 256 + Long.parseLong (token);

9 } // End of for-loop

10 return numAddr;

11 } // End of method

 Given: "22.14.78.45"

 Returned: 370,036,269

1 public static int extractPrefix (String cidrAddr)

2 {

3 StringTokenizer tokenizer = new StringTokenizer (cidrAddr, "/", false);

4 String str = tokenizer.nextToken ();

5 str = tokenizer.nextToken ();

6 int prefix = Integer.parseInt (str);

7 return prefix;

8 } // End of method

 Given: "22.14.78.45/14"

 Returned: 14

4

P11-5. The following shows an approach.

P11-7. The following shows an approach. Since the standard Java has no unsigned
integer, we have used a long data type, in which the leftmost 32 bits are set to
0s and the rightmost 32 bits represent the numeric value of the address.

P11-9. The following shows an approach. Note that we are calling some methods we
have used in the solutions to previous problems.

1 public static String addPrefix (String addr, int prefix)

2 {

3 String cidrAddr addr. concat ("/");

4 cidrAddr cidrAddr. concat (String.valueOf (prefix));

5 return cidrAddr;

6 } // End of method

 Given: "14.56.17.22", 22
 Returned: 14.56.17.22/22

1 public static int numMaskToPrefix (long numMask)

2 {

3 int prefix = 0;

4 for (int i = 0; i < 32; i++)

5 {

6 if ((numMask & 0x0000000000000001L) 1) prefix;

7 numMask numMask 1;

8 }

9 return prefix;

10 } // End of method

 Given: 4,294,950,912
 Returned: 18

1 public static String findLastAddr (String cidrAddr)

2 {

3 int prefix = extractPrefix (cidrAddr);

4 String addr = extractAddr (cidrAddr);

5 long numAddr = strAddrToNumAddr (addr);

6 long numMask = prefixToNumMask (prefix);

7 long numLastAddr = numAddr | (~numMask &

8 0x00000000FFFFFFFFL);

9 String lastAddr = numAddrToStrAddr (numLastAddr);

10 lastAddr = addPrefix (lastAddr, prefix);

11 return lastAddr;

12 } // End of method

 Given: "27.92.13.56/17"

 Returned: 27.92.127.255/17

5

P11-11. The following shows an approach. Note that by the term "range" here we
mean the number of the addresses in the range. Also note that we are calling
some methods we have used in the solutions to previous problems.

P11-13. We need to use the iterative TCP server program in Table 11.14, but replace
the three methods makeRequest (), useResponse(), and process() as shown in
Example 11.4.

1 public static long findAddrRange (String beginAddr, String endAddr)

2 {

3 long beginNumAddr = strAddrToNumAddr (beginAddr);

4 long endNumAddr = strAddrToNumAddr (endAddr);

5 long range = endNumAddr - beginNumAddr + 1L;

6 return range;

7 } // End of method

 Given: "167.199.170.64", "167.199.170.95"

 Returned: 32

	PRACTICE SET
	Questions
	Q11 -1. An IP address is represented in Java as an instance of the InetAddress class.
	Q11 -3. An integer in Java is in the range (-231) and (231 - 1). We need to be sure that the port number is always between (0 to 216- 1). For this reason, we need to set the 16 leftmost bits of the integer to 0.
	Q11 -5. All pieces of information in an InetAddress object are somehow bound together. A user cannot just insert an IP address or a domain name in an instance of this class. These two pieces of information are bound together in the corresponding DNS ...
	Q11 -7. We first need to create a variable of type InetAddress and then call the static method that accepts the name of the computer and returns an object of type InetAddress. Note that the given IP address (as a string) in this case is interpreted a...
	Q11 -9. We first need to create an array in which each element is an object of type InetAddress. We then call the corresponding static method to fill the array.
	Q11 -11. There is no static method to return all of the InetAddress objects associated with the local computer. We can first find one of the InetAddress instances, get the canonical name of the computer, and then use the canonical name to get all Ine...
	Q11 -13. The answer is negative. All of the three constructors of the InetSocketAddress (Table 11.4) are based on the fact that the IP address should belong to a host. In the first constructor, the IP address comes from an InetAddress object, which c...
	Q11 -15. We can use the second constructor of the InetSocketAddress and use the port number 56000.
	Q11 -17. We can use the appropriate constructor of the InetSocketAddress and use the port number 23.
	Q11 -19. We can use the appropriate method of InetSocketAddress class to do so.
	Q11 -21. Both classes are used in TCP communication for creating sockets. The ServerSocket class is used at the server site as the listening socket to wait for a client to make a connection. The Socket class is used at both client and server sites to...
	Q11 -23. We need to use the second constructor in Table 11.7, which includes the IP address and the port number of the remote site.
	Q11 -25. The DatagramPacket object is designed to handle an array of bytes. The request (in any format) first needs to be converted to a sequence of bytes and stored in the sendBuff to be accepted by the DatagramPacket object. Conversion needs to be ...
	Q11 -27. The client program executes the client.getResponse () statement (Line 76). This statement is blocking because it calls the receive (...) method of the DatagramSocket, which is blocking. The program is blocked until the response arrives.
	Q11 -29. The input stream in the TCP client program needs to be attached to the Socket object. None of the input stream classes in Java have a method to do so. This input stream needs to be created in conjunction with the Socket object.

	Problems
	P11 -1. The following shows an approach. Since the standard Java has no unsigned integer, we have used a long data type, in which the leftmost 32 bits are set to 0s and the rightmost 32 bits represent the numeric value of the address.
	P11 -3. The following shows an approach.
	P11 -5. The following shows an approach.
	P11 -7. The following shows an approach. Since the standard Java has no unsigned integer, we have used a long data type, in which the leftmost 32 bits are set to 0s and the rightmost 32 bits represent the numeric value of the address.
	P11 -9. The following shows an approach. Note that we are calling some methods we have used in the solutions to previous problems.
	P11 -11. The following shows an approach. Note that by the term "range" here we mean the number of the addresses in the range. Also note that we are calling some methods we have used in the solutions to previous problems.
	P11 -13. We need to use the iterative TCP server program in Table 11.14, but replace the three methods makeRequest (), useResponse(), and process() as shown in Example 11.4.

