
C H A P T E R 3

Extra Materials for Chapter 3

In this document, we discuss one topic that was briefly discuss in Chapter 3 of the text-
book. These materials may be useful for those readers who need to work with TCP.

3.1 TCP OPTIONS
The TCP header can have up to 40 bytes of optional information. Options convey addi-
tional information to the destination or align other options. We can define two catego-
ries of options: 1-byte options and multiple-byte options. The first category contains
two types of options: end of option list and no operation. The second category, in most
implementations, contains five types of options: maximum segment size, window scale
factor, timestamp, SACK-permitted, and SACK (see Figure 3.1).

Single-Byte Options

There are two single-byte options: end-of-option and no-operation.

End of Option (EOP)

The end-of-option (EOP) option is a 1-byte option used for padding at the end of the
option section. It can only be used as the last option. Only one occurrence of this option is
allowed. After this option, the receiver looks for the payload data. Figure 3.2 shows an

Figure 3.1 List of Options

Options

Single-byte

Multiple-byte

Maximum segment size

Window scale factor

Timestamp

SACK-permitted

SACK

End of option Kind: 0

Kind: 1

Kind: 2

Kind: 3

Kind: 8

Kind: 4

Kind: 5

No operation
1

2

example. A 3-byte option is used after the header; the data section follows this option.
One EOP option is inserted to align the data with the boundary of the next word.

The EOP option imparts two pieces of information to the destination:

1. There are no more options in the header.

2. Data from the application program starts at the beginning of the next 32-bit word.

No Operation (NOP)

The no-operation (NOP) option is also a 1-byte option used as a filler. However, it
normally comes before another option to help align it in a four-word slot. For example,
in Figure 3.3 it is used to align one 3-byte option such as the window scale factor and
one 10-byte option such as the timestamp.

Multiple-Byte Options

There are five multiple-byte options: maximum segment size, window scale factor,
timestamp, SACK-permitted and SACK.

Maximum Segment Size (MSS)

The maximum-segment-size option defines the size of the biggest unit of data that can
be received by the destination of the TCP segment. In spite of its name, it defines the
maximum size of the data, not the maximum size of the segment. Since the field is 16 bits
long, the value can be 0 to 65,535 bytes. Figure 3.4 shows the format of this option.

MSS is determined during connection establishment. Each party defines the MSS
for the segments it will receive during the connection. If a party does not define this,
the default values is 536 bytes.

Figure 3.2 End-of-option

Figure 3.3 No-operation option

Kind: 0
00000000

a. EOP option
b. Used for padding

EOP3-byte option

Data

Kind: 1
00000001

a. NOP option

b. Used to align beginning of an option

NOP
NOP NOP

10-byte option

3-byte option

Data

3

Window Scale Factor

The window size field in the header defines the size of the sliding window. This field is
16 bits long, which means that the window can range from 0 to 65,535 bytes. Although
this seems like a very large window size, it still may not be sufficient, especially if the
data are traveling through a long fat pipe, a long channel with a wide bandwidth.

To increase the window size, a window scale factor is used. The new window size
is found by first raising 2 to the number specified in the window scale factor. Then this
result is multiplied by the value of the window size in the header.

Figure 3.5 shows the format of the window-scale-factor option.

The scale factor is sometimes called the shift count because multiplying a number by
a power of 2 is the same as a left shift in a bitwise operation. In other words, the actual
value of the window size can be determined by taking the value of the window size
advertisement in the packet and shifting it to the left in the amount of the window scale
factor.

For example, suppose the value of the window scale factor is 3. An end point
receives an acknowledgment in which the window size is advertised as 32,768. The
size of window this end can use is 32,768 23 or 262,144 bytes. The same value can be
obtained if we shift the number 32,768 three bits to the left.

Although the scale factor could be as large as 255, the largest value allowed by
TCP/IP is 14, which means that the maximum window size is 216 214 230, which is
less than the maximum value for the sequence number. Note that the size of the win-
dow cannot be greater than the maximum value of the sequence number.

The window scale factor can also be determined only during the connection estab-
lishment phase. During data transfer, the size of the window (specified in the header)
may be changed, but it must be multiplied by the same window scale factor.

Note that one end may set the value of the window scale factor to 0, which means
that although it supports this option, it does not want to use it for this connection.

Figure 3.4 Maximum-segment-size option

New window size (window size defined in the header) 2 (window scale factor)

Figure 3.5 Window-scale-factor option

Kind: 2
00000010

1 byte 1 byte 2 bytes

Maximum segment sizeLength: 4
00000100

Kind: 3
00000011

1 byte 1 byte 1 byte

Scale factorLength: 3
00000011

4

Timestamp

This is a 10-byte option with the format shown in Figure 3.6. Note that the end with the
active open announces a timestamp in the connection request segment (SYN segment).
If it receives a timestamp in the next segment (SYN + ACK) from the other end, it is
allowed to use the timestamp; otherwise, it does not use it any more. The time-stamp
option has two applications: it measures the round-trip time and prevents wraparound
sequence numbers.

