
January 24, 2008 14:23 vra_29532_ch07 Sheet number 1 Page number 381 black

381

c h a p t e r

7
Flip-Flops, Registers, Counters,

and a Simple Processor

Chapter Objectives

In this chapter you will learn about:

• Logic circuits that can store information

• Flip-flops, which store a single bit

• Registers, which store multiple bits

• Shift registers, which shift the contents of the register

• Counters of various types

• VHDL constructs used to implement storage elements

• Design of small subsystems

• Timing considerations

January 24, 2008 14:23 vra_29532_ch07 Sheet number 2 Page number 382 black

382 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

In previous chapters we considered combinational circuits where the value of each output depends solely on
the values of signals applied to the inputs. There exists another class of logic circuits in which the values of the
outputs depend not only on the present values of the inputs but also on the past behavior of the circuit. Such
circuits include storage elements that store the values of logic signals. The contents of the storage elements
are said to represent the state of the circuit. When the circuit’s inputs change values, the new input values
either leave the circuit in the same state or cause it to change into a new state. Over time the circuit changes
through a sequence of states as a result of changes in the inputs. Circuits that behave in this way are referred
to as sequential circuits.

In this chapter we will introduce circuits that can be used as storage elements. But first, we
will motivate the need for such circuits by means of a simple example. Suppose that we wish
to control an alarm system, as shown in Figure 7.1. The alarm mechanism responds to the
control inputOn/Off . It is turned on whenOn/Off = 1, and it is off whenOn/Off = 0. The
desired operation is that the alarm turns on when the sensor generates a positive voltage
signal, Set, in response to some undesirable event. Once the alarm is triggered, it must
remain active even if the sensor output goes back to zero. The alarm is turned off manually
by means of a Reset input. The circuit requires a memory element to remember that the
alarm has to be active until the Reset signal arrives.

Figure 7.2 gives a rudimentary memory element, consisting of a loop that has two
inverters. If we assume that A = 0, then B = 1. The circuit will maintain these values
indefinitely. We say that the circuit is in the state defined by these values. If we assume
that A = 1, then B = 0, and the circuit will remain in this second state indefinitely. Thus
the circuit has two possible states. This circuit is not useful, because it lacks some practical
means for changing its state.

A more useful circuit is shown in Figure 7.3. It includes a mechanism for changing
the state of the circuit in Figure 7.2, using two transmission gates of the type discussed in
section 3.9. One transmission gate, TG1, is used to connect theData input terminal to point

Memory

element
Alarm

Sensor

Reset

Set

On Off⁄

Figure 7.1 Control of an alarm system.

A B

Figure 7.2 A simple memory element.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 3 Page number 383 black

7.1 Basic Latch 383

A B
OutputData

Load

TG1

TG2

Figure 7.3 A controlled memory element.

A in the circuit. The second, TG2, is used as a switch in the feedback loop that maintains the
state of the circuit. The transmission gates are controlled by the Load signal. If Load = 1,
then TG1 is on and the point A will have the same value as the Data input. Since the value
presently stored at Output may not be the same value as Data, the feedback loop is broken
by having TG2 turned off when Load = 1. When Load changes to zero, then TG1 turns
off and TG2 turns on. The feedback path is closed and the memory element will retain its
state as long as Load = 0. This memory element cannot be applied directly to the system
in Figure 7.1, but it is useful for many other applications, as we will see later.

7.1 Basic Latch

Instead of using the transmission gates, we can construct a similar circuit using ordinary
logic gates. Figure 7.4 presents a memory element built with NOR gates. Its inputs, Set
and Reset, provide the means for changing the state, Q, of the circuit. A more usual way
of drawing this circuit is given in Figure 7.5a, where the two NOR gates are said to be
connected in cross-coupled style. The circuit is referred to as a basic latch. Its behavior is
described by the table in Figure 7.5b. When both inputs, R and S, are equal to 0 the latch
maintains its existing state. This state may be either Qa = 0 and Qb = 1, or Qa = 1 and
Qb = 0, which is indicated in the table by stating that the Qa and Qb outputs have values

Reset

Set Q

Figure 7.4 A memory element with NOR gates.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 4 Page number 384 black

384 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

S R Qa Qb

0 0

0 1

1 0

1 1

0/1 1/0

0 1

1 0

0 0

(a) Circuit (b) Characteristic table

Time

1

0

1

0

1

0

1

0

R

S

Qa

Qb

Qa

Qb

?

?

(c) Timing diagram

R

S

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10

(no change)

Figure 7.5 A basic latch built with NOR gates.

0/1 and 1/0, respectively. Observe that Qa and Qb are complements of each other in this
case. When R = 0 and S = 1, the latch is set into a state where Qa = 1 and Qb = 0. When
R = 1 and S = 0, the latch is reset into a state where Qa = 0 and Qb = 1. The fourth
possibility is to have R = S = 1. In this case both Qa and Qb will be 0. The table in Figure
7.5b resembles a truth table. However, since it does not represent a combinational circuit
in which the values of the outputs are determined solely by the current values of the inputs,
it is often called a characteristic table rather than a truth table.

Figure 7.5c gives a timing diagram for the latch, assuming that the propagation delay
through the NOR gates is negligible. Of course, in a real circuit the changes in the waveforms
would be delayed according to the propagation delays of the gates. We assume that initially
Qa = 0 and Qb = 1. The state of the latch remains unchanged until time t2, when S
becomes equal to 1, causing Qb to change to 0, which in turn causes Qa to change to 1.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 5 Page number 385 black

7.2 Gated SR Latch 385

The causality relationship is indicated by the arrows in the diagram. When S goes to 0 at
t3, there is no change in the state because both S and R are then equal to 0. At t4 we have
R = 1, which causes Qa to go to 0, which in turn causes Qb to go to 1. At t5 both S and R
are equal to 1, which forces both Qa and Qb to be equal to 0. As soon as S returns to 0, at
t6, Qb becomes equal to 1 again. At t8 we have S = 1 and R = 0, which causes Qb = 0
and Qa = 1. An interesting situation occurs at t10. From t9 to t10 we have Qa = Qb = 0
because R = S = 1. Now if both R and S change to 0 at t10, both Qa and Qb will go to 1.
But having both Qa and Qb equal to 1 will immediately force Qa = Qb = 0. There will
be an oscillation between Qa = Qb = 0 and Qa = Qb = 1. If the delays through the two
NOR gates are exactly the same, the oscillation will continue indefinitely. In a real circuit
there will invariably be some difference in the delays through these gates, and the latch will
eventually settle into one of its two stable states, but we don’t know which state it will be.
This uncertainty is indicated in the waveforms by dashed lines.

The oscillations discussed above illustrate that even though the basic latch is a simple
circuit, careful analysis has to be done to fully appreciate its behavior. In general, any
circuit that contains one or more feedback paths, such that the state of the circuit depends
on the propagation delays through logic gates, has to be designed carefully. We discuss
timing issues in detail in Chapter 9.

The latch in Figure 7.5a can perform the functions needed for the memory element in
Figure 7.1, by connecting the Set signal to the S input and Reset to the R input. The Qa

output provides the desired On/Off signal. To initialize the operation of the alarm system,
the latch is reset. Thus the alarm is off. When the sensor generates the logic value 1, the
latch is set and Qa becomes equal to 1. This turns on the alarm mechanism. If the sensor
output returns to 0, the latch retains its state where Qa = 1; hence the alarm remains turned
on. The only way to turn off the alarm is by resetting the latch, which is accomplished by
making the Reset input equal to 1.

7.2 Gated SR Latch

In section 7.1 we saw that the basic SR latch can serve as a useful memory element. It
remembers its state when both the S and R inputs are 0. It changes its state in response
to changes in the signals on these inputs. The state changes occur at the time when the
changes in the signals occur. If we cannot control the time of such changes, then we don’t
know when the latch may change its state.

In the alarm system of Figure 7.1, it may be desirable to be able to enable or disable
the entire system by means of a control input, Enable. Thus when enabled, the system
would function as described above. In the disabled mode, changing the Set input from 0 to
1 would not cause the alarm to turn on. The latch in Figure 7.5a cannot provide the desired
operation. But the latch circuit can be modified to respond to the input signals S and R only
when Enable = 1. Otherwise, it would maintain its state.

The modified circuit is depicted in Figure 7.6a. It includes two AND gates that provide
the desired control. When the control signal Clk is equal to 0, the S ′ and R′ inputs to the
latch will be 0, regardless of the values of signals S and R. Hence the latch will maintain its

January 24, 2008 14:23 vra_29532_ch07 Sheet number 6 Page number 386 black

386 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

(a) Circuit

Q

Q

R′

S′

R

S

R

Clk

Q

Q

S

1

0

1

0

1

0

1

0

1

0

Time

(c) Timing diagram

Clk

?

?

S R

x x

0 0

0 1

1 0

Q(t) (no change)

0

1

Clk

0

1

1

1

1 11

Q t 1+()

Q(t) (no change)

x

S Q

Q

Clk

R

(d) Graphical symbol

(b) Characteristic table

Figure 7.6 Gated SR latch.

existing state as long as Clk = 0. When Clk changes to 1, the S ′ and R′ signals will be the
same as the S and R signals, respectively. Therefore, in this mode the latch will behave as
we described in section 7.1. Note that we have used the name Clk for the control signal that
allows the latch to be set or reset, rather than call it the Enable signal. The reason is that
such circuits are often used in digital systems where it is desirable to allow the changes in

January 24, 2008 14:23 vra_29532_ch07 Sheet number 7 Page number 387 black

7.2 Gated SR Latch 387

the states of memory elements to occur only at well-defined time intervals, as if they were
controlled by a clock. The control signal that defines these time intervals is usually called
the clock signal. The name Clk is meant to reflect this nature of the signal.

Circuits of this type, which use a control signal, are called gated latches. Because our
circuit exhibits set and reset capability, it is called a gated SR latch. Figure 7.6b describes
its behavior. It defines the state of the Q output at time t+1, namely, Q(t+1), as a function
of the inputs S, R, and Clk. When Clk = 0, the latch will remain in the state it is in at time
t, that is, Q(t), regardless of the values of inputs S and R. This is indicated by specifying
S = x and R = x, where x means that the signal value can be either 0 or 1. (Recall that we
already used this notation in Chapter 4.) When Clk = 1, the circuit behaves as the basic
latch in Figure 7.5. It is set by S = 1 and reset by R = 1. The last row of the table, where
S = R = 1, shows that the state Q(t + 1) is undefined because we don’t know whether it
will be 0 or 1. This corresponds to the situation described in section 7.1 in conjunction with
the timing diagram in Figure 7.5 at time t10. At this time both S and R inputs go from 1
to 0, which causes the oscillatory behavior that we discussed. If S = R = 1, this situation
will occur as soon as Clk goes from 1 to 0. To ensure a meaningful operation of the gated
SR latch, it is essential to avoid the possibility of having both the S and R inputs equal to 1
when Clk changes from 1 to 0.

A timing diagram for the gated SR latch is given in Figure 7.6c. It shows Clk as a
periodic signal that is equal to 1 at regular time intervals to suggest that this is how the
clock signal usually appears in a real system. The diagram presents the effect of several
combinations of signal values. Observe that we have labeled one output as Q and the other
as its complement Q, rather than Qa and Qb as in Figure 7.5. Since the undefined mode,
where S = R = 1, must be avoided in practice, the normal operation of the latch will have
the outputs as complements of each other. Moreover, we will often say that the latch is set
when Q = 1, and it is reset when Q = 0. A graphical symbol for the gated SR latch is
given in Figure 7.6d .

7.2.1 Gated SR Latch with NAND Gates

So far we have implemented the basic latch with cross-coupled NOR gates. We can also
construct the latch with NAND gates. Using this approach, we can implement the gated
SR latch as depicted in Figure 7.7. The behavior of this circuit is described by the table
in Figure 7.6b. Note that in this circuit, the clock is gated by NAND gates, rather than by

S

R

Clk

Q

Q

Figure 7.7 Gated SR latch with NAND gates.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 8 Page number 388 black

388 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

AND gates. Note also that the S and R inputs are reversed in comparison with the circuit in
Figure 7.6a. The circuit with NAND gates requires fewer transistors than the circuit with
AND gates. We will use the circuit in Figure 7.7, in preference to the circuit in Figure 7.6a.

