
C H A P T E R 5

Extra Materials for Chapter 5

In this document, we discuss three topics that were briefly mentioned in Chapter 5 of
the textbook: CRC hardware implementation, CRC polynomial representation, and
CRC analysis. 

5.1 CRC HARDWARE IMPLEMENTATION
One of the advantages of a cyclic code is that the encoder and decoder can easily and
cheaply be implemented in hardware by using a handful of electronic devices. Also, a
hardware implementation increases the rate of check bit and syndrome bit calculation.
In this section, we try to show, step by step, the process. 

Divisor
Let us first consider the divisor. We need to note the following points:

1. The divisor is repeatedly XORed with part of the dividend.

2. The divisor has n  k + 1 bits which either are predefined or are all 0s. In other
words, the bits do not change from one dataword to another. 

3. A close look shows that only n k bits of the divisor is needed in the XOR operation.
The leftmost bit is not needed because the result of the operation is always 0, no
matter what the value of this bit. The reason is that the inputs to this XOR operation
are either both 0s or both 1s. In our previous example, only 3 bits, not 4, is actually
used in the XOR operation. 

Using these points, we can make a fixed (hardwired) divisor that can be used for a
cyclic code if we know the divisor pattern. Figure 5.1 shows such a design for our pre-
vious example. We have also shown the XOR devices used for the operation. 

Note that if the leftmost bit of the part of dividend to be used in this step is 1, the
divisor bits (d2d1d0) are 011; if the leftmost bit is 0, the divisor bits are 000. The design
provides the right choice based on the leftmost bit. 

Augmented Dataword
In our paper-and-pencil division process in the textbook, we showed the augmented
dataword as fixed in position with the divisor bits shifting to the right, 1 bit in each
step. The divisor bits are aligned with the appropriate part of the augmented dataword.
Now that our divisor is fixed, we need instead to shift the bits of the augmented dataword
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to the left (opposite direction) to align the divisor bits with the appropriate part. There is
no need to store the augmented dataword bits. 

Remainder
In our previous example, the remainder is 3 bits (n  k bits in general) in length. We can
use three registers (single-bit storage devices) to hold these bits. To find the final
remainder of the division, we need to modify our division process. The following is the
step-by-step process that can be used to simulate the division process in hardware (or
even in software).

1. We assume that the remainder is originally all 0s (000 in our example).

2. At each time click (arrival of 1 bit from an augmented dataword), we repeat the
following two actions:

a. We use the leftmost bit to make a decision about the divisor (011 or 000).

a. The other 2 bits of the remainder and the next bit from the augmented dataword
(total of 3 bits) are XORed with the 3-bit divisor to create the next remainder. 

Figure 5.2 shows this simulator, but note that this is not the final design; there will be
more improvements. At each clock tick, shown as different times, one of the bits from
the augmented dataword is used in the XOR process. If we look carefully at the design,
we have seven steps here, while in the paper-and-pencil method we had only four steps.
The first three steps have been added here to make each step equal and to make the
design for each step the same. Steps 1, 2, and 3 push the first 3 bits to the remainder
registers; steps 4, 5, 6, and 7 match the paper-and-pencil design. Note that the values in
the remainder register in steps 4 to 7 exactly match the values in the paper-and-pencil
design. The final remainder is also the same.

The above design is for demonstration purposes only. It needs simplification to be
practical. First, we do not need to keep the intermediate values of the remainder bits;
we need only the final bits. We therefore need only 3 registers instead of 24. After the
XOR operations, we do not need the bit values of the previous remainder. Also, we do
not need 21 XOR devices; two are enough because the output of an XOR operation in
which one of the bits is 0 is simply the value of the other bit. This other bit can be used
as the output. With these two modifications, the design becomes tremendously simpler
and less expensive, as shown in Figure 5.3. 

 We need, however, to make the registers shift registers. A 1-bit shift register holds
a bit for a duration of one clock time. At a time click, the shift register accepts the bit at

Figure 5.1 Hardwired design of the divisor in CRC
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its input port, stores the new bit, and displays it on the output port. The content and the
output remain the same until the next input arrives. When we connect several 1-bit shift
registers together, it looks as if the contents of the register are shifting. 

General Design
A general design for the encoder and decoder is shown in Figure 5.4. 

Note that we have n k 1-bit shift registers in both the encoder and decoder. We
have up to n k XOR devices, but the divisors normally have several 0s in their pat-
tern, which reduces the number of devices. Also note that, instead of augmented data-
words, we show the dataword itself as the input because after the bits in the dataword
are all fed into the encoder, the extra bits, which all are 0s, do not have any effect on the
rightmost XOR. Of course, the process needs to be continued for another n  k steps
before the check bits are ready. This fact is one of the criticisms of this design. Better
schemes have been designed to eliminate this waiting time (the check bits are ready
after k steps), but we leave this as a research topic for the reader. In the decoder, how-
ever, the entire codeword must be fed to the decoder before the syndrome is ready.    

