CONTENTS

Preface xvii

CHAPTER ONE

INTRODUCTION AND BASIC CONCEPTS 1

1–1	Thermodynamics and Energy 2
	Application Areas of Thermodynamics 3
1–2	Importance of Dimensions and Units 3
	Some SI and English Units 6 Dimensional Homogeneity 8 Unity Conversion Ratios 9
1–3	Systems and Control Volumes 10
1–4	Properties of a System 12
	Continuum 13
1–5	Density and Specific Gravity 13
1–6	State and Equilibrium 14
	The State Postulate 15
1–7	Processes and Cycles 15
	The Steady-Flow Process 16
1–8	Temperature and the Zeroth Law of Thermodynamics 17
	Temperature Scales 18 The International Temperature Scale of 1990 (ITS-90) 20
1–9	Pressure 21
	Variation of Pressure with Depth 23
1–10	The Manometer 26
	Other Pressure Measurement Devices 28
1–11	The Barometer and Atmospheric Pressure 29
1–12	Problem-Solving Technique 33
	Step 1: Problem Statement 33 Step 2: Schematic 33 Step 3: Assumptions and Approximations 33 Step 4: Physical Laws 34 Step 5: Properties 34 Step 6: Calculations 34 Step 7: Reasoning, Verification, and Discussion 34 Engineering Software Packages 35 Engineering Equation Solver (EES) 36

A Remark on Significant Digits 37

Problems 39

CHAPTER TWO

ENERGY, ENERGY TRANSFER, AND GENERAL **ENERGY ANALYSIS** 51

References and Suggested Readings 39

2-1 Introduction 52

Summary 38

2–2 Forms of Energy 53

> Some Physical Insight to Internal Energy 55 More on Nuclear Energy 56 Mechanical Energy 58

2–3 Energy Transfer by Heat 60

Historical Background on Heat 61

- **2–4** Energy Transfer by Work 62 Electrical Work 65
- 2–5 Mechanical Forms of Work 66

Shaft Work 66 Spring Work 67 Work Done on Elastic Solid Bars 67 Work Associated with the Stretching of a Liquid Film 68 Work Done to Raise or to Accelerate a Body 68 Nonmechanical Forms of Work 69

2–6 The First Law of Thermodynamics 70

Energy Balance 71 Energy Change of a System, ΔE_{system} 72 Mechanisms of Energy Transfer, E_{in} and E_{out} 73

2–7 Energy Conversion Efficiencies 78

Efficiencies of Mechanical and Electrical Devices 82

2–8 Energy and Environment 86

Ozone and Smog 87 Acid Rain 88 The Greenhouse Effect: Global Warming and Climate Change 89

Topic of Special Interest: Mechanisms of Heat Transfer 92

Summary 96 References and Suggested Readings 97 Problems 98

CHAPTER THREE

PROPERTIES OF PURE SUBSTANCES 111

- **3–1** Pure Substance 112
- **3–2** Phases of a Pure Substance 112
- **3–3** Phase-Change Processes of Pure Substances 113

3–4 Property Diagrams for Phase-Change Processes 118

The *T-v* Diagram 118
 The *P-v* Diagram 120
 Extending the Diagrams to Include the Solid Phase 120
 The *P-T* Diag 122
 The *P-v-T* Surface 123

3–5 Property Tables 124

Enthalpy—A Combination Property 124 1a Saturated Liquid and Saturated Vapor States 125 1b Saturated Liquid–Vapor Mixture 127 2 Superheated Vapor 130 3 Compressed Liquid 131 Reference State and Reference Values 132

3–6 The Ideal-Gas Equation of State 134

Is Water Vapor an Ideal Gas? 137

3–7 Compressibility Factor—A Measure of Deviation from Ideal-Gas Behavior 137

3–8 Other Equations of State 141

Van der Waals Equation of State 141 Beattie-Bridgeman Equation of State 142 Benedict-Webb-Rubin Equation of State 143 Virial Equation of State 143

Topic of Special Interest: Vapor Pressure and Phase Equilibrium 146

Summary 150 References and Suggested Readings 151 Problems 151

CHAPTER FOUR

ENERGY ANALYSIS OF CLOSED SYSTEMS 163

4–1 Moving Boundary Work 164 Polytropic Process 168

- **4–2** Energy Balance for Closed Systems 169
- **4–3** Specific Heats 174
- **4–4** Internal Energy, Enthalpy, and Specific Heats of Ideal Gases 176