7.3 Gated D Latch

In section 7.2 we presented the gated SR latch and showed how it can be used as the memory
element in the alarm system of Figure 7.1. This latch is useful for many other applications.
In this section we describe another gated latch that is even more useful in practice. It has a
single data input, called D, and it stores the value on this input, under the control of a clock
signal. It is called a gated D latch.

To motivate the need for a gated D latch, consider the adder/subtractor unit discussed
in Chapter 5 (Figure 5.13). When we described how that circuit is used to add numbers, we
did not discuss what is likely to happen with the sum bits that are produced by the adder.
Adder/subtractor units are often used as part of a computer. The result of an addition or
subtraction operation is often used as an operand in a subsequent operation. Therefore, it
is necessary to be able to remember the values of the sum bits generated by the adder until
they are needed again. We might think of using the basic latches to remember these bits,
one bit per latch. In this context, instead of saying that a latch remembers the value of a
bit, it is more illuminating to say that the latch stores the value of the bit or simply “stores
the bit.” We should think of the latch as a storage element.

But can we obtain the desired operation using the basic latches? We can certainly reset
all latches before the addition operation begins. Then we would expect that by connecting
a sum bit to the S input of a latch, the latch would be set to 1 if the sum bit has the value 1;
otherwise, the latch would remain in the 0 state. This would work fine if all sum bits are 0 at
the start of the addition operation and, after some propagation delay through the adder, some
of these bits become equal to 1 to give the desired sum. Unfortunately, the propagation
delays that exist in the adder circuit cause a big problem in this arrangement. Suppose that
we use a ripple-carry adder. When the X and Y inputs are applied to the adder, the sum
outputs may alternate between 0 and 1 a number of times as the carries ripple through the
circuit. This situation was illustrated in the timing diagram in Figure 5.21. The problem is
that if we connect a sum bit to the S input of a latch, then if the sum bit is temporarily a 1
and then settles to 0 in the final result, the latch will remain set to 1 erroneously.

The problem caused by the alternating values of the sum bits in the adder could be
solved by using the gated SR latches, instead of the basic latches. Then we could arrange
that the clock signal is 0 during the time needed by the adder to produce a correct sum.
After allowing for the maximum propagation delay in the adder circuit, the clock should
go to 1 to store the values of the sum bits in the gated latches. As soon as the values have
been stored, the clock can return to 0, which ensures that the stored values will be retained
until the next time the clock goes to 1. To achieve the desired operation, we would also
have to reset all latches to 0 prior to loading the sum-bit values into these latches. This is
an awkward way of dealing with the problem, and it is preferable to use the gated D latches
instead.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 9 Page number 389 black

7.3 Gated D Latch 389

Figure 7.8a shows the circuit for a gated D latch. It is based on the gated SR latch, but
instead of using the S and R inputs separately, it has just one data input,D. For convenience
we have labeled the points in the circuit that are equivalent to the S and R inputs. If D = 1,
then S = 1 and R = 0, which forces the latch into the state Q = 1. If D = 0, then S = 0
and R = 1, which causes Q = 0. Of course, the changes in state occur only when Clk = 1.

It is important to observe that in this circuit it is impossible to have the troublesome
situation where S = R = 1. In the gated D latch, the output Q merely tracks the value of
the input D while Clk= 1. As soon as Clk goes to 0, the state of the latch is frozen until the
next time the clock signal goes to 1. Therefore, the gated D latch stores the value of the D

Q

S

R

Clk

D
(Data)

D Q

QClk

Clk D

0
1
1

x
0
1

0
1

Q t 1+()

Q t()

(a) Circuit

(b) Characteristic table (c) Graphical symbol

t1 t2 t3 t4

Time

Clk

D

Q

(d) Timing diagram

Q

Figure 7.8 Gated D latch.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 10 Page number 390 black

390 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

input seen at the time the clock changes from 1 to 0. Figure 7.8 also gives the characteristic
table, the graphical symbol, and the timing diagram for the gated D latch.

The timing diagram illustrates what happens if the D signal changes while Clk = 1.
During the third clock pulse, starting at t3, the output Q changes to 1 because D = 1. But
midway through the pulse D goes to 0, which causes Q to go to 0. This value of Q is stored
when Clk changes to 0. Now no further change in the state of the latch occurs until the next
clock pulse, at t4. The key point to observe is that as long as the clock has the value 1, the Q
output follows theD input. But when the clock has the value 0, the Q output cannot change.
In Chapter 3 we saw that the logic values are implemented as low and high voltage levels.
Since the output of the gated D latch is controlled by the level of the clock input, the latch
is said to be level sensitive. The circuits in Figures 7.6 through 7.8 are level sensitive. We
will show in section 7.4 that it is possible to design storage elements for which the output
changes only at the point in time when the clock changes from one value to the other. Such
circuits are said to be edge triggered.

At this point we should reconsider the circuit in Figure 7.3. Careful examination of
that circuit shows that it behaves in exactly the same way as the circuit in Figure 7.8a. The
Data and Load inputs correspond to the D and Clk inputs, respectively. The Output, which
has the same signal value as point A, corresponds to the Q output. Point B corresponds to
Q. Therefore, the circuit in Figure 7.3 is also a gated D latch. An advantage of this circuit
is that it can be implemented using fewer transistors than the circuit in Figure 7.8a.

7.3.1 Effects of Propagation Delays

In the previous discussion we ignored the effects of propagation delays. In practical circuits
it is essential to take these delays into account. Consider the gated D latch in Figure 7.8a.
It stores the value of the D input that is present at the time the clock signal changes from
1 to 0. It operates properly if the D signal is stable (that is, not changing) at the time Clk
goes from 1 to 0. But it may lead to unpredictable results if the D signal also changes at
this time. Therefore, the designer of a logic circuit that generates the D signal must ensure
that this signal is stable when the critical change in the clock signal takes place.

Figure 7.9 illustrates the critical timing region. The minimum time that the D signal
must be stable prior to the negative edge of the Clk signal is called the setup time, tsu, of the

t
su

t
h

Clk

D

Q

Figure 7.9 Setup and hold times.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 11 Page number 391 black

7.4 Master-Slave and Edge-Triggered D Flip-Flops 391

latch. The minimum time that the D signal must remain stable after the negative edge of
the Clk signal is called the hold time, th, of the latch. The values of tsu and th depend on the
technology used. Manufacturers of integrated circuit chips provide this information on the
data sheets that describe their chips. Typical values for a modern CMOS technology may
be tsu = 0.3 ns and th = 0.2 ns. We will give examples of how setup and hold times affect
the speed of operation of circuits in section 7.13. The behavior of storage elements when
setup or hold times are violated is discussed in section 10.3.3.

7.4 Master-Slave and Edge-Triggered D Flip-Flops

In the level-sensitive latches, the state of the latch keeps changing according to the values of
input signals during the period when the clock signal is active (equal to 1 in our examples).
As we will see in sections 7.8 and 7.9, there is also a need for storage elements that can
change their states no more than once during one clock cycle. We will discuss two types
of circuits that exhibit such behavior.

7.4.1 Master-Slave D Flip-Flop

Consider the circuit given in Figure 7.10a, which consists of two gated D latches. The first,
calledmaster, changes its state while Clock= 1. The second, called slave, changes its state
while Clock= 0. The operation of the circuit is such that when the clock is high, the master
tracks the value of the D input signal and the slave does not change. Thus the value of Qm

follows any changes in D, and the value of Qs remains constant. When the clock signal
changes to 0, the master stage stops following the changes in theD input. At the same time,
the slave stage responds to the value of the signal Qm and changes state accordingly. Since
Qm does not change while Clock = 0, the slave stage can undergo at most one change of
state during a clock cycle. From the external observer’s point of view, namely, the circuit
connected to the output of the slave stage, the master-slave circuit changes its state at the
negative-going edge of the clock. The negative edge is the edge where the clock signal
changes from 1 to 0. Regardless of the number of changes in the D input to the master
stage during one clock cycle, the observer of the Qs signal will see only the change that
corresponds to the D input at the negative edge of the clock.

The circuit in Figure 7.10 is called amaster-slave D flip-flop. The term flip-flop denotes
a storage element that changes its output state at the edge of a controlling clock signal. The
timing diagram for this flip-flop is shown in Figure 7.10b. A graphical symbol is given in
Figure 7.10c. In the symbol we use the > mark to denote that the flip-flop responds to the
“active edge” of the clock. We place a bubble on the clock input to indicate that the active
edge for this particular circuit is the negative edge.

7.4.2 Edge-Triggered D Flip-Flop

The output of the master-slave D flip-flop in Figure 7.10a responds on the negative edge
of the clock signal. The circuit can be changed to respond to the positive clock edge by
connecting the slave stage directly to the clock and the master stage to the complement of

January 24, 2008 14:23 vra_29532_ch07 Sheet number 12 Page number 392 black

392 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

D Q

Q

Master Slave

D

Clock

Q

Q

D Q

Q

Qm Qs

D

Clock

Qm

Q Qs=

D Q

Q

(a) Circuit

(b) Timing diagram

(c) Graphical symbol

ClkClk

Figure 7.10 Master-slave D flip-flop.

the clock. A different circuit that accomplishes the same task is presented in Figure 7.11a.
It requires only six NAND gates and, hence, fewer transistors. The operation of the circuit
is as follows. When Clock = 0, the outputs of gates 2 and 3 are high. Thus P1 = P2 = 1,
which maintains the output latch, comprising gates 5 and 6, in its present state. At the same
time, the signal P3 is equal toD, and P4 is equal to its complementD. WhenClock changes

January 24, 2008 14:23 vra_29532_ch07 Sheet number 13 Page number 393 black

7.4 Master-Slave and Edge-Triggered D Flip-Flops 393

D

Clock

P4

P3

P1

P2

5

6

1

2

3

4

D Q

Q

(a) Circuit

(b) Graphical symbol

Clock

Q

Q

Figure 7.11 A positive-edge-triggered D flip-flop.

to 1, the following changes take place. The values of P3 and P4 are transmitted through
gates 2 and 3 to cause P1 = D and P2 = D, which sets Q = D and Q = D. To operate
reliably, P3 and P4 must be stable when Clock changes from 0 to 1. Hence the setup time
of the flip-flop is equal to the delay from the D input through gates 4 and 1 to P3. The hold
time is given by the delay through gate 3 because once P2 is stable, the changes in D no
longer matter.

For proper operation it is necessary to show that, after Clock changes to 1, any further
changes in D will not affect the output latch as long as Clock= 1. We have to consider two
cases. Suppose first that D = 0 at the positive edge of the clock. Then P2 = 0, which will
keep the output of gate 4 equal to 1 as long as Clock = 1, regardless of the value of the D
input. The second case is if D = 1 at the positive edge of the clock. Then P1 = 0, which
forces the outputs of gates 1 and 3 to be equal to 1, regardless of the D input. Therefore,
the flip-flop ignores changes in the D input while Clock = 1.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 14 Page number 394 black

394 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

Figure 7.11b gives a graphical symbol for this flip-flop. The clock input indicates that
the positive edge of the clock is the active edge. A similar circuit, constructed with NOR
gates, can be used as a negative-edge-triggered flip-flop.

Level-Sensitive versus Edge-Triggered Storage Elements
Figure 7.12 shows three different types of storage elements that are driven by the same

data and clock inputs. The first element is a gated D latch, which is level sensitive. The
second one is a positive-edge-triggered D flip-flop, and the third one is a negative-edge-
triggered D flip-flop. To accentuate the differences between these storage elements, the

D

Clock

Q
a

Q
b

D Q

Q

(b) Timing diagram

D Q

Q

D Q

Q

D

Clock Qa

Qb

Qc

Q
c

Q
b

Q
a

(a) Circuit

Clk

Q
c

Figure 7.12 Comparison of level-sensitive and edge-triggered D storage elements.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 15 Page number 395 black

7.4 Master-Slave and Edge-Triggered D Flip-Flops 395

D input changes its values more than once during each half of the clock cycle. Observe
that the gated D latch follows the D input as long as the clock is high. The positive-edge-
triggered flip-flop responds only to the value of D when the clock changes from 0 to 1. The
negative-edge-triggered flip-flop responds only to the value of D when the clock changes
from 1 to 0.