Figure 5.2 Simulation of division in CRC encoder

Figure 5.3 The CRC encoder design using shift registers
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5.2 CRC POLYNOMIAL REPRESENTATION
A better way to understand cyclic codes and how they can be analyzed is to represent
them as polynomials.  

A pattern of 0s and 1s can be represented as a polynomial with coefficients of 0 and
1. The power of each term shows the position of the bit; the coefficient shows the value
of the bit. Figure 5.5 shows a binary pattern and its polynomial representation. In part a
of the figure we show how to translate a binary pattern to a polynomial; in part b of the
figure we show how the polynomial can be shortened by removing all terms with zero
coefficients and replacing x1 by x and x0 by 1.  

Figure 10.21 shows one immediate benefit; a 7-bit pattern can be replaced by three
terms. The benefit is even more conspicuous when we have a polynomial such as x23 +
x3 + 1. Here the bit pattern is 24 bits in length (three 1s and twenty-one 0s) while the
polynomial is just three terms. 

Degree of a Polynomial
The degree of a polynomial is the highest power in the polynomial. For example, the
degree of the polynomial x6 + x + 1 is 6. Note that the degree of a polynomial is 1 less
that the number of bits in the pattern. The bit pattern in this case has 7 bits. 

Figure 5.4 General design of encoder and decoder of a CRC code

Figure 5.5 A polynomial to represent a binary word
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Operation on Polynomials
Although the operation on polynomials belong to an specific area of algebra, we try to
show some simple operations on polynomials on this section.  

Adding and Subtracting Polynomials

Adding and subtracting polynomials in mathematics are done by adding or subtracting
the coefficients of terms with the same power. In our case, the coefficients are only 0
and 1, and adding is in modulo-2. This has two consequences. First, addition and sub-
traction are the same. Second, adding or subtracting is done by combining terms and
deleting pairs of identical terms. For example, adding x5 + x4 + x2 and x6 + x + x2 gives
just x6 + x5. The terms x4 and x2 are deleted. However, note that if we add, for example,
three polynomials and we get x2 three times, we delete a pair of them and keep the third.

Multiplying or Dividing Terms

In this arithmetic, multiplying a term by another term is very simple; we just add the
powers. For example, x3 x4 is x7. For dividing, we just subtract the power of the sec-
ond term from the power of the first. For example, x5/x2 is x3. 

Multiplying Two Polynomials

Multiplying a polynomial by another is done term by term. Each term of the first polyno-
mial must be multiplied by all terms of the second. The result, of course, is then simplified,
and pairs of equal terms are deleted. The following is an example:

Dividing One Polynomial by Another

Division of polynomials is conceptually the same as the binary division we discussed
for an encoder. We divide the first term of the dividend by the first term of the divisor
to get the first term of the quotient. We multiply the term in the quotient by the divisor
and subtract the result from the dividend. We repeat the process until the dividend
degree is less than the divisor degree. We will show an example of division later in this
chapter. 

Shifting

A binary pattern is often shifted a number of bits to the right or left. Shifting to the left
means adding extra 0s as rightmost bits; shifting to the right means deleting some right-
most bits. Shifting to the left is accomplished by multiplying each term of the polynomial
by xm, where m is the number of shifted bits; shifting to the right is accomplished by
dividing each term of the polynomial by xm. The following shows shifting to the left and
to the right. Note that we do not have negative powers in the polynomial representation.

(x5 + x3 + x2 + x)x2 + x + 1) = x7 + x6 + x5 + x5 + x4 + x3 + x4 + x3 + x2 + x3 + x2 + x 

(x5 + x3 + x2 + x)x2 + x + 1) = x7 + x6 + x3 + x

Shifting  left 3 bits:        10011   10011000         It means  x4 + x + 1    x7 + x4 + x3  

Shifting right 3 bits:   10011  10                   It means  x4 + x  + 1   x  
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When we augmented the dataword in the encoder (in the textbook), we actually
shifted the bits to the left. Also note that when we concatenate two bit patterns, we shift
the first polynomial to the left and then add the second polynomial. 