Specific Heat Relations of Ideal Gases 178

4–5 Internal Energy, Enthalpy, and Specific Heats of Solids and Liquids 183

Internal Energy Changes 184 Enthalpy Changes 184

Topic of Special Interest: Thermodynamic Aspects of Biological Systems 187

Summary 195 References and Suggested Readings 195 Problems 196

CHAPTER FIVE

MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES 215

5–1 Conservation of Mass 216

Mass and Volume Flow Rates216Conservation of Mass Principle218Mass Balance for Steady-Flow Processes219Special Case: Incompressible Flow220

5–2 Flow Work and the Energy of a Flowing Fluid 223

Total Energy of a Flowing Fluid 223 Energy Transport by Mass 224

5–3 Energy Analysis of Steady-Flow Systems 226

5–4 Some Steady-Flow Engineering Devices 229

- 1 Nozzles and Diffusers 230 2 Turbines and Compressors 233 3 Throttling Valves 235 4a Mixing Chambers 237 4b Heat Exchangers 238 5 Pipe and Duct Flow 241
- 5–5 Energy Analysis of Unsteady-Flow Processes 242

Topic of Special Interest: General Energy Equation 247

Summary 251 References and Suggested Readings 252 Problems 252

CONTENTS

CHAPTER SIX

THE SECOND LAW OF THERMODYNAMICS 277

- **6–1** Introduction to the Second Law 278
- 6–2 Thermal Energy Reservoirs 279
- 6–3 Heat Engines 280

Thermal Efficiency 281 Can We Save Q_{out} ? 283 The Second Law of Thermodynamics: Kelvin–Planck Statement 285

6–4 Refrigerators and Heat Pumps 285

Coefficient of Performance 286 Heat Pumps 287 Performance of Refrigerators, Air-Conditioners, and Heat Pumps 288 The Second Law of Thermodynamics: Clausius Statement 290 Equivalence of the Two Statements 291

- 6–5 Perpetual-Motion Machines 292
- **6–6** Reversible and Irreversible Processes 294

Internally and Externally Reversible Processes 297

6–7 The Carnot Cycle 297

The Reversed Carnot Cycle 299

- **6–8** The Carnot Principles 299
- **6–9** The Thermodynamic Temperature Scale 301
- **6–10** The Carnot Heat Engine 303

The Quality of Energy 305 Quantity versus Quality in Daily Life 305

6–11 The Carnot Refrigerator and Heat Pump 306

Topic of Special Interest: Household Refrigerators 309

Summary 313 References and Suggested Readings 314 Problems 314

CHAPTER SEVEN ENTROPY 331

7–1 Entropy 332

A Special Case: Internally Reversible Isothermal Heat Transfer Processes 334

- 7–2 The Increase of Entropy Principle 335 Some Remarks about Entropy 338 7–3 Entropy Change of Pure Substances 339 7-4 Isentropic Processes 342 7-5 Property Diagrams Involving Entropy 344 7–6 What Is Entropy? 345 Entropy and Entropy Generation in Daily Life 347 7-7 The T ds Relations 349 7–8 Entropy Change of Liquids and Solids 350 7-9 The Entropy Change of Ideal Gases 354 Constant Specific Heats (Approximate Analysis) 354 Variable Specific Heats (Exact Analysis) 355 Isentropic Processes of Ideal Gases 357 **Constant Specific Heats** (Approximate Analysis) 357 Variable Specific Heats (Exact Analysis) 358 Relative Pressure and Relative Specific Volume 358 **7–10** Reversible Steady-Flow Work 361 Proof that Steady-Flow Devices Deliver the Most and Consume the Least Work When the Process Is Reversible 364 **7–11** Minimizing the Compressor Work 364 Multistage Compression with Intercooling 366 **7–12** Isentropic Efficiencies of Steady-Flow Devices 368 Isentropic Efficiency of Turbines 369 Isentropic Efficiencies of Compressors and Pumps 371 Isentropic Efficiency of Nozzles 373 **7–13** Entropy Balance 375 Entropy Change of a System, ΔS_{system} 375 Mechanisms of Entropy Transfer, S_{in} and S_{out} 376 1 Heat Transfer 376 2 Mass Flow 377 Entropy Generation, Sgen 377 Closed Systems 378
 - Control Volumes 379 Entropy Generation Associated with a Heat Transfer Process 386

Topic of Special Interest: Reducing the Cost of Compressed Air 387

Summary 396 References and Suggested Readings 397 Problems 398

xii CONTENTS

CHAPTER EIGHT

EXERGY: A MEASURE OF WORK POTENTIAL 423

- 8–1 Exergy: Work Potential of Energy 424
 Exergy (Work Potential) Associated with Kinetic and Potential Energy 425
- **8–2** Reversible Work and Irreversibility 427
- **8–3** Second-Law Efficiency, η_{II} 432
- **8–4** Exergy Change of a System 435