7.4.3 D Flip-Flops with Clear and Preset

Flip-flops are often used for implementation of circuits that can have many possible states,
where the response of the circuit depends not only on the present values of the circuit’s
inputs but also on the particular state that the circuit is in at that time. We will discuss
a general form of such circuits in Chapter 8. A simple example is a counter circuit that
counts the number of occurrences of some event, perhaps passage of time. We will discuss
counters in detail in section 7.9. A counter comprises a number of flip-flops, whose outputs
are interpreted as a number. The counter circuit has to be able to increment or decrement the
number. It is also important to be able to force the counter into a known initial state (count).
Obviously, it must be possible to clear the count to zero, which means that all flip-flops
must have Q = 0. It is equally useful to be able to preset each flip-flop to Q = 1, to insert
some specific count as the initial value in the counter. These features can be incorporated
into the circuits of Figures 7.10 and 7.11 as follows.

Figure 7.13a shows an implementation of the circuit in Figure 7.10a using NAND
gates. The master stage is just the gated D latch of Figure 7.8a. Instead of using another
latch of the same type for the slave stage, we can use the slightly simpler gated SR latch of
Figure 7.7. This eliminates one NOT gate from the circuit.

A simple way of providing the clear and preset capability is to add an extra input to
each NAND gate in the cross-coupled latches, as indicated in blue. Placing a 0 on theClear
input will force the flip-flop into the state Q = 0. If Clear = 1, then this input will have no
effect on the NAND gates. Similarly, Preset = 0 forces the flip-flop into the state Q = 1,
while Preset = 1 has no effect. To denote that the Clear and Preset inputs are active when
their value is 0, we placed an overbar on the names in the figure. We should note that the
circuit that uses this flip-flop should not try to force both Clear and Preset to 0 at the same
time. A graphical symbol for this flip-flop is shown in Figure 7.13b.

A similar modification can be done on the edge-triggered flip-flop of Figure 7.11a, as
indicated in Figure 7.14a. Again, both Clear and Preset inputs are active low. They do not
disturb the flip-flop when they are equal to 1.

In the circuits in Figures 7.13a and 7.14a, the effect of a low signal on either the Clear
or Preset input is immediate. For example, if Clear= 0 then the flip-flop goes into the state
Q = 0 immediately, regardless of the value of the clock signal. In such a circuit, where the
Clear signal is used to clear a flip-flop without regard to the clock signal, we say that the
flip-flop has an asynchronous clear. In practice, it is often preferable to clear the flip-flops
on the active edge of the clock. Such synchronous clear can be accomplished as shown in
Figure 7.14c. The flip-flop operates normally when the Clear input is equal to 1. But if
Clear goes to 0, then on the next positive edge of the clock the flip-flop will be cleared to
0. We will examine the clearing of flip-flops in more detail in section 7.10.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 16 Page number 396 black

396 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

Q

Q

D

Clock

(a) Circuit

D Q

Q

Preset

Clear

(b) Graphical symbol

Clear

Preset

Figure 7.13 Master-slave D flip-flop with Clear and Preset.

7.4.4 Flip-Flop Timing Parameters

In section 7.3.1 we discussed timing issues related to latch circuits. In practice such issues
are equally important for circuits with flip-flops. Figure 7.15a shows a positive-edge trig-
gered flip-flop with asynchronous clear, and part b of the figure illustrates some important
timing parameters for this flip-flop. Data is loaded into the D input of the flip-flop on a
positive clock edge, and this logic value must be stable during the setup time, tsu, before
the clock edge occurs. The data must remain stable during the hold time, th, after the edge.
If the setup or hold requirements are not adhered to in a circuit that uses this flip-flop,
then it may enter an unstable condition known as metastability; we discuss this concept in
section 10.3.

As indicated in Figure 7.15, a clock-to-Q propagation delay, tcQ, is incurred
before the value of Q changes after a positive clock edge. In general, the delay may not be

January 24, 2008 14:23 vra_29532_ch07 Sheet number 17 Page number 397 black

7.4 Master-Slave and Edge-Triggered D Flip-Flops 397

Preset

Clear

D

Clock

(a) Circuit

(b) Graphical symbol

Q

Q

Clear

Preset

D Q

Q

(c) Adding a synchronous clear

D

Clock Q

Q
Clear

D Q

Q

Figure 7.14 Positive-edge-triggered D flip-flop with Clear and Preset.

exactly the same for the cases when Q changes from 1 to 0 or 0 to 1, but we assume for
simplicity that these delays are equal. For the flip-flops in a commercial chip, two values are
usually specified for tcQ, representing the maximum and minimum delays that may occur
in practice. Specifying a range of values when estimating the delays in a chip is a common
practice due to many sources of variation in delay that are caused by the chip manufacturing

January 24, 2008 14:23 vra_29532_ch07 Sheet number 18 Page number 398 black

398 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

tsu

th

tcQ

D Q

Q

Q

Clear

Clock

D

(a) D flip-flop with asynchronous clear

tsu

th

Clock

D

Q

tcQ

(b) Timing diagram

Figure 7.15 Flip-flop timing parameters.

process. In section 7.15 we provide some examples that illustrate the effects of flip-flop
timing parameters on the operation of circuits.

7.5 T Flip-Flop

The D flip-flop is a versatile storage element that can be used for many purposes. By
including some simple logic circuitry to drive its input, the D flip-flop may appear to be a
different type of storage element. An interesting modification is presented in Figure 7.16a.
This circuit uses a positive-edge-triggered D flip-flop. The feedback connections make the
input signal D equal to either the value of Q or Q under the control of the signal that is
labeled T . On each positive edge of the clock, the flip-flop may change its state Q(t). If
T = 0, then D = Q and the state will remain the same, that is, Q(t + 1) = Q(t). But if
T = 1, then D = Q and the new state will be Q(t + 1) = Q(t). Therefore, the overall
operation of the circuit is that it retains its present state if T = 0, and it reverses its present
state if T = 1.

The operation of the circuit is specified in the form of a characteristic table in Figure
7.16b. Any circuit that implements this table is called a T flip-flop. The name T flip-flop

January 24, 2008 14:23 vra_29532_ch07 Sheet number 19 Page number 399 black

7.5 T Flip-Flop 399

D Q

Q

Q

Q
T

Clock

(a) Circuit

Clock

T

Q

(d) Timing diagram

T Q

Q

T

0

1

Q t 1+()

Q t()

Q t()

(b) Characteristic table (c) Graphical symbol

Figure 7.16 T flip-flop.

derives from the behavior of the circuit, which “toggles” its state when T = 1. The toggle
feature makes the T flip-flop a useful element for building counter circuits, as we will see
in section 7.9.

7.5.1 Configurable Flip-Flops

For some circuits one type of flip-flop may lead to a more efficient implementation than a
different type of flip-flop. In general purpose chips like PLDs, the flip-flops that are provided
are sometimes configurable, which means that a flip-flop circuit can be configured to be

January 24, 2008 14:23 vra_29532_ch07 Sheet number 20 Page number 400 black

400 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

either D, T, or some other type. For example, in some PLDs the flip-flops can be configured
as either D or T types (see problems 7.6 and 7.8).

7.6 JK Flip-Flop

Another interesting circuit can be derived from Figure 7.16a. Instead of using a single
control input, T , we can use two inputs, J and K , as indicated in Figure 7.17a. For this
circuit the input D is defined as

D = JQ+ KQ

A corresponding characteristic table is given in Figure 7.17b. The circuit is called a JK
flip-flop. It combines the behaviors of SR and T flip-flops in a useful way. It behaves as
the SR flip-flop, where J = S and K = R, for all input values except J = K = 1. For the
latter case, which has to be avoided in the SR flip-flop, the JK flip-flop toggles its state like
the T flip-flop.

The JK flip-flop is a versatile circuit. It can be used for straight storage purposes, just
like the D and SR flip-flops. But it can also serve as a T flip-flop by connecting the J and
K inputs together.

D Q

Q

Q

Q

J

Clock

(a) Circuit

J Q

Q

K

0

1

Q t 1+()

Q t()

0

(b) Characteristic table (c) Graphical symbol

K

J

0

0

0 11

1 Q t()1
K

Figure 7.17 JK flip-flop.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 21 Page number 401 black

7.7 Summary of Terminology 401

7.7 Summary of Terminology

We have used the terminology that is quite common. But the reader should be aware that
different interpretations of the terms latch and flip-flop can be found in the literature. Our
terminology can be summarized as follows:

Basic latch is a feedback connection of two NOR gates or two NAND gates, which
can store one bit of information. It can be set to 1 using the S input and reset to 0
using the R input.

Gated latch is a basic latch that includes input gating and a control input signal. The
latch retains its existing state when the control input is equal to 0. Its state may be
changed when the control signal is equal to 1. In our discussion we referred to the
control input as the clock. We considered two types of gated latches:

• Gated SR latch uses the S and R inputs to set the latch to 1 or reset it to 0,
respectively.

• Gated D latch uses the D input to force the latch into a state that has the same
logic value as the D input.

A flip-flop is a storage element based on the gated latch principle, which can have its
output state changed only on the edge of the controlling clock signal. We considered
two types:

• Edge-triggered flip-flop is affected only by the input values present when the
active edge of the clock occurs.

• Master-slave flip-flop is built with two gated latches. The master stage is active
during half of the clock cycle, and the slave stage is active during the other half.
The output value of the flip-flop changes on the edge of the clock that activates
the transfer into the slave stage.

7.8 Registers

A flip-flop stores one bit of information. When a set of n flip-flops is used to store n bits of
information, such as an n-bit number, we refer to these flip-flops as a register. A common
clock is used for each flip-flop in a register, and each flip-flop operates as described in the
previous sections. The term register is merely a convenience for referring to n-bit structures
consisting of flip-flops.

7.8.1 Shift Register

In section 5.6 we explained that a given number is multiplied by 2 if its bits are shifted
one bit position to the left and a 0 is inserted as the new least-significant bit. Similarly, the
number is divided by 2 if the bits are shifted one bit-position to the right. A register that
provides the ability to shift its contents is called a shift register.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 22 Page number 402 black

402 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

D Q

QClock

D Q

Q

D Q

Q

D Q

Q

In Out

t0

t1

t2

t3

t4

t5

t6

t7

1

0

1

1

1

0

0

0

0

1

0

1

1

1

0

0

0

0

1

0

1

1

1

0

0

0

0

1

0

1

1

1

0

0

0

0

1

0

1

1

Q1 Q2 Q3 Q4 Out=In

(b) A sample sequence

(a) Circuit

Q1 Q2 Q3 Q4

Figure 7.18 A simple shift register.

Figure 7.18a shows a four-bit shift register that is used to shift its contents one bit-
position to the right. The data bits are loaded into the shift register in a serial fashion using
the In input. The contents of each flip-flop are transferred to the next flip-flop at each
positive edge of the clock. An illustration of the transfer is given in Figure 7.18b, which
shows what happens when the signal values at In during eight consecutive clock cycles are
1, 0, 1, 1, 1, 0, 0, and 0, assuming that the initial state of all flip-flops is 0.

To implement a shift register, it is necessary to use either edge-triggered or master-slave
flip-flops. The level-sensitive gated latches are not suitable, because a change in the value
of In would propagate through more than one latch during the time when the clock is equal
to 1.