Measuring RTT Timestamp can be used to measure the round-trip time (RTT).
TCP, when ready to send a segment, reads the value of the system clock and inserts this
value, a 32-bit number, in the timestamp value field. The receiver, when sending an
acknowledgment for this segment or an cumulative acknowledgment that covers the
bytes in this segment, copies the timestamp received in the timestamp echo reply. The
sender, upon receiving the acknowledgment, subtracts the value of the timestamp echo
reply from the time shown by the clock to find RTT.

Note that there is no need for the sender’s and receiver’s clocks to be synchronized
because all calculations are based on the sender clock. Also note that the sender does
not have to remember or store the time a segment left because this value is carried by
the segment itself.

The receiver needs to keep track of two variables. The first, lastack, is the value of the
last acknowledgment sent. The second, tsrecent, is the value of the recent timestamp that
has not yet echoed. When the receiver receives a segment that contains the byte matching
the value of lastack, it inserts the value of the timestamp field in the tsrecent variable.
When it sends an acknowledgment, it inserts the value of tsrecent in the echo reply field.

Example 3.1

Figure 3.7 shows an example that calculates the round-trip time for one end. Everything must be
flipped if we want to calculate the RTT for the other end. The sender simply inserts the value
of the clock (for example, the number of seconds past midnight) in the timestamp field
for the first and second segment. When an acknowledgment comes (the third segment),
the value of the clock is checked and the value of the echo reply field is subtracted from
the current time. RTT is 12 s in this scenario.

The receiver’s function is more involved. It keeps track of the last acknowledgment sent
(12000). When the first segment arrives, it contains the bytes 12000 to 12099. The first byte is
the same as the value of lastack. It then copies the timestamp value (4720) into the tsrecent vari-
able. The value of lastack is still 12000 (no new acknowledgment has been sent). When the sec-
ond segment arrives, since none of the byte numbers in this segment include the value of lastack,

Figure 3.6 Timestamp option

Kind: 8
00001000

Timestamp value

Timestamp echo reply

Length: 10
00001010

5

the value of the timestamp field is ignored. When the receiver decides to send an cumulative
acknowledgment with acknowledgment 12200, it changes the value of lastack to 12200 and
inserts the value of tsrecent in the echo reply field. The value of tsrecent will not change until it is
replaced by a new segment that carries byte 12200 (next segment).

Note that as the example shows, the RTT calculated is the time difference between sending
the first segment and receiving the third segment. This is actually the meaning of RTT: the time
difference between a packet sent and the acknowledgment received. The third segment carries
the acknowledgment for the first and second segments.

PAWS The timestamp option has another application, protection against wrapped
sequence numbers (PAWS). The sequence number defined in the TCP protocol is
only 32 bits long. Although this is a large number, it could be wrapped around in a
high-speed connection. This implies that if a sequence number is n at one time, it could
be n again during the lifetime of the same connection. Now if the first segment is
duplicated and arrives during the second round of the sequence numbers, the segment
belonging to the past is wrongly taken as the segment belonging to the new round.

One solution to this problem is to increase the size of the sequence number, but
this involves increasing the size of the window as well as the format of the segment and
more. The easiest solution is to include the timestamp in the identification of a segment. In
other words, the identity of a segment can be defined as the combination of timestamp
and sequence number. This means increasing the size of the identification. Two seg-
ments 400:12,001 and 700:12,001 definitely belong to different incarnations. The first
was sent at time 400, the second at time 700.

SACK-Permitted and SACK Options

As we discussed in the textbook, the acknowledgment field in the TCP segment is designed
as an cumulative acknowledgment, which means it reports the receipt of the last consecu-
tive byte: it does not report the bytes that have arrived out of order. It is also silent about
duplicate segments. This may have a negative effect on TCP’s performance. If some pack-
ets are lost or dropped, the sender must wait until a time-out and then send all packets that

Figure 3.7 Example 3.1

Sender

RTT = 4732 _ 4720 = 12

Receiver

Timestamp: 4720
Timestamp echo reply:

12000:12099

12100:12199

ACK:

Timestamp: 4725
Timestamp echo reply:

ACK:

Timestamp:
Timestamp echo reply: 4720

SN: ACK: 12200

12000
4720

lastack

lastack

lastack

lastack

tsrecent

tsrecent

tsrecent

tsrecent

12000

12000
4720

12200
4720

Time: 4720

Time: 4725

Time: 4732

6

have not been acknowledged. The receiver may receive duplicate packets. To improve per-
formance, selective acknowledgment (SACK) was proposed. Selective acknowledgment
allows the sender to have a better idea of which segments are actually lost and which have
arrived out of order. The new proposal even includes a list for duplicate packets. The sender
can then send only those segments that are really lost. The list of duplicate segments can
help the sender find the segments which have been retransmitted by a short time-out.