Exergy of a Fixed Mass: Nonflow (or Closed System) Exergy 435 Exergy of a Flow Stream: Flow (or Stream) Exergy 438

8–5 Exergy Transfer by Heat, Work, and Mass 440

Exergy by Heat Transfer, Q 441 Exergy Transfer by Work, W 442 Exergy Transfer by Mass, m 442

8–6 The Decrease of Exergy Principle and Exergy Destruction 443

Exergy Destruction 444

- **8–7** Exergy Balance: Closed Systems 445
- **8–8** Exergy Balance: Control Volumes 456

Exergy Balance for Steady-Flow Systems 457 Reversible Work, $W_{\rm rev}$ 458 Second-Law Efficiency of Steady-Flow Devices, $\eta_{\rm H}$ 458

Topic of Special Interest: Second-Law Aspects of Daily Life 465

Summary 469 References and Suggested Readings 470 Problems 470

CHAPTER NINE

GAS POWER CYCLES 487

- **9–1** Basic Considerations in the Analysis of Power Cycles 488
- **9–2** The Carnot Cycle and Its Value in Engineering 490
- **9–3** Air-Standard Assumptions 492
- **9–4** An Overview of Reciprocating Engines 492

- **9–5** Otto Cycle: The Ideal Cycle for Spark-Ignition Engines 494
- **9–6** Diesel Cycle: The Ideal Cycle for Compression-Ignition Engines 500
- **9–7** Stirling and Ericsson Cycles 503
- **9–8** Brayton Cycle: The Ideal Cycle for Gas-Turbine Engines 507

Development of Gas Turbines 510 Deviation of Actual Gas-Turbine Cycles from Idealized Ones 513

- **9–9** The Brayton Cycle with Regeneration 514
- **9–10** The Brayton Cycle with Intercooling, Reheating, and Regeneration 517
- 9–11 Ideal Jet-Propulsion Cycles 521 Modifications to Turbojet Engines 525
- 9–12 Second-Law Analysis of Gas Power Cycles 527

Topic of Special Interest: Saving Fuel and Money by Driving Sensibly 531

Summary 537 References and Suggested Readings 539 Problems 539

CHAPTER TEN

VAPOR AND COMBINED POWER CYCLES 555

- **10–1** The Carnot Vapor Cycle 556
- **10–2** Rankine Cycle: The Ideal Cycle for Vapor Power Cycles 557

Energy Analysis of the Ideal Rankine Cycle 557

- **10–3** Deviation of Actual Vapor Power Cycles from Idealized Ones 560
- **10–4** How Can We Increase the Efficiency of the Rankine Cycle? 563

Lowering the Condenser Pressure (Lowers $T_{\text{low,avg}}$) 563 Superheating the Steam to High Temperatures (Increases $T_{\text{high,avg}}$) 564 Increasing the Boiler Pressure (Increases $T_{\text{high,avg}}$) 564

10–5 The Ideal Reheat Rankine Cycle 567

- **10–6** The Ideal Regenerative Rankine Cycle 571 Open Feedwater Heaters 571 Closed Feedwater Heaters 573
- **10–7** Second-Law Analysis of Vapor Power Cycles 579
- **10–8** Cogeneration 581
- **10–9** Combined Gas–Vapor Power Cycles 586

Topic of Special Interest: Binary Vapor Cycles 589

Summary 592 References and Suggested Readings 592 Problems 593

C H A P T E R E L E V E N

REFRIGERATION CYCLES 611

- **11–1** Refrigerators and Heat Pumps 612
- **11–2** The Reversed Carnot Cycle 613
- **11–3** The Ideal Vapor-Compression Refrigeration Cycle 614
- **11–4** Actual Vapor-Compression Refrigeration Cycle 617
- **11–5** Second-Law Analysis of Vapor-Compression Refrigeration Cycle 619
- **11–6** Selecting The Right Refrigerant 624
- **11–7** Heat Pump Systems 626
- **11–8** Innovative Vapor-Compression Refrigeration Systems 627

Cascade Refrigeration Systems 628 Multistage Compression Refrigeration Systems 630 Multipurpose Refrigeration Systems with a Single Compressor 632 Liquefaction of Gases 633

- **11–9** Gas Refrigeration Cycles 634
- **11–10** Absorption Refrigeration Systems 637

Topic of Special Interest: Thermoelectric Power Generation and Refrigeration Systems 640