7.8.2 Parallel-Access Shift Register

In computer systems it is often necessary to transfer n-bit data items. This may be done by
transmitting all bits at once using n separate wires, in which case we say that the transfer
is performed in parallel. But it is also possible to transfer all bits using a single wire, by

January 24, 2008 14:23 vra_29532_ch07 Sheet number 23 Page number 403 black

7.8 Registers 403

Q3 Q2 Q1 Q0

Clock
Parallel input

Parallel output

Shift/LoadSerial
input

D Q

Q

D Q

Q

D Q

Q

D Q

Q

Figure 7.19 Parallel-access shift register.

performing the transfer one bit at a time, in n consecutive clock cycles. We refer to this
scheme as serial transfer. To transfer an n-bit data item serially, we can use a shift register
that can be loaded with all n bits in parallel (in one clock cycle). Then during the next n
clock cycles, the contents of the register can be shifted out for serial transfer. The reverse
operation is also needed. If bits are received serially, then after n clock cycles the contents
of the register can be accessed in parallel as an n-bit item.

Figure 7.19 shows a four-bit shift register that allows the parallel access. Instead of
using the normal shift register connection, the D input of each flip-flop is connected to
two different sources. One source is the preceding flip-flop, which is needed for the shift-
register operation. The other source is the external input that corresponds to the bit that is
to be loaded into the flip-flop as a part of the parallel-load operation. The control signal
Shift/Load is used to select the mode of operation. If Shift/Load = 0, then the circuit
operates as a shift register. If Shift/Load = 1, then the parallel input data are loaded into
the register. In both cases the action takes place on the positive edge of the clock.

In Figure 7.19 we have chosen to label the flip-flops outputs as Q3, . . . , Q0 because
shift registers are often used to hold binary numbers. The contents of the register can be
accessed in parallel by observing the outputs of all flip-flops. The flip-flops can also be
accessed serially, by observing the values of Q0 during consecutive clock cycles while the

January 24, 2008 14:23 vra_29532_ch07 Sheet number 24 Page number 404 black

404 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

contents are being shifted. A circuit in which data can be loaded in series and then accessed
in parallel is called a series-to-parallel converter. Similarly, the opposite type of circuit is a
parallel-to-series converter. The circuit in Figure 7.19 can perform both of these functions.

7.9 Counters

In Chapter 5 we dealt with circuits that perform arithmetic operations. We showed how
adder/subtractor circuits can be designed, either using a simple cascaded (ripple-carry)
structure that is inexpensive but slow or using a more complex carry-lookahead structure
that is both more expensive and faster. In this section we examine special types of addition
and subtraction operations, which are used for the purpose of counting. In particular, we
want to design circuits that can increment or decrement a count by 1. Counter circuits are
used in digital systems for many purposes. They may count the number of occurrences of
certain events, generate timing intervals for control of various tasks in a system, keep track
of time elapsed between specific events, and so on.

Counters can be implemented using the adder/subtractor circuits discussed in Chap-
ter 5 and the registers discussed in section 7.8. However, since we only need to change the
contents of a counter by 1, it is not necessary to use such elaborate circuits. Instead, we
can use much simpler circuits that have a significantly lower cost. We will show how the
counter circuits can be designed using T and D flip-flops.

7.9.1 Asynchronous Counters

The simplest counter circuits can be built using T flip-flops because the toggle feature is
naturally suited for the implementation of the counting operation.

Up-Counter with T Flip-Flops
Figure 7.20a gives a three-bit counter capable of counting from 0 to 7. The clock inputs

of the three flip-flops are connected in cascade. The T input of each flip-flop is connected
to a constant 1, which means that the state of the flip-flop will be reversed (toggled) at each
positive edge of its clock. We are assuming that the purpose of this circuit is to count the
number of pulses that occur on the primary input called Clock. Thus the clock input of
the first flip-flop is connected to the Clock line. The other two flip-flops have their clock
inputs driven by the Q output of the preceding flip-flop. Therefore, they toggle their state
whenever the preceding flip-flop changes its state from Q = 1 to Q = 0, which results in a
positive edge of the Q signal.

Figure 7.20b shows a timing diagram for the counter. The value of Q0 toggles once each
clock cycle. The change takes place shortly after the positive edge of the Clock signal. The
delay is caused by the propagation delay through the flip-flop. Since the second flip-flop
is clocked by Q0, the value of Q1 changes shortly after the negative edge of the Q0 signal.
Similarly, the value of Q2 changes shortly after the negative edge of the Q1 signal. If we
look at the values Q2Q1Q0 as the count, then the timing diagram indicates that the counting
sequence is 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, and so on. This circuit is a modulo-8 counter. Because
it counts in the upward direction, we call it an up-counter.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 25 Page number 405 black

7.9 Counters 405

T Q

QClock

T Q

Q

T Q

Q

1

Q0 Q1 Q2

Clock

Q0

Q1

Q2

Count 0 1 2 3 4 5 6 7 0

(b) Timing diagram

(a) Circuit

Figure 7.20 A three-bit up-counter.

The counter in Figure 7.20a has three stages, each comprising a single flip-flop. Only
the first stage responds directly to the Clock signal; we say that this stage is synchronized
to the clock. The other two stages respond after an additional delay. For example, when
Count= 3, the next clock pulse will cause the Count to go to 4. As indicated by the arrows
in the timing diagram in Figure 7.20b, this change requires the toggling of the states of
all three flip-flops. The change in Q0 is observed only after a propagation delay from the
positive edge of Clock. The Q1 and Q2 flip-flops have not yet changed; hence for a brief
time the count is Q2Q1Q0 = 010. The change in Q1 appears after a second propagation
delay, at which point the count is 000. Finally, the change in Q2 occurs after a third delay,
at which point the stable state of the circuit is reached and the count is 100. This behavior is
similar to the rippling of carries in the ripple-carry adder circuit of Figure 5.6. The circuit
in Figure 7.20a is an asynchronous counter, or a ripple counter.

Down-Counter with T Flip-Flops
A slight modification of the circuit in Figure 7.20a is presented in Figure 7.21a. The

only difference is that in Figure 7.21a the clock inputs of the second and third flip-flops are
driven by the Q outputs of the preceding stages, rather than by the Q outputs. The timing
diagram, given in Figure 7.21b, shows that this circuit counts in the sequence 0, 7, 6, 5, 4,

January 24, 2008 14:23 vra_29532_ch07 Sheet number 26 Page number 406 black

406 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

T Q

QClock

T Q

Q

T Q

Q

1

Q0 Q1 Q2

(a) Circuit

Clock

Q0

Q1

Q2

Count 0 7 6 5 4 3 2 1 0

(b) Timing diagram

Figure 7.21 A three-bit down-counter.

3, 2, 1, 0, 7, and so on. Because it counts in the downward direction, we say that it is a
down-counter.

It is possible to combine the functionality of the circuits in Figures 7.20a and 7.21a to
form a counter that can count either up or down. Such a counter is called an up/down-
counter. We leave the derivation of this counter as an exercise for the reader (prob-
lem 7.16).

7.9.2 Synchronous Counters

The asynchronous counters in Figures 7.20a and 7.21a are simple, but not very fast. If a
counter with a larger number of bits is constructed in this manner, then the delays caused
by the cascaded clocking scheme may become too long to meet the desired performance
requirements. We can build a faster counter by clocking all flip-flops at the same time,
using the approach described below.

Synchronous Counter with T Flip-Flops
Table 7.1 shows the contents of a three-bit up-counter for eight consecutive clock

cycles, assuming that the count is initially 0. Observing the pattern of bits in each row of

January 24, 2008 14:23 vra_29532_ch07 Sheet number 27 Page number 407 black

7.9 Counters 407

Table 7.1 Derivation of the synchronous
up-counter.

0
0
1
1

0
1
0
1

0
1
2
3

0
0
1

0
1
0

4
5
6

1 17

0
0
0
0
1
1
1
1

Clock cycle

0 08 0

Q2 Q1 Q0
Q1 changes

Q2 changes

the table, it is apparent that bit Q0 changes on each clock cycle. Bit Q1 changes only when
Q0 = 1. Bit Q2 changes only when both Q1 and Q0 are equal to 1. In general, for an n-bit
up-counter, a given flip-flop changes its state only when all the preceding flip-flops are in
the state Q = 1. Therefore, if we use T flip-flops to realize the counter, then the T inputs
are defined as

T0 = 1

T1 = Q0

T2 = Q0Q1

T3 = Q0Q1Q2

·
·
·

Tn = Q0Q1 · · ·Qn−1

An example of a four-bit counter based on these expressions is given in Figure 7.22a.
Instead of using AND gates of increased size for each stage, which may lead to fan-in
problems, we use a factored arrangement, as shown in the figure. This arrangement does
not slow down the response of the counter, because all flip-flops change their states after a
propagation delay from the positive edge of the clock. Note that a change in the value of
Q0 may have to propagate through several AND gates to reach the flip-flops in the higher
stages of the counter, which requires a certain amount of time. This time must not exceed
the clock period. Actually, it must be less than the clock period minus the setup time for
the flip-flops.

Figure 7.22b gives a timing diagram. It shows that the circuit behaves as a modulo-16
up-counter. Because all changes take place with the same delay after the active edge of the
Clock signal, the circuit is called a synchronous counter.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 28 Page number 408 black

408 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

T Q

QClock

T Q

Q

T Q

Q

1
Q0 Q1 Q2

(a) Circuit

Clock

Q0

Q1

Q2

Count 0 1 2 3 5 9 12 14 0

(b) Timing diagram

T Q

Q

Q3

Q3

4 6 87 10 11 13 15 1

Figure 7.22 A four-bit synchronous up-counter.

Enable and Clear Capability
The counters in Figures 7.20 through 7.22 change their contents in response to each

clock pulse. Often it is desirable to be able to inhibit counting, so that the count remains
in its present state. This may be accomplished by including an Enable control signal, as
indicated in Figure 7.23. The circuit is the counter of Figure 7.22, where the Enable signal
controls directly the T input of the first flip-flop. Connecting the Enable also to the AND-
gate chain means that if Enable = 0, then all T inputs will be equal to 0. If Enable = 1,
then the counter operates as explained previously.

In many applications it is necessary to start with the count equal to zero. This is easily
achieved if the flip-flops can be cleared, as explained in section 7.4.3. The clear inputs on
all flip-flops can be tied together and driven by a Clear control input.

Synchronous Counter with D Flip-Flops
While the toggle feature makes T flip-flops a natural choice for the implementation

of counters, it is also possible to build counters using other types of flip-flops. The JK

January 24, 2008 14:23 vra_29532_ch07 Sheet number 29 Page number 409 black

7.9 Counters 409

T Q

QClock

T Q

Q

Enable

Clear

T Q

Q

T Q

Q

Figure 7.23 Inclusion of Enable and Clear capability.

flip-flops can be used in exactly the same way as the T flip-flops because if the J and K
inputs are tied together, a JK flip-flop becomes a T flip-flop. We will now consider using D
flip-flops for this purpose.

It is not obvious how D flip-flops can be used to implement a counter. We will present
a formal method for deriving such circuits in Chapter 8. Here we will present a circuit
structure that meets the requirements but will leave the derivation for Chapter 8. Figure
7.24 gives a four-bit up-counter that counts in the sequence 0, 1, 2, . . . , 14, 15, 0, 1,
and so on. The count is indicated by the flip-flop outputs Q3Q2Q1Q0. If we assume that
Enable = 1, then the D inputs of the flip-flops are defined by the expressions

D0 = Q0 = 1⊕ Q0

D1 = Q1 ⊕ Q0

D2 = Q2 ⊕ Q1Q0

D3 = Q3 ⊕ Q2Q1Q0

For a larger counter the ith stage is defined by

Di = Qi ⊕ Qi−1Qi−2 · · ·Q1Q0

We will show how to derive these equations in Chapter 8.
We have included the Enable control signal so that the counter counts the clock pulses

only if Enable = 1. In effect, the above equations are modified to implement the circuit in
the figure as follows

D0 = Q0 ⊕ Enable

D1 = Q1 ⊕ Q0 · Enable
D2 = Q2 ⊕ Q1 · Q0 · Enable
D3 = Q3 ⊕ Q2 · Q1 · Q0 · Enable

The operation of the counter is based on our observation for Table 7.1 that the state of the
flip-flop in stage i changes only if all preceding flip-flops are in the state Q = 1. This
makes the output of the AND gate that feeds stage i equal to 1, which causes the output of
the XOR gate connected to Di to be equal to Qi. Otherwise, the output of the XOR gate
provides Di = Qi, and the flip-flop remains in the same state. This resembles the carry
propagation in a carry-lookahead adder circuit (see section 5.4); hence the AND-gate chain

January 24, 2008 14:23 vra_29532_ch07 Sheet number 30 Page number 410 black

410 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

Clock

Enable D Q

Q

D Q

Q

D Q

Q

D Q

Q

Q0

Q1

Q2

Q3

Output
carry

Figure 7.24 A four-bit counter with D flip-flops.

can be thought of as the carry chain. Even though the circuit is only a four-bit counter, we
have included an extra AND gate that produces the “output carry.” This signal makes it
easy to concatenate two such four-bit counters to create an eight-bit counter.