Cyclic Code Encoder Using Polynomials
Now that we have discussed operations on polynomials, we show the creation of a code-
word from a dataword (Figure 5.6). The dataword 1001 is represented as x3 + 1. The
divisor 1011 is represented as x3 + x + 1. To find the augmented dataword, we have left-
shifted the dataword 3 bits (multiplying by x3). The result is x6 + x3. Division is straight-
forward. We divide the first term of the dividend, x6, by the first term of the divisor, x3.
The first term of the quotient is then x6/x3, or x3. Then we multiply x3 by the divisor and
subtract (according to our previous definition of subtraction) the result from the divi-
dend. The result is x4, with a degree greater than the divisor’s degree; we continue to
divide until the degree of the remainder is less than the degree of the divisor. 

It can be seen that the polynomial representation can easily simplify the operation
of division in this case, because the two steps involving all-0s divisors are not needed
here. (Of course, one could argue that the all-0s divisor step can also be eliminated in
binary division.) In a polynomial representation, the divisor is normally referred to as
the generator polynomial t(x). 

5.3 CRC Analysis
We can analyze a cyclic code to find its capabilities by using polynomials. We define
the following, where f(x) is a polynomial with binary coefficients.

Figure 5.6 CRC division using polynomials
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If s(x) is not zero, then one or more bits is corrupted. However, if s(x) is zero,
either no bit is corrupted or the decoder failed to detect any errors. 

In our analysis we want to find the criteria that must be imposed on the generator,
g(x) to detect the type of error we especially want to be detected. Let us first find the
relationship among the sent codeword, error, received codeword, and the generator.
We can say

In other words, the received codeword is the sum of the sent codeword and the
error. The receiver divides the received codeword by g(x) to get the syndrome. We can
write this as 

The first term at the right-hand side of the equality has a remainder of 0 (according
to the definition of codeword). So the syndrome is actually the remainder of the second
term on the right-hand side. If this term does not have a remainder (syndrome = 0),
either e(x) is 0 or e(x) is divisible by g(x). We do not have to worry about the first case
(there is no error); the second case is very important. Those errors that are divisible by
g(x) are not caught.  

Let us show some specific errors and see how they can be caught by a well-
designed g(x).

Single-Bit Error
What should be the structure of g(x) to guarantee the detection of a single-bit error? A
single-bit error is e(x) = xi, where i is the position of the bit. If a single-bit error is caught,
then xi is not divisible by g(x). (Note that when we say not divisible, we mean that there
is a remainder.) If g(x) has at least two terms (which is normally the case) and the coeffi-
cient of x0 is not zero (the rightmost bit is 1), then e(x) cannot be divided by g(x). 

Dataword: d(x) Codeword:  c(x) Generator: g(x)    Syndrome:  s(x) Error: e(x)

In a cyclic code, 

1. If  s(x) = 0, one or more bits is corrupted.

2. If  s(x) = 0, either

a. No bit is corrupted. or
b. Some bits are corrupted, but the decoder failed to detect them. 

Received codeword = c(x) + e(x)

In a cyclic code, those e(x) errors that are divisible by g(x) are not caught.   

Received codeword
g x 

----------------------------------------------- c x 
g x 
---------- e x 

g x 
----------
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Example 5.1

Which of the following g(x) values guarantees that a single-bit error is caught? For each case,
what is the error that cannot be caught? 

Solution

a. No xi can be divisible by x + 1. In other words, xi/(x + 1) always has a remain-
der. So the syndrome is nonzero. Any single-bit error can be caught. 

b. If i is equal to or greater than 3, xi is divisible by g(x). The remainder of xi/x3 is zero, and
the receiver is fooled into believing that there is no error, although there might be one.
Note that in this case, the corrupted bit must be in position 4 or above. All single-bit
errors in positions 1 to 3 are caught. 

c. All values of i make xi divisible by g(x). No single-bit error can be caught. In addition,
this g(x) is useless because it means the codeword is just the dataword augmented with n
k zeros. 

Two Isolated Single-Bit Errors
Now imagine there are two single-bit isolated errors. Under what conditions can this
type of error be caught? We can show this type of error as e(x) = xj + xi. The values of i
and j define the positions of the errors, and the difference j  i defines the distance
between the two errors, as shown in Figure 5.7. 

We can write e(x) = xi(x j–i + 1). If g(x) has more than one term and one term is x0, it
cannot divide xi, as we saw in the previous section. So if g(x) is to divide e(x), it must divide
x j–i + 1. In other words, g(x) must not divide xt + 1, where t is between 0 and n 1. How-
ever, t = 0 is meaningless and t = 1 is needed as we will see later. This means t should be
between 2 and n – 1. 

Example 5.2

Find the status of the following generators related to two isolated, single-bit errors. 