Summary 642 References and Suggested Readings 643 Problems 643

C H A P T E R T W E L V E

THERMODYNAMIC PROPERTY RELATIONS 661

- 12–1 A Little Math—Partial Derivatives and Associated Relations 662 Partial Differentials 663 Partial Differential Relations 665
- **12–2** The Maxwell Relations 667
- **12–3** The Clapeyron Equation 668
- **12–4** General Relations for *du*, *dh*, *ds*, c_v and c_p 671

- **12–5** The Joule-Thomson Coefficient 678
- **12–6** The Δh , Δu , and Δs of Real Gases 680

Enthalpy Changes of Real Gases 680 Internal Energy Changes of Real Gases 681 Entropy Changes of Real Gases 682

Summary 685 References and Suggested Readings 686 Problems 686

CHAPTER THIRTEEN GAS MIXTURES 693

- **13–1** Composition of a Gas Mixture: Mass and Mole Fractions 694
- **13–2** $P \cdot v \cdot T$ Behavior of Gas Mixtures: Ideal and Real Gases 696

Ideal-Gas Mixtures 697 Real-Gas Mixtures 697

13–3 Properties of Gas Mixtures: Ideal and Real Gases 701

Ideal-Gas Mixtures 702 Real-Gas Mixtures 705

Topic of Special Interest: Chemical Potential and the Separation Work of Mixtures 709

Summary 720 References and Suggested Readings 721 Problems 721

xiv CONTENTS

CHAPTER FOURTEEN

GAS-VAPOR MIXTURES AND AIR-CONDITIONING 731

- **14–1** Dry and Atmospheric Air 732
- **14–2** Specific and Relative Humidity of Air 733
- **14–3** Dew-Point Temperature 735
- **14–4** Adiabatic Saturation and Wet-Bulb Temperatures 737
- **14–5** The Psychrometric Chart 740
- **14–6** Human Comfort and Air-Conditioning 741
- **14–7** Air-Conditioning Processes 743

Simple Heating and Cooling (ω = constant) 744 Heating with Humidification 745 Cooling with Dehumidification 746 Evaporative Cooling 748 Adiabatic Mixing of Airstreams 749 Wet Cooling Towers 751

Summary 753 References and Suggested Readings 755 Problems 755

CHAPTER FIFTEEN

CHEMICAL REACTIONS 767

- **15–1** Fuels and Combustion 768
- **15–2** Theoretical and Actual Combustion Processes 772
- **15–3** Enthalpy of Formation and Enthalpy of Combustion 779
- 15–4 First-Law Analysis of Reacting Systems 782 Steady-Flow Systems 783 Closed Systems 784
- **15–5** Adiabatic Flame Temperature 788
- **15–6** Entropy Change of Reacting Systems 790
- **15–7** Second-Law Analysis of Reacting Systems 792

Topic of Special Interest: Fuel Cells 798

Summary 800 References and Suggested Readings 801 Problems 801

CHAPTER SIXTEEN

CHEMICAL AND PHASE EQUILIBRIUM 813

- **16–1** Criterion for Chemical Equilibrium 814
- **16–2** The Equilibrium Constant for Ideal-Gas Mixtures 816
- **16–3** Some Remarks about the K_p of Ideal-Gas Mixtures 820
- **16–4** Chemical Equilibrium for Simultaneous Reactions 824
- **16–5** Variation of K_p with Temperature 826
- **16–6** Phase Equilibrium 828

Phase Equilibrium for a Single-Component System828The Phase Rule830Phase Equilibrium for a Multicomponent System830

Summary 836 References and Suggested Readings 837 Problems 837

C H A P T E R S E V E N T E E N COMPRESSIBLE FLOW 847

- **17–1** Stagnation Properties 848
- **17–2** Speed of Sound and Mach Number 851
- **17–3** One-Dimensional Isentropic Flow 853 Variation of Fluid Velocity with Flow Area 856