Finally, the reader should note that the counter in Figure 7.24 is essentially the same
as the circuit in Figure 7.23. We showed in Figure 7.16a that a T flip-flop can be formed
from a D flip-flop by providing the extra gating that gives

D = QT + QT

= Q⊕ T

January 24, 2008 14:23 vra_29532_ch07 Sheet number 31 Page number 411 black

7.10 Reset Synchronization 411

Thus in each stage in Figure 7.24, the D flip-flop and the associated XOR gate implement
the functionality of a T flip-flop.

7.9.3 Counters with Parallel Load

Often it is necessary to start counting with the initial count being equal to 0. This state can
be achieved by using the capability to clear the flip-flops as indicated in Figure 7.23. But
sometimes it is desirable to start with a different count. To allow this mode of operation,
a counter circuit must have some inputs through which the initial count can be loaded.
Using the Clear and Preset inputs for this purpose is a possibility, but a better approach is
discussed below.

The circuit of Figure 7.24 can be modified to provide the parallel-load capability as
shown in Figure 7.25. A two-input multiplexer is inserted before eachD input. One input to
the multiplexer is used to provide the normal counting operation. The other input is a data
bit that can be loaded directly into the flip-flop. A control input, Load, is used to choose the
mode of operation. The circuit counts when Load = 0. A new initial value, D3D2D1D0, is
loaded into the counter when Load = 1.

7.10 Reset Synchronization

We have already mentioned that it is important to be able to clear, or reset, the contents
of a counter prior to commencing a counting operation. This can be done using the clear
capability of the individual flip-flops. But we may also be interested in resetting the count to
0 during the normal counting process. An n-bit up-counter functions naturally as a modulo-
2n counter. Suppose that we wish to have a counter that counts modulo some base that is
not a power of 2. For example, we may want to design a modulo-6 counter, for which the
counting sequence is 0, 1, 2, 3, 4, 5, 0, 1, and so on.

The most straightforward approach is to recognize when the count reaches 5 and then
reset the counter. An AND gate can be used to detect the occurrence of the count of 5.
Actually, it is sufficient to ascertain that Q2 = Q0 = 1, which is true only for 5 in our
desired counting sequence. A circuit based on this approach is given in Figure 7.26a. It
uses a three-bit synchronous counter of the type depicted in Figure 7.25. The parallel-load
feature of the counter is used to reset its contents when the count reaches 5. The resetting
action takes place at the positive clock edge after the count has reached 5. It involves
loading D2D1D0 = 000 into the flip-flops. As seen in the timing diagram in Figure 7.26b,
the desired counting sequence is achieved, with each value of the count being established
for one full clock cycle. Because the counter is reset on the active edge of the clock, we
say that this type of counter has a synchronous reset.

Consider now the possibility of using the clear feature of individual flip-flops, rather
than the parallel-load approach. The circuit in Figure 7.27a illustrates one possibility. It
uses the counter structure of Figure 7.22a. Since the clear inputs are active when low, a

January 24, 2008 14:23 vra_29532_ch07 Sheet number 32 Page number 412 black

412 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

Enable D Q

Q

Q0

D Q

Q

Q1

D Q

Q

Q2

D Q

Q

Q3

D0

D1

D2

D3

Load

Clock

Output
carry

0

1

0

1

0

1

0

1

Figure 7.25 A counter with parallel-load capability.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 33 Page number 413 black

7.10 Reset Synchronization 413

Enable

Q0

Q1

Q2

D0

D1

D2

Load

Clock

1

0

0

0

Clock

0 1 2 3 4 5 0 1

Clock

Count

Q0

Q1

Q2

(a) Circuit

(b) Timing diagram

Figure 7.26 A modulo-6 counter with synchronous reset.

NAND gate is used to detect the occurrence of the count of 5 and cause the clearing of all
three flip-flops. Conceptually, this seems to work fine, but closer examination reveals a
potential problem. The timing diagram for this circuit is given in Figure 7.27b. It shows a
difficulty that arises when the count is equal to 5. As soon as the count reaches this value,
the NAND gate triggers the resetting action. The flip-flops are cleared to 0 a short time after
the NAND gate has detected the count of 5. This time depends on the gate delays in the
circuit, but not on the clock. Therefore, signal values Q2Q1Q0 = 101 are maintained for a
time that is much less than a clock cycle. Depending on a particular application of such a
counter, this may be adequate, but it may also be completely unacceptable. For example, if
the counter is used in a digital system where all operations in the system are synchronized
by the same clock, then this narrow pulse denoting Count = 5 would not be seen by the

January 24, 2008 14:23 vra_29532_ch07 Sheet number 34 Page number 414 black

414 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

T Q

QClock

T Q

Q

T Q

Q

1
Q0 Q1 Q2

(a) Circuit

Clock

Q0

Q1

Q2

Count

(b) Timing diagram

0 1 2 3 4 5 0 1 2

Figure 7.27 A modulo-6 counter with asynchronous reset.

rest of the system. To solve this problem, we could try to use a modulo-7 counter instead,
assuming that the system would ignore the short pulse that denotes the count of 6. This is
not a good way of designing circuits, because undesirable pulses often cause unforeseen
difficulties in practice. The approach employed in Figure 7.27a is said to use asynchronous
reset.

The timing diagrams in Figures 7.26b and 7.27b suggest that synchronous reset is a
better choice than asynchronous reset. The same observation is true if the natural counting
sequence has to be broken by loading some value other than zero. The new value of the
count can be established cleanly using the parallel-load feature. The alternative of using
the clear and preset capability of individual flip-flops to set their states to reflect the desired
count has the same problems as discussed in conjunction with the asynchronous reset.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 35 Page number 415 black

7.11 Other Types of Counters 415

7.11 Other Types of Counters

In this section we discuss three other types of counters that can be found in practical
applications. The first uses the decimal counting sequence, and the other two generate
sequences of codes that do not represent binary numbers.

7.11.1 BCD Counter

Binary-coded-decimal (BCD) counters can be designed using the approach explained in
section 7.10. A two-digit BCD counter is presented in Figure 7.28. It consists of two
modulo-10 counters, one for each BCD digit, which we implemented using the parallel-
load four-bit counter of Figure 7.25. Note that in a modulo-10 counter it is necessary to
reset the four flip-flops after the count of 9 has been obtained. Thus the Load input to each

Enable

Q0

Q1

Q2

D0

D1

D2

Load

Clock

1

0

0

0

Clock

Q30 D3

Enable

Q0

Q1

Q2

D0

D1

D2

Load

Clock

0

0

0

Q30 D3

BCD0

BCD1

Clear

Figure 7.28 A two-digit BCD counter.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 36 Page number 416 black

416 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

stage is equal to 1 when Q3 = Q0 = 1, which causes 0s to be loaded into the flip-flops at
the next positive edge of the clock signal. Whenever the count in stage 0, BCD0, reaches 9
it is necessary to enable the second stage so that it will be incremented when the next clock
pulse arrives. This is accomplished by keeping the Enable signal for BCD1 low at all times
except when BCD0 = 9.

In practice, it has to be possible to clear the contents of the counter by activating some
control signal. Two OR gates are included in the circuit for this purpose. The control input
Clear can be used to load 0s into the counter. Observe that in this case Clear is active when
high. VHDL code for a two-digit BCD counter is given in Figure 7.77.

In any digital system there is usually one or more clock signals used to drive all
synchronous circuitry. In the preceding counter, as well as in all counters presented in the
previous figures, we have assumed that the objective is to count the number of clock pulses.
Of course, these counters can be used to count the number of pulses in any signal that may
be used in place of the clock signal.

7.11.2 Ring Counter

In the preceding counters the count is indicated by the state of the flip-flops in the counter.
In all cases the count is a binary number. Using such counters, if an action is to be taken
as a result of a particular count, then it is necessary to detect the occurrence of this count.
This may be done using AND gates, as illustrated in Figures 7.26 through 7.28.

It is possible to devise a counterlike circuit in which each flip-flop reaches the state
Qi = 1 for exactly one count, while for all other counts Qi = 0. Then Qi indicates directly
an occurrence of the corresponding count. Actually, since this does not represent binary
numbers, it is better to say that the outputs of the flips-flops represent a code. Such a circuit
can be constructed from a simple shift register, as indicated in Figure 7.29a. The Q output
of the last stage in the shift register is fed back as the input to the first stage, which creates
a ringlike structure. If a single 1 is injected into the ring, this 1 will be shifted through
the ring at successive clock cycles. For example, in a four-bit structure, the possible codes
Q0Q1Q2Q3 will be 1000, 0100, 0010, and 0001. As we said in section 6.2, such encoding,
where there is a single 1 and the rest of the code variables are 0, is called a one-hot code.

The circuit in Figure 7.29a is referred to as a ring counter. Its operation has to be
initialized by injecting a 1 into the first stage. This is achieved by using the Start control
signal, which presets the left-most flip-flop to 1 and clears the others to 0. We assume that
all changes in the value of the Start signal occur shortly after an active clock edge so that
the flip-flop timing parameters are not violated.

The circuit in Figure 7.29a can be used to build a ring counter with any number of
bits, n. For the specific case of n = 4, part (b) of the figure shows how a ring counter
can be constructed using a two-bit up-counter and a decoder. When Start is set to 1, the
counter is reset to 00. After Start changes back to 0, the counter increments its value in the
normal way. The 2-to-4 decoder, described in section 6.2, changes the counter output into
a one-hot code. For the count values 00, 01, 10, 11, 00, and so on, the decoder produces
Q0Q1Q2Q3 = 1000, 0100, 0010, 0001, 1000, and so on. This circuit structure can be used
for larger ring counters, as long as the number of bits is a power of two. We will give
an example of a larger circuit that uses the ring counter in Figure 7.29b as a subcircuit in
section 7.14.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 37 Page number 417 black

7.11 Other Types of Counters 417

D Q

Q

Clock

D Q

Q

D Q

Q

Start

Q0 Q1 Q
n 1–

Clock

Q0

Start

Two-bit up-counter

w0 En

y0

w1

y1 y2 y3

1

Q1 Q2 Q3

2-to-4 decoder

Q1 Q0

(a) An n-bit ring counter

Clock

Clear

(b) A four-bit ring counter

Figure 7.29 Ring counter.

7.11.3 Johnson Counter

An interesting variation of the ring counter is obtained if, instead of the Q output, we take
the Q output of the last stage and feed it back to the first stage, as shown in Figure 7.30. This
circuit is known as a Johnson counter. An n-bit counter of this type generates a counting
sequence of length 2n. For example, a four-bit counter produces the sequence 0000, 1000,
1100, 1110, 1111, 0111, 0011, 0001, 0000, and so on. Note that in this sequence, only a
single bit has a different value for two consecutive codes.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 38 Page number 418 black

418 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

D Q

Q

Clock

D Q

Q

D Q

Q

Q0 Q1 Q
n 1–

Reset

Figure 7.30 Johnson counter.

To initialize the operation of the Johnson counter, it is necessary to reset all flip-flops,
as shown in the figure. Observe that neither the Johnson nor the ring counter will generate
the desired counting sequence if not initialized properly.

7.11.4 Remarks on Counter Design

The sequential circuits presented in this chapter, namely, registers and counters, have a
regular structure that allows the circuits to be designed using an intuitive approach. In
Chapter 8 we will present a more formal approach to design of sequential circuits and show
how the circuits presented in this chapter can be derived using this approach.

