
1 

Inheritance and Polymorphism

13
Solutions to
Quick Check Questions

13.1 A Simple Example

1. Define the Reptile class as a subclass of the Pet class. The speak 
method returns an empty string.

Answer:

class Reptile extends Pet {

public String speak( ) {
return "";

}
}

2. Which one of the following statements is valid?

Pet p = new Cat();  <--- Valid

Cat c = new Pet();  <--- Invalid

3. Is the following code valid?

Pet p = new Dog(); 
System.out.println(p.fetch());



2 Solutions to Chapter 14 Quick Check Questions 

Answer:

No. You must typecast p to Dog as ((Dog)p).fetch().

13.2 Defining Classes with Inheritance

1. Which is the subclass and which is the superclass in the following 
declaration?

class X extends Y { ... }

X is the subclass, and Y is the superclass.

2. Which visibility modifier allows the data members of a superclass to 
be accessible to the instances of subclasses?

The purpose of the access modifier protected is to allow the access
to the data members of a superclass from the instances of the sub-
classes, but disallow the access from the outside classes. The access
modifier public, of course, will allow access to all other classes in-
cluding the subclasses, but the purpose of the public modifier is not
allowing access to the subclasses.

13.3 Using Classes Effectively with Polymorphism

1. Suppose Truck and Motorcycle are subclasses of Vehicle. Which of the 
following declarations are invalid?

Truck       t = new Vehicle();
Vehicle     v = new Truck();
Motorcycle m1 = new Vehicle();
Motorcycle m2 = new Truck();

The declarations for t, m1, and m2 are invalid. 

2. What is the purpose of the instanceof operator?

To determine whether an object is an instance of a given class or
not.



Solutions to Chapter 14 Quick Check Questions 3 

13.4 Inheritance and Member Accessibility

1. If X is a private member of the Super class, is X accessible from a 
subclass of Super?

No. A private member of a class is only accessible within the class.

2. If X is a protected member of the Super class, is X of one instance ac-
cessible from another instance of Super? What about from the in-
stances of a subclass of Super?

Yes. Data members of one instance are fully accessible from any
other instances of the same class.

Yes. Protected (and public) members of a superclass are accessible
from the instances of a subclass.

13.5 Inheritance and Constructors

1. How do you call the superclass’s constructor from its subclass?

By using the reserved super and passing the correct number and
types for the arguments. Also, the call to super must be the first
statement in the subclass constructor.

2. What statement will be added to a constructor of a subclass if it is not 
included in the constructor explicitly by the programmer?

A call to the superclass’s constructor using the reserved word super
with no arguments.

3. Modify the definition of GraduateStudent and UndergraduateStudent 
in Section 13.1 so we can create their instances in the following way:

student1 = new UndergraduateStudent();
student2 = new UndergraduateStudent("Mr. Espresso");
student3 = new GraduateStudent();
student4 = new GraduateStudent("Ms. Latte");

Add the following constructors:

class UndergraduateStudent extends Student {
public UndergraduateStudent( ) {

super( );



4 Solutions to Chapter 14 Quick Check Questions 

}

public UndergraduateStudent( String name ) {
super( name );

}
. . .

}

class GraduateStudent( ) {
public GraduateStudent( ) {

super( );
}

public GraduateStudent( String name ) {
super( name );

}
. . .

}

13.6 Abstract Superclasses and Abstract Methods

1. Can you create an instance of an abstract class?

No.

2. Must an abstract class include an abstract method?

No. The class could inherit abstract methods from its superclass.

3. What is wrong with the following declaration?

class Vehicle {
abstract public getVIN();
...

}

The Vehicle class must be declared as abstract because it contains
an abstract member. 

The getVIN method does not include the return type. Moreover, the
public modifier is redundant because an abstract method is implic-
itly a public method.



Solutions to Chapter 14 Quick Check Questions 5 

13.7  Inheritance versus Interface

No Quick Check Questions.

13.8 Sample Development: Computing Course Grades

No Quick Check Questions.