If the generator has more than one term and the coefficient of x0 is 1,
all single errors can be caught.  

a. x + 1 b. x3 c. 1

Figure 5.7 Representation of two isolated single-bit errors using polynomials
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Solution

a. This is a very poor choice for a generator. Any two errors next to each other
cannot be detected. 

b. This generator cannot detect two errors that are four positions apart. The two errors can
be anywhere, but if their distance is 4, they remain undetected. 

c. This is a good choice for this purpose.

d. This polynomial cannot divide any error of type xt + 1 if t is less than 32,768. This means
that a codeword with two isolated errors that are next to each other or up to 32,768 bits
apart can be detected by this generator. 

Odd Numbers of Errors
A generator with a factor of x + 1 can catch all odd numbers of errors. This means that
we need to make x + 1 a factor of any generator. Note that we are not saying that the
generator itself should be x + 1; we are saying that it should have a factor of x + 1. If it
is only x + 1, it cannot catch the two adjacent isolated errors (see the previous section).
For example, x4 + x2 + x + 1 can catch all odd-numbered errors since it can be written
as a product of the two polynomials x + 1 and x3 + x2 + 1.

Burst Errors
Now let us extend our analysis to the burst error, which is the most important of all. A
burst error is of the form e(x) = (xj + . . . + xi). Note the difference between a burst error
and two isolated single-bit errors. The first can have two terms or more; the second can
only have two terms. We can factor out xi and write the error as xi(xj–i + . . . + 1). If our
generator can detect a single error (minimum condition for a generator), then it cannot
divide xi. What we should worry about are those generators that divide xj–i + . . . + 1. In
other words, the remainder of (xj–i + . . . + 1)/(xr + . . . + 1) must not be zero. Note that
the denominator is the generator polynomial. We can have three cases:

1. If j  i < r, the remainder can never be zero. We can write j  i = L 1, where L is
the length of the error. So L  1 < r or L < r + 1 or L  r. This means all burst errors
with length smaller than or equal to the number of check bits r will be detected.

2. In some rare cases, if j  i = r, or L = r + 1, the syndrome is 0 and the error is unde-
tected. It can be proved that in these cases, the probability of undetected burst error of
length r + 1 is (1/2)r–1. For example, if our generator is x14 + x3 + 1, in which r = 14, a
burst error of length L = 15 can slip by undetected with the probability of (1/2)14–1 or
almost 1 in 10,000. 

3. In some rare cases, if j  i > r, or L > r + 1, the syndrome is 0 and the error is unde-
tected. It can be proved that in these cases, the probability of undetected burst error
of length greater than r + 1 is (1/2)r. For example, if our generator is x14 + x3 + 1, in
which r = 14, a burst error of length greater than 15 can slip by undetected with the
probability of (1/2)14 or almost 1 in 16,000 cases. 

A generator that contains a factor of x + 1 can detect all odd-numbered errors.  



10
Example 5.3

Find the suitability of the following generators in relation to burst errors of different lengths. 

Solution

a. This generator can detect all burst errors with a length less than or equal to 6
bits; 3 out of 100 burst errors with length 7 will slip by; 16 out of 1000 burst
errors of length 8 or more will slip by. 

b. This generator can detect all burst errors with a length less than or equal to 18 bits; 8 out
of 1 million burst errors with length 19 will slip by; 4 out of 1 million burst errors of
length 20 or more will slip by.

c. This generator can detect all burst errors with a length less than or equal to 32 bits; 5 out
of 10 billion burst errors with length 33 will slip by; 3 out of 10 billion burst errors of
length 34 or more will slip by. 

Summary
We can summarize the criteria for a good polynomial generator:

Standard Polynomials
Some standard polynomials used by popular protocols for CRC generation are shown
in Table 5.1. 

■ All burst errors with L  r will be detected.

■ All burst errors with L = r + 1 will be detected with probability 1 – (1/2)r–1.

■ All burst errors with L > r + 1 will be detected with probability 1 – (1/2)r.

a. x6 + 1 b. x18 + x7 + x + 1 c. x32 + x23 + x7 + 1 

A good polynomial generator needs to have the following characteristics:

1. It should have at least two terms.

2. The coefficient of the term x0 should be 1.

3. It should not divide xt + 1, for t between 2 and n  1.

4. It should have the factor x + 1.   

Table 5.1 Standard polynomials

Name  Polynomial Application

CRC-8 x8  x2  x  1 ATM

CRC-10 x10  x9  x5  x4  x 2  1 ATM AAL

CRC-16 x16  x12  x5 1 HDLC

CRC-32 x32  x26  x23  x22  x16  x12  x11  x10  x8  x7  x5  x4  x2  x  1 LANs
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