7.12 Using Storage Elements with CAD Tools

This section shows how circuits with storage elements can be designed using either schematic
capture or VHDL code.

7.12.1 Including Storage Elements in Schematics

One way to create a circuit is to draw a schematic that builds latches and flip-flops from
logic gates. Because these storage elements are used in many applications, most CAD
systems provide them as prebuilt modules. Figure 7.31 shows a schematic created with
a schematic capture tool, which includes three types of flip-flops that are imported from
a library provided as part of the CAD system. The top element is a gated D latch, the
middle element is a positive-edge-triggered D flip-flop, and the bottom one is a positive-
edge-triggered T flip-flop. The D and T flip-flops have asynchronous, active-low clear and

January 24, 2008 14:23 vra_29532_ch07 Sheet number 39 Page number 419 black

7.12 Using Storage Elements with CAD Tools 419

Figure 7.31 Three types of storage elements in a schematic.

Data

Clock

Latch

Figure 7.32 Gated D latch generated by CAD tools.

preset inputs. If these inputs are not connected in a schematic, then the CAD tool makes
them inactive by assigning the default value of 1 to them.

When the gated D latch is synthesized for implementation in a chip, the CAD tool may
not generate the cross-coupled NOR or NAND gates shown in section 7.2. In some chips,
such as a CPLD, theAND-OR circuit depicted in Figure 7.32 may be preferable. This circuit
is functionally equivalent to the cross-coupled version in section 7.2. The sum-of-products
circuit is used because it is more suitable for implementation in a CPLD macrocell. One
aspect of this circuit should be mentioned. From the functional point of view, it appears
that the circuit can be simplified by removing the AND gate with the inputsData and Latch.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 40 Page number 420 black

420 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

Without this gate, the top AND gate sets the value stored in the latch when the clock is 1,
and the bottom AND gate maintains the stored value when the clock is 0. But without this
gate, the circuit has a timing problem known as a static hazard. A detailed explanation of
hazards will be given in section 9.6.

The circuit in Figure 7.31 can be implemented in a CPLD as shown in Figure 7.33.
The D and T flip-flops are realized using the flip-flops on the chip that are configurable as

D Q

D Q

D Q

T Q

Data

Latch

Flip-flop

Toggle

Clock

0

1

1

1

0

0

0

0

1

1

PAL-like block

Interconnection wires

(Other macrocells not shown)

Figure 7.33 Implementation of the schematic in Figure 7.31 in a CPLD.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 41 Page number 421 black

7.12 Using Storage Elements with CAD Tools 421

Figure 7.34 Timing simulation for the storage elements in Figure 7.31.

either D or T types. The figure depicts in blue the gates and wires needed to implement the
circuit in Figure 7.31.

The results of a timing simulation for the implementation in Figure 7.33 are given in
Figure 7.34. The Latch signal, which is the output of the gated D latch, implemented as
indicated in Figure 7.32, follows the Data input whenever the Clock signal is 1. Because
of propagation delays in the chip, the Latch signal is delayed in time with respect to the
Data signal. Since the Flipflop signal is the output of the D flip-flop, it changes only after
a positive clock edge. Similarly, the output of the T flip-flop, called Toggle in the figure,
toggles when Data = 1 and a positive clock edge occurs. The timing diagram illustrates
the delay from when the positive clock edge occurs at the input pin of the chip until a
change in the flip-flop output appears at the output pin of the chip. This time is called the
clock-to-output time, tco.

7.12.2 Using VHDL Constructs for Storage Elements

In section 6.6 we described a number of VHDL assignment statements. The IF and CASE
statements were introduced as two types of sequential assignment statements. In this section
we show how these statements can be used to describe storage elements.

Figure 6.43, which is repeated in Figure 7.35, gives an example of VHDL code that
has implied memory. Because the code does not specify what value the AeqB signal should
have when the condition for the IF statement is not satisfied, the semantics specify that in
this case AeqB should retain its current value. The implied memory is the key concept used
for describing sequential circuit elements, which we will illustrate using several examples.

Example 7.1CODE FOR A GATED D LATCH The code in Figure 7.36 defines an entity named latch,
which has the inputsD and Clk and the output Q. The process uses an if-then-else statement
to define the value of the Q output. When Clk = 1, Q takes the value of D. For the case
when Clk is not 1, the code does not specify what value Q should have. Hence Q will retain
its current value in this case, and the code describes a gated D latch. The process sensitivity
list includes both Clk and D because these signals can cause a change in the value of the Q
output.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 42 Page number 422 black

422 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY implied IS
PORT (A, B : IN STD LOGIC ;

AeqB : OUT STD LOGIC) ;
END implied ;

ARCHITECTURE Behavior OF implied IS
BEGIN

PROCESS (A, B)
BEGIN

IF A � B THEN
AeqB <� ’1’ ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.35 The code from Figure 6.43, illustrating implied
memory.

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY latch IS
PORT (D, Clk : IN STD LOGIC ;

Q : OUT STD LOGIC) ;
END latch ;

ARCHITECTURE Behavior OF latch IS
BEGIN

PROCESS (D, Clk)
BEGIN

IF Clk � ’1’ THEN
Q <� D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.36 Code for a gated D latch.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 43 Page number 423 black

7.12 Using Storage Elements with CAD Tools 423

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY flipflop IS
PORT (D, Clock : IN STD LOGIC ;

Q : OUT STD LOGIC) ;
END flipflop ;

ARCHITECTURE Behavior OF flipflop IS
BEGIN

PROCESS (Clock)
BEGIN

IF Clock’EVENT AND Clock � ’1’ THEN
Q <� D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.37 Code for a D flip-flop.

Example 7.2CODE FOR A D FLIP-FLOP Figure 7.37 defines an entity namedflipflop, which is a positive-
edge-triggered D flip-flop. The code is identical to Figure 7.36 with two exceptions. First,
the process sensitivity list contains only the clock signal because it is the only signal that can
cause a change in the Q output. Second, the if-then-else statement uses a different condition
from the one used in the latch. The syntax Clock’EVENT uses a VHDL construct called
an attribute. An attribute refers to a property of an object, such as a signal. In this case the
’EVENT attribute refers to any change in the Clock signal. Combining the Clock’EVENT
condition with the condition Clock = 1 means that “the value of the Clock signal has just
changed, and the value is now equal to 1.” Hence the condition refers to a positive clock
edge. Because the Q output changes only as a result of a positive clock edge, the code
describes a positive-edge-triggered D flip-flop.

Example 7.3ALTERNATIVE CODE FOR A D FLIP-FLOP The process in Figure 7.38 uses a different
syntax from that in Figure 7.37 to describe a D flip-flop. It uses the statement WAIT UNTIL
Clock’EVENT AND Clock = ’1’. This statement has the same effect as the IF statement
in Figure 7.37. A process that uses a WAIT UNTIL statement is a special case because
the sensitivity list is omitted. The WAIT UNTIL construct implies that the sensitivity list
includes only the clock signal. In our use of VHDL, which is for synthesis of circuits, a
process can use a WAIT UNTIL statement only if this is the first statement in the process.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 44 Page number 424 black

424 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

LIBRARY ieee;
USE ieee.std logic 1164.all;

ENTITY flipflop IS
PORT (D, Clock : IN STD LOGIC ;

Q : OUT STD LOGIC) ;
END flipflop ;

ARCHITECTURE Behavior OF flipflop IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL Clock’EVENT AND Clock � ’1’ ;
Q <� D ;

END PROCESS ;
END Behavior ;

Figure 7.38 Equivalent code to Figure 7.37, using a WAIT UNTIL
statement.

Actually, the attribute ’EVENT is redundant in the WAIT UNTIL statement. We can
write simply

WAIT UNTIL Clock = ’1’;

which also implies that the action occurs when theClock signal becomes equal to 1, namely,
at the edge when the signal changes from 0 to 1. However, some CAD synthesis tools require
the inclusion of the ’EVENT attribute, which is the reason why we use this style in the book.

In general, whenever it is desired to include in VHDL code flip-flops that are clocked
by the positive clock edge, the condition Clock’EVENT AND Clock ’1’ is used. When
this condition appears in an IF statement, any signals that are assigned values inside the
IF statement are implemented as the outputs of flip-flops. When the condition is used
in a WAIT UNTIL statement, any signal that is assigned a value in the entire process is
implemented as the output of a flip-flop.

The differences in using the IF and WAIT UNTIL statements are discussed in more
detail in Appendix A, section A.10.3.

Example 7.4 ASYNCHRONOUS CLEAR Figure 7.39 gives a process that is similar to the one in Figure
7.37. It describes a D flip-flop with an asynchronous active-low reset (clear) input. When
Resetn, the reset input, is equal to 0, the flip-flop’s Q output is set to 0.

Example 7.5 SYNCHRONOUS CLEAR Figure 7.40 shows how a D flip-flop with a synchronous reset
input can be described. In this case the reset signal is acted upon only when a positive
clock edge arrives. The code generates the circuit in Figure 7.14c, which has an AND gate
connected to the flip-flop’s D input.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 45 Page number 425 black

7.12 Using Storage Elements with CAD Tools 425

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY flipflop IS
PORT (D, Resetn, Clock : IN STD LOGIC ;

Q : OUT STD LOGIC) ;
END flipflop ;

ARCHITECTURE Behavior OF flipflop IS
BEGIN

PROCESS (Resetn, Clock)
BEGIN

IF Resetn � ’0’ THEN
Q <� ’0’ ;

ELSIF Clock’EVENT AND Clock � ’1’ THEN
Q <� D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.39 D flip-flop with asynchronous reset.

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY flipflop IS
PORT (D, Resetn, Clock : IN STD LOGIC ;

Q : OUT STD LOGIC) ;
END flipflop ;

ARCHITECTURE Behavior OF flipflop IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL Clock’EVENT AND Clock � ’1’ ;
IF Resetn � ’0’ THEN

Q <� ’0’ ;
ELSE

Q <� D ;
END IF ;

END PROCESS ;
END Behavior ;

Figure 7.40 D flip-flop with synchronous reset.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 46 Page number 426 black

426 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

Figure A.33a in Appendix A shows how the same circuit is specified by using an IF
statement instead of WAIT UNTIL.

7.13 Using Registers and Counters with CADTools

In this section we show how registers and counters can be included in circuits designed
with the aid of CAD tools. Examples are given using both schematic capture and VHDL
code.

7.13.1 Including Registers and Counters in Schematics

In section 5.5.1 we explained that a CAD system usually includes libraries of prebuilt
subcircuits. We introduced the library of parameterized modules (LPM) and used the
adder/subtractor module, lpm_add_sub, as an example. The LPM includes modules that
constitute flip-flops, registers, counters, and many other useful circuits. Figure 7.41 shows
a symbol that represents the lpm_ ff module. This module is a register with one or more
positive-edge-triggered flip-flops that can be of either D or T type. The module has param-
eters that allow the number of flip-flops and flip-flop type to be chosen. In this case we
chose to have four D flip-flops. The tutorial in Appendix C explains how the configuration
of LPM modules is done.

The D inputs to the four flip-flops, called data on the graphical symbol, are connected
to the four-bit input signalData[3..0]. The module’s asynchronous active-high reset (clear)
input, aclr, is shown in the schematic. The flip-flop outputs, q, are attached to the output
symbol labeled Q[3..0].