Property Relations for Isentropic Flow of Ideal Gases 858

17–4 Isentropic Flow Through Nozzles 860

Converging Nozzles 860 Converging–Diverging Nozzles 865

17–5 Shock Waves and Expansion Waves 869

Normal Shocks 869 Oblique Shocks 876 Prandtl–Meyer Expansion Waves 880

17–6 Duct Flow with Heat Transfer and Negligible Friction (Rayleigh Flow) 884

> Property Relations for Rayleigh Flow 890 Choked Rayleigh Flow 891

17–7 Steam Nozzles 893

Summary 896 References and Suggested Readings 897 Problems 898

APPENDIX 1

PROPERTY TABLES AND CHARTS (SI UNITS) 907

TABLE A-1	Molar mass, gas constant, and critical-point properties 908
TABLE A-2	Ideal-gas specific heats of various common gases 909
TABLE A-3	Properties of common liquids, solids, and foods 912
TABLE A-4	Saturated water—Temperature table 914
TABLE A-5	Saturated water—Pressure table 916
TABLE A-6	Superheated water 918
TABLE A-7	Compressed liquid water 922
TABLE A-8	Saturated ice-water vapor 923
FIGURE A-9	<i>T-s</i> diagram for water 924
FIGURE A-10	Mollier diagram for water 925
TABLE A-11	Saturated refrigerant-134a— Temperature table 926
TABLE A-12	Saturated refrigerant-134a—Pressure table 928
TABLE A-13	Superheated refrigerant-134a 929
FIGURE A-14	<i>P-h</i> diagram for refrigerant-134a 931
FIGURE A-15	Nelson–Obert generalized compressibility chart 932
TABLE A-16	Properties of the atmosphere at high altitude 933
TABLE A-17	Ideal-gas properties of air 934
TABLE A-18	Ideal-gas properties of nitrogen, $N_2 = 936$
TABLE A-19	Ideal-gas properties of oxygen, O ₂ 938
TABLE A-20	Ideal-gas properties of carbon dioxide, CO ₂ 940
TABLE A-21	Ideal-gas properties of carbon monoxide, CO 942
TABLE A-22	Ideal-gas properties of hydrogen, $H_2 = 944$
TABLE A-23	Ideal-gas properties of water vapor, H_2O 945
TABLE A-24	Ideal-gas properties of monatomic oxygen, O 947
TABLE A-25	Ideal-gas properties of hydroxyl, OH 947

XV CONTENTS

TABLE A-26	Enthalpy of formation, Gibbs function of formation, and absolute entropy at 25°C, 1 atm 948
TABLE A-27	Properties of some common fuels and hydrocarbons 949
TABLE A-28	Natural logarithms of the equilibrium constant K_p 950
FIGURE A-29	Generalized enthalpy departure chart 951
FIGURE A-30	Generalized entropy departure chart 952
FIGURE A-31	Psychrometric chart at 1 atm total pressure 953
TABLE A-32	One-dimensional isentropic compressible-flow functions for an ideal gas with $k = 1.4$ 954
TABLE A-33	One-dimensional normal-shock functions for an ideal gas with k = 1.4 955
TABLE A-34	Rayleigh flow functions for an ideal gas with $k = 1.4$ 956

APPENDIX 2

PROPERTY TABLES AND CHARTS (ENGLISH UNITS) 957

TABLE A-1E	Molar mass, gas constant, and critical-point properties 958
TABLE A-2E	Ideal-gas specific heats of various common gases 959
TABLE A-3E	Properties of common liquids, solids, and foods 962
TABLE A-4E	Saturated water—Temperature table 964
TABLE A-5E	Saturated water—Pressure table 966
TABLE A-6E	Superheated water 968
TABLE A-7E	Compressed liquid water 972
TABLE A-8E	Saturated ice—water vapor 973
FIGURE A-9E	<i>T-s</i> diagram for water 974
FIGURE A-10E	Mollier diagram for water 975
TABLE A-11E	Saturated refrigerant-134a— Temperature table 976

CONTENTS

TABLE A-12E	Saturated refrigerant-134a—Pressure table 977
TABLE A-13E	Superheated refrigerant-134a 978
FIGURE A-14E	<i>P-h</i> diagram for refrigerant-134a 980
TABLE A-16E	Properties of the atmosphere at high altitude 981
TABLE A-17E	Ideal-gas properties of air 982
TABLE A-18E	Ideal-gas properties of nitrogen, $N_2 = 984$
TABLE A-19E	Ideal-gas properties of oxygen, O_2 986
TABLE A-20E	Ideal-gas properties of carbon dioxide, CO ₂ 988
TABLE A-21E	Ideal-gas properties of carbon monoxide, CO 990

- **TABLE A-22E**Ideal-gas properties of hydrogen,
 H_2 992
- **TABLE A-23E**Ideal-gas properties of water vapor,
 H_2O 993
- **TABLE A-26E**Enthalpy of formation, Gibbs function
of formation, and absolute entropy at
77°F, 1 atm 995
- **TABLE A-27E**Properties of some common fuels
and hydrocarbons996
- FIGURE A–31E Psycrometric chart at 1 atm total pressure 997

Index 999