The proposal defines two new options: SACK-permitted and SACK as shown in
Figure 3.8.

The SACK-permitted option of two bytes is used only during connection estab-
lishment. The host that sends the SYN segment adds this option to show that it can sup-
port the SACK option. If the other end, in its SYN + ACK segment, also includes this
option, then the two ends can use the SACK option during data transfer. Note that the
SACK-permitted option is not allowed during the data transfer phase.

The SACK option, of variable length, is used during data transfer only if both
ends agree (if they have exchanged SACK-permitted options during connection estab-
lishment). The option includes a list for blocks arriving out of order. Each block occu-
pies two 32-bit numbers that define the beginning and the end of the blocks. We will
show the use of this option in examples; for the moment, remember that the allowed
size of an option in TCP is only 40 bytes. This means that a SACK option cannot define
more than 4 blocks. The information for 5 blocks occupies (5 2) 4 + 2 or 42 bytes,
which is beyond the available size for the option section in a segment. If the SACK
option is used with other options, then the number of blocks may be reduced.

The first block of the SACK option can be used to report the duplicates. This is
used only if the implementation allows this feature.

Example 3.2

Let us see how the SACK option is used to list out-of-order blocks. In Figure 3.9 an end has
received five segments of data.

The first and second segments are in consecutive order. An cumulative acknowledgment can
be sent to report the reception of these two segments. Segments 3, 4, and 5, however, are out of

Figure 3.8 SACK-permitted and SACK options

SACK-permitted option

SACK option

Kind: 4

Kind: 5

Left edge of 1st Block

Left edge of nth Block

Right edge of 1st Block

Right edge of nth Block

Length: 2

Length

7

order with a gap between the second and third and a gap between the fourth and the fifth. An
ACK and a SACK together can easily clear the situation for the sender. The value of ACK is
2001, which means that the sender need not worry about bytes 1 to 2000. The SACK has
two blocks. The first block announces that bytes 4001 to 6000 have arrived out of order. The sec-
ond block shows that bytes 8001 to 9000 have also arrived out of order. This means that bytes
2001 to 4000 and bytes 6001 to 8000 are lost or discarded. The sender can resend only these
bytes.

Example 3.3

Figure 3.10 shows how a duplicate segment can be detected with a combination of ACK and
SACK. In this case, we have some out-of-order segments (in one block) and one duplicate

segment. To show both out-of-order and duplicate data, SACK uses the first block, in this case, to
show the duplicate data and other blocks to show out-of-order data. Note that only the first block
can be used for duplicate data. The natural question is how the sender, when it receives these
ACK and SACK values, knows that the first block is for duplicate data (compare this example
with the previous example). The answer is that the bytes in the first block are already acknowl-
edged in the ACK field; therefore, this block must be a duplicate.

Figure 3.9 Example 3.2

Figure 3.10 Example 3.3

0001:1000

 2001

Consecutive segments

ACK

Cumulative
ACK

Out-of-order segments

Block 1 Block 2

1001:2000 4001:5000

SACK

4001
5 18

6001
8001
9001

5001:6000 8001:9000

0001:1000

1001
ACK

Duplicate
block

Cumulative
ACK

Out-of-order segments

Block 1 Duplicate

4001:5000

SACK

0001
5 18

1001
4001
6001

5001:6000 0001:1000

8

Example 3.4

Figure 3.11 shows what happens if one of the segments in the out-of-order section is also dupli-
cated. In this example, one of the segments (4001:5000) is duplicated.

The SACK option announces this duplicate data first and then the out-of-order
block. This time, however, the duplicated block is not yet acknowledged by ACK, but
because it is part of the out-of-order block (4001:5000 is part of 4001:6000), it is
understood by the sender that it defines the duplicate data.

Figure 3.11 Example 3.4

0001:1000

1001
ACK

Duplicate
block

Cumulative
ACK

Out-of-order segments

Block 1 Duplicate

4001:5000

SACK

4001
5001
4001
6001

5001:6000 4001:5000

5 18

	Extra Materials for Chapter 3
	3.1 TCP OpTIONs
	Figure 3.1 List of Options
	Single-Byte Options
	End of Option (EOP)
	Figure 3.2 End-of-option
	1. There are no more options in the header.
	2. Data from the application program starts at the beginning of the next 32-bit word.

	No Operation (NOP)
	Figure 3.3 No-operation option

	Multiple-Byte Options
	Maximum Segment Size (MSS)
	Figure 3.4 Maximum-segment-size option

	Window Scale Factor
	Figure 3.5 Window-scale-factor option

	Timestamp
	Figure 3.6 Timestamp option

	Measuring RTT
	Example 3.1
	Figure 3.7 Example 3.1
	PAWS
	SACK-Permitted and SACK Options
	Figure 3.8 SACK-permitted and SACK options

	Example 3.2
	Figure 3.9 Example 3.2

	Example 3.3
	Figure 3.10 Example 3.3

	Example 3.4
	Figure 3.11 Example 3.4