In section 7.3 we said that a useful application of D flip-flops is to hold the results of an
arithmetic computation, such as the output from an adder circuit. An example is given in
Figure 7.42, which uses two LPM modules, lpm_add_sub and lpm_ ff. The lpm_add_sub
module was described in section 5.5.1. Its parameters, which are not shown in Figure 7.42,

Figure 7.41 The lpm_ff parameterized flip-flop module.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 47 Page number 427 black

7.13 Using Registers and Counters with CAD Tools 427

Figure 7.42 An adder with registered feedback.

are set to configure the module as a four-bit adder circuit. The adder’s four-bit data input
dataa is driven by the Data[3..0] input signal. The sum bits, result, are connected to the
data inputs of the lpm_ ff, which is configured as a four-bit D register with asynchronous
clear. The register generates the output of the circuit, Q[3..0], which appears on the left
side of the schematic. This signal is fed back to the datab input of the adder. The sum bits
from the adder are also provided as an output of the circuit, Sum[3..0], for ease of reference
in the discussion that follows. If the register is first cleared to 0000, then the circuit can be
used to add the binary numbers on the Data[3..0] input to a sum that is being accumulated
in the register, if a new number is applied to the input during each clock cycle. A circuit
that performs this function is referred to as an accumulator circuit.

We synthesized a circuit from the schematic and implemented the four-bit adder using
the carry-lookahead structure. A timing simulation for the circuit appears in Figure 7.43.
After resetting the circuit, the Data input is set to 0001. The adder produces the sum
0000 + 0001 = 0001, which is then clocked into the register at the 60 ns point in time.
After the tco delay, Q[3..0] becomes 0001, and this causes the adder to produce the new sum
0001+0001 = 0010. The time needed to generate the new sum is determined by the speed
of the adder circuit, which produces the sum after 12.5 ns in this case. The new sum does
not appear at the Q output until after the next positive clock edge, at 100 ns. The adder then
produces 0011 as the next sum. When Sum changes from 0010 to 0011, some oscillations
appear in the timing diagram, caused by the propagation of carry signals through the adder
circuit. These oscillations are not seen at the Q output, because Sum is stable by the time the
next positive clock edge occurs. Moving forward to the 180 ns point in time, Sum= 0100,
and this value is clocked into the register. The adder produces the new sum 0101. Then at
200 ns Data is changed to 0010, which causes the sum to change to 0100+ 0010 = 0110.
At the next positive clock edge, Q is set to 0110; the value Sum = 0101 that was present
temporarily in the circuit is not observed at the Q output. The circuit continues to add 0010
to the Q output at each successive positive clock edge.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 48 Page number 428 black

428 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

Figure 7.43 Timing simulation of the circuit from Figure 7.42.

Having simulated the behavior of the circuit, we should consider whether or not we
can conclude with some certainty that the circuit works properly. Ideally, it is prudent to
test all possible combinations of a circuit’s inputs before declaring that it works as desired.
However, in practice such testing is often not feasible because of the number of input
combinations that exist. For the circuit in Figure 7.42, we could verify that a correct sum
is produced by the adder, and we could also check that each of the four flip-flops in the
register properly stores either 0 or 1. We will discuss issues associated with the testing of
circuits in Chapter 11.

For the circuit in Figure 7.42 to work properly, the following timing constraints must
be met. When the register is clocked by a positive clock edge, a change of signal value
at the register’s output must propagate through the feedback path to the datab input of the
adder. The adder then produces a new sum, which must propagate to the data input of the
register. For the chip used to implement the circuit, the total delay incurred is 14 ns. The
delay can be broken down as follows: It takes 2 ns from when the register is clocked until
a change in its output reaches the datab input of the adder. The adder produces a new sum
in 8 ns, and it takes 4 ns for the sum to propagate to the register’s data input. In Figure 7.43
the clock period is 40 ns. Hence after the new sum arrives at the data input of the register,
there remain 40 − 14 = 26 ns until the next positive clock edge occurs. The data input
must be stable for the amount of the setup time, tsu = 3 ns, before the clock edge. Hence
we have 26− 3 = 23 ns to spare. The clock period can be decreased by as much as 23 ns,
and the circuit will still work. But if the clock period is less than 40 − 23 = 17 ns, then
the circuit will not function properly. Of course, if a different chip were used to implement
the circuit, then different timing results would be produced. CAD systems provide tools
that can automatically determine the minimum allowable clock period for which a circuit
will work correctly. The tutorial in Appendix C shows how this is done using the tools that
accompany the book.

7.13.2 Registers and Counters in VHDL Code

The predefined subcircuits in the LPM library can be instantiated in VHDL code. Figure
7.44 instantiates the lpm_shiftreg module, which is an n-bit shift register. The module’s

January 24, 2008 14:23 vra_29532_ch07 Sheet number 49 Page number 429 black

7.13 Using Registers and Counters with CAD Tools 429

LIBRARY ieee ;
USE ieee.std logic 1164.all ;
LIBRARY lpm ;
USE lpm.lpm components.all ;

ENTITY shift IS
PORT (Clock : IN STD LOGIC ;

Reset : IN STD LOGIC ;
Shiftin, Load : IN STD LOGIC ;
R : IN STD LOGIC VECTOR(3 DOWNTO 0) ;
Q : OUT STD LOGIC VECTOR(3 DOWNTO 0)) ;

END shift ;

ARCHITECTURE Structure OF shift IS
BEGIN

instance: lpm shiftreg
GENERIC MAP (LPM WIDTH �> 4, LPM DIRECTION �> ”RIGHT”)
PORT MAP (data �> R, clock �> Clock, aclr �> Reset,

load �> Load, shiftin �> Shiftin, q �> Q) ;
END Structure ;

Figure 7.44 Instantiation of the lpm_shiftreg module.

parameters are set using the GENERIC MAP construct, as shown. The GENERIC MAP
construct is similar to the PORT MAP construct that is used to assign signal names to the
ports of a subcircuit. GENERIC MAP is used to assign values to the parameters of the
subcircuit. The number of flip-flops in the shift register is set to 4 using the parameter
LPM_WIDTH => 4. The module can be configured to shift either left or right. The
parameter LPM_DIRECTION => RIGHT sets the shift direction to be from the left to
the right. The code uses the module’s asynchronous active-high clear input, aclr, and the
active-high parallel-load input, load, which allows the shift register to be loaded with the
parallel data on the module’s data input. When shifting takes place, the value on the shiftin
input is shifted into the left-most flip-flop and the bit shifted out appears on the right-most
bit of the q parallel output. The code uses the named association, described in section 5.5.2,
to connect the input and output signals of the shift entity to the ports of the module. For
example, the R input signal is connected to the module’s data port. When translated into a
circuit, the lpm_shiftreg has the structure shown in Figure 7.19.

Predefined modules also exist for various types of counters, which are commonly
needed in logic circuits. An example is the lpm_counter module, which is a variable-width
counter with parallel-load inputs.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 50 Page number 430 black

430 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY reg8 IS
PORT (D : IN STD LOGIC VECTOR(7 DOWNTO 0) ;

Resetn, Clock : IN STD LOGIC ;
Q : OUT STD LOGIC VECTOR(7 DOWNTO 0)) ;

END reg8 ;

ARCHITECTURE Behavior OF reg8 IS
BEGIN

PROCESS (Resetn, Clock)
BEGIN

IF Resetn � ’0’ THEN
Q <� ”00000000” ;

ELSIF Clock’EVENT AND Clock � ’1’ THEN
Q <� D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.45 Code for an eight-bit register with asynchronous clear.

7.13.3 UsingVHDLSequential Statements forRegisters and
Counters

Rather than instantiating predefined subcircuits for registers, shift registers, counters, and
the like, the circuits can be described in VHDL using sequential statements. Figure 7.39
gives code for a D flip-flop. A straightforward way to describe an n-bit register is to write
hierarchical code that includes n instances of the D flip-flop subcircuit. A simpler approach
is shown in Figure 7.45. It uses the same code as in Figure 7.39 except that the D input
and Q output are defined as multibit signals. The code represents an eight-bit register with
asynchronous clear.

Example 7.6 AN N-BIT REGISTER Since registers of different sizes are often needed in logic circuits,
it is advantageous to define a register entity for which the number of flip-flops can be
easily changed. Figure 7.46 shows how the code in Figure 7.45 can be extended to include
a parameter that sets the number of flip-flops. The parameter is an integer, N , which is
defined using the VHDL construct called GENERIC. The value of N is set to 16 using the
:= assignment operator. By changing this parameter, the code can represent a register of
any size. If the register is declared as a component, then it can be used as a subcircuit in
other code. That code can either use the default value of the GENERIC parameter or else
specify a different parameter using the GENERIC MAP construct. An example showing
how GENERIC MAP is used is shown in Figure 7.44.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 51 Page number 431 black

7.13 Using Registers and Counters with CAD Tools 431

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY regn IS
GENERIC (N : INTEGER :� 16) ;
PORT (D : IN STD LOGIC VECTOR(N−1 DOWNTO 0) ;

Resetn, Clock : IN STD LOGIC ;
Q : OUT STD LOGIC VECTOR(N−1 DOWNTO 0)) ;

END regn ;

ARCHITECTURE Behavior OF regn IS
BEGIN

PROCESS (Resetn, Clock)
BEGIN

IF Resetn � ’0’ THEN
Q <� (OTHERS �> ’0’) ;

ELSIF Clock’EVENT AND Clock � ’1’ THEN
Q <� D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.46 Code for an n-bit register with asynchronous clear.

TheD and Q signals in Figure 7.46 are defined in terms of N . The statement that resets
all the bits of Q to 0 uses the odd-looking syntax Q <= (OTHERS=> ’0’). For the default
value ofN = 16, this statement is equivalent to the statement Q <= ”0000000000000000”.
The (OTHERS=> ’0’) syntax results in a ’0’digit being assigned to each bit of Q, regardless
of how many bits Q has. It allows the code to be used for any value of N , rather than only
for N = 16.

Example 7.7A FOUR-BIT SHIFT REGISTER Assume that we wish to write VHDL code that represents
the four-bit shift register in Figure 7.19. One approach is to write hierarchical code that
uses four subcircuits. Each subcircuit consists of a D flip-flop with a 2-to-1 multiplexer
connected to the D input. Figure 7.47 defines the entity named muxdff, which represents
this subcircuit. The two data inputs are named D0 and D1, and they are selected using the
Sel input. The process statement specifies that on the positive clock edge if Sel = 0, then
Q is assigned the value of D0; otherwise, Q is assigned the value of D1.

Figure 7.48 defines the four-bit shift register. The statement labeled Stage3 instantiates
the left-most flip-flop, which has the output Q3, and the statement labeled Stage0 instantiates
the right-most flip-flop, Q0. When L= 1, it is loaded in parallel from the R input, and when
L = 0, shifting takes place in the left to right direction. Serial data is shifted into the
most-significant bit, Q3, from the w input.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 52 Page number 432 black

432 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY muxdff IS
PORT (D0, D1, Sel, Clock : IN STD LOGIC ;

Q : OUT STD LOGIC) ;
END muxdff ;

ARCHITECTURE Behavior OF muxdff IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL Clock’EVENT AND Clock � ’1’ ;
IF Sel � ’0’ THEN

Q <� D0 ;
ELSE

Q <� D1 ;
END IF ;

END PROCESS ;
END Behavior ;

Figure 7.47 Code for a D flip-flop with a 2-to-1 multiplexer on the D
input.

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY shift4 IS
PORT (R : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

L, w, Clock : IN STD LOGIC ;
Q : BUFFER STD LOGIC VECTOR(3 DOWNTO 0)) ;

END shift4 ;

ARCHITECTURE Structure OF shift4 IS
COMPONENT muxdff

PORT (D0, D1, Sel, Clock : IN STD LOGIC ;
Q : OUT STD LOGIC) ;

END COMPONENT ;
BEGIN

Stage3: muxdff PORT MAP (w, R(3), L, Clock, Q(3)) ;
Stage2: muxdff PORT MAP (Q(3), R(2), L, Clock, Q(2)) ;
Stage1: muxdff PORT MAP (Q(2), R(1), L, Clock, Q(1)) ;
Stage0: muxdff PORT MAP (Q(1), R(0), L, Clock, Q(0)) ;

END Structure ;

Figure 7.48 Hierarchical code for a four-bit shift register.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 53 Page number 433 black

7.13 Using Registers and Counters with CAD Tools 433

1 LIBRARY ieee ;
2 USE ieee.std logic 1164.all ;

3 ENTITY shift4 IS
4 PORT (R : IN STD LOGIC VECTOR(3 DOWNTO 0) ;
5 Clock : IN STD LOGIC ;
6 L, w : IN STD LOGIC ;
7 Q : BUFFER STD LOGIC VECTOR(3 DOWNTO 0)) ;
8 END shift4 ;

9 ARCHITECTURE Behavior OF shift4 IS
10 BEGIN
11 PROCESS
12 BEGIN
13 WAIT UNTIL Clock’EVENT AND Clock � ’1’ ;
14 IF L � ’1’ THEN
15 Q <� R ;
16 ELSE
17 Q(0) <� Q(1) ;
18 Q(1) <� Q(2);
19 Q(2) <� Q(3) ;
20 Q(3) <� w ;
21 END IF ;
22 END PROCESS ;
23 END Behavior ;

Figure 7.49 Alternative code for a shift register.

Example 7.8ALTERNATIVE CODE FOR A FOUR-BIT SHIFT REGISTER A different style of code for the
four-bit shift register is given in Figure 7.49. The lines of code are numbered for ease
of reference. Instead of using subcircuits, the shift register is described using sequential
statements. Due to the WAIT UNTIL statement in line 13, any signal that is assigned a
value inside the process has to be implemented as the output of a flip-flop. Lines 14 and
15 specify the parallel loading of the shift register when L = 1. The ELSE clause in lines
16 to 20 specifies the shifting operation. Line 17 shifts the value of Q1 into the flip-flop
with the output Q0. Lines 18 and 19 shift the values of Q2 and Q3 into the flip-flops with
the outputs Q1 and Q2, respectively. Finally, line 20 shifts the value of w into the left-most
flip-flop, which has the output Q3. Note that the process semantics, described in section
6.6.6, stipulate that the four assignments in lines 17 to 20 are scheduled to occur only after
all of the statements in the process have been evaluated. Hence all four flip-flops change
their values at the same time, as required in the shift register. The code generates the same
shift-register circuit as the code in Figure 7.48.

It is instructive to consider the effect of reversing the ordering of lines 17 through 20
in Figure 7.49, as indicated in Figure 7.50. In this case the first shift operation specified

January 24, 2008 14:23 vra_29532_ch07 Sheet number 54 Page number 434 black

434 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

1 LIBRARY ieee ;
2 USE ieee.std logic 1164.all ;

3 ENTITY shift4 IS
4 PORT (R : IN STD LOGIC VECTOR(3 DOWNTO 0) ;
5 Clock : IN STD LOGIC ;
6 L, w : IN STD LOGIC ;
7 Q : BUFFER STD LOGIC VECTOR(3 DOWNTO 0)) ;
8 END shift4 ;

9 ARCHITECTURE Behavior OF shift4 IS
10 BEGIN
11 PROCESS
12 BEGIN
13 WAIT UNTIL Clock’EVENT AND Clock � ’1’ ;
14 IF L � ’1’ THEN
15 Q <� R ;
16 ELSE
17 Q(3) <� w ;
18 Q(2) <� Q(3) ;
19 Q(1) <� Q(2);
20 Q(0) <� Q(1) ;
21 END IF ;
22 END PROCESS ;
23 END Behavior ;

Figure 7.50 Code that reverses the ordering of statements in Figure 7.49.

in the code, in line 17, shifts the value of w into the left-most flip-flop with the output Q3.
Due to the semantics of the process statement, the assignment to Q3 does not take effect
until all of the subsequent statements inside the process are evaluated. Hence line 18 shifts
the present value of Q3, before it is changed as a result of line 17, into the flip-flop with the
output Q2. Similarly, lines 19 and 20 shift the present values of Q2 and Q1 into the flip-flops
with the outputs Q1 and Q0, respectively. The code produces the same circuit as it did with
the ordering of the statements in Figure 7.49.

Example 7.9 N-BIT SHIFT REGISTER Figure 7.51 shows code that can be used to represent shift registers
of any size. The GENERIC parameter N , which has the default value 8 in the figure, sets
the number of flip-flops. The code is identical to that in Figure 7.49 with two exceptions.
First, R and Q are defined in terms ofN . Second, the ELSE clause that describes the shifting
operation is generalized to work for any number of flip-flops.

Lines 18 to 20 specify the shifting operation for the right-most N − 1 flip-flops, which
have the outputs QN−2 to Q0. The construct used is called a FOR LOOP. It is similar to the

January 24, 2008 14:23 vra_29532_ch07 Sheet number 55 Page number 435 black

7.13 Using Registers and Counters with CAD Tools 435

1 LIBRARY ieee ;
2 USE ieee.std logic 1164.all ;

3 ENTITY shiftn IS
4 GENERIC (N : INTEGER :� 8) ;
5 PORT (R : IN STD LOGIC VECTOR(N−1 DOWNTO 0) ;
6 Clock : IN STD LOGIC ;
7 L, w : IN STD LOGIC ;
8 Q : BUFFER STD LOGIC VECTOR(N−1 DOWNTO 0)) ;
9 END shiftn ;

10 ARCHITECTURE Behavior OF shiftn IS
11 BEGIN
12 PROCESS
13 BEGIN
14 WAIT UNTIL Clock’EVENT AND Clock � ’1’ ;
15 IF L � ’1’ THEN
16 Q <� R ;
17 ELSE
18 Genbits: FOR i IN 0 TO N-2 LOOP
19 Q(i) <� Q(i + 1) ;
20 END LOOP ;
21 Q(N-1) <� w ;
22 END IF ;
23 END PROCESS ;
24 END Behavior ;

Figure 7.51 Code for an n-bit left-to-right shift register.

FOR GENERATE statement, introduced in section 6.6.4, which is used to generate a set of
concurrent statements. The FOR LOOP is used to generate a set of sequential statements.
The first loop iteration shifts the present value of Q1 into the flip-flop with the output Q0.
The next loop iteration shifts Q2 into the flip-flop with the output Q1, and so on, with the
final iteration shifting QN−1 into the flip-flop with the output QN−2. Line 21 completes the
shift operation by shifting the value of the serial input w into the left-most flip-flop with the
output QN−1.

Example 7.10UP-COUNTER Figure 7.52 shows the code for a four-bit up-counter that has a reset input,
Resetn, and an enable input, E. In the architecture body the flip-flops in the counter are
represented by the signal named Count. The process statement specifies an asynchronous
reset of Count if Resetn = 0. The ELSIF clause specifies that on the positive clock edge,

January 24, 2008 14:23 vra_29532_ch07 Sheet number 56 Page number 436 black

436 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.std logic unsigned.all ;

ENTITY upcount IS
PORT (Clock, Resetn, E : IN STD LOGIC ;

Q : OUT STD LOGIC VECTOR (3 DOWNTO 0)) ;
END upcount ;

ARCHITECTURE Behavior OF upcount IS
SIGNAL Count : STD LOGIC VECTOR (3 DOWNTO 0) ;

BEGIN
PROCESS (Clock, Resetn)
BEGIN

IF Resetn � ’0’ THEN
Count <� ”0000” ;

ELSIF (Clock’EVENT AND Clock � ’1’) THEN
IF E � ’1’ THEN

Count <� Count + 1 ;
ELSE

Count <� Count ;
END IF ;

END IF ;
END PROCESS ;
Q <� Count ;

END Behavior ;

Figure 7.52 Code for a four-bit up-counter.

if E = 1, the count is incremented. If E = 0, the code explicitly assigns Count <= Count.
This statement is not required to correctly describe the counter, because of the implied
memory semantics, but it may be included for clarity. The Q outputs are assigned the value
of Count at the end of the code. The code produces the circuit shown in Figure 7.23 if the
VHDL compiler opts to use T flip-flops, and it generates the circuit in Figure 7.24 (with the
reset input added) if the compiler chooses D flip-flops.

Example 7.11 USING INTEGER SIGNALS IN A COUNTER Counters are often defined in VHDL using
the INTEGER type, which was introduced in section 5.5.4. The code in Figure 7.53 defines
an up-counter that has a parallel-load input in addition to a reset input. The parallel data,
R, as well as the counter’s output, Q, are defined using the INTEGER type. Since they

January 24, 2008 14:23 vra_29532_ch07 Sheet number 57 Page number 437 black

7.13 Using Registers and Counters with CAD Tools 437

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY upcount IS
PORT (R : IN INTEGER RANGE 0 TO 15 ;

Clock, Resetn, L : IN STD LOGIC ;
Q : BUFFER INTEGER RANGE 0 TO 15) ;

END upcount ;

ARCHITECTURE Behavior OF upcount IS
BEGIN

PROCESS (Clock, Resetn)
BEGIN

IF Resetn � ’0’ THEN
Q <� 0 ;

ELSIF (Clock’EVENT AND Clock � ’1’) THEN
IF L � ’1’ THEN

Q <� R ;
ELSE

Q <� Q + 1 ;
END IF;

END IF;
END PROCESS;

END Behavior;

Figure 7.53 A four-bit counter with parallel load, using INTEGER signals.

have the range from 0 to 15, both of these signals represent four-bit quantities. In Figure
7.52 the signal Count is defined to represent the flip-flops in the counter. This signal is not
needed if the Q outputs have the BUFFER mode, as shown in Figure 7.53. The if-then-else
statement at the beginning of the process includes the same asynchronous reset as in Figure
7.53. The ELSIF clause specifies that on the positive clock edge, if L = 1, the flip-flops in
the counter are loaded in parallel from the R inputs. If L = 0, the count is incremented.

Example 7.12DOWN-COUNTER Figure 7.54 shows the code for a down-counter named downcnt. To
make it easy to change the starting count, it is defined as a GENERIC parameter named
modulus. On the positive clock edge, if L = 1, the counter is loaded with the value
modulus−1, and if L = 0, the count is decremented. The counter also includes an enable

January 24, 2008 14:23 vra_29532_ch07 Sheet number 58 Page number 438 black

438 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY downcnt IS
GENERIC (modulus : INTEGER :� 8) ;
PORT (Clock, L, E : IN STD LOGIC ;

Q : OUT INTEGER RANGE 0 TO modulus−1) ;
END downcnt ;

ARCHITECTURE Behavior OF downcnt IS
SIGNAL Count : INTEGER RANGE 0 TO modulus−1 ;

BEGIN
PROCESS
BEGIN

WAIT UNTIL (Clock’EVENT AND Clock � ’1’) ;
IF L � ’1’ THEN

Count <� modulus−1 ;
ELSE

IF E � ’1’ THEN
Count <� Count−1 ;

END IF ;
END IF ;

END PROCESS;
Q <� Count ;

END Behavior ;

Figure 7.54 Code for a down-counter.

input, E. Setting E = 1 allows the count to be decremented when an active clock edge
occurs.

7.14 Design Examples

This section presents two examples of digital systems that make use of some of the building
blocks described in this chapter and in Chapter 6.

7.14.1 Bus Structure

Digital systems often contain a set of registers used to store data. Figure 7.55 gives an
example of a system that has k n-bit registers, R1 to Rk. Each register is connected to a
common set of n wires, which are used to transfer data into and out of the registers. This

January 24, 2008 14:23 vra_29532_ch07 Sheet number 59 Page number 439 black

7.14 Design Examples 439

R1
in

Rk
in

Bus

Clock

R1
out

R2
in

R2
out

Rk
out

Control circuit
Function

R1 R2 Rk

Data

Extern

Figure 7.55 A digital system with k registers.

common set of wires is usually called a bus. In addition to registers, in a real system other
types of circuit blocks would be connected to the bus. The figure shows how n bits of data
can be placed on the bus from another circuit block, using the control input Extern. The
data stored in any of the registers can be transferred via the bus to a different register or to
another circuit block that is connected to the bus.

It is essential to ensure that only one circuit block attempts to place data onto the bus
wires at any given time. In Figure 7.55 each register is connected to the bus through an n-bit
tri-state buffer. A control circuit is used to ensure that only one of the tri-state buffer enable
inputs, R1out, . . . ,Rkout , is asserted at a given time. The control circuit also produces the
signals R1in, . . . ,Rkin, which control when data is loaded into each register. In general, the
control circuit could perform a number of functions, such as transferring the data stored in
one register into another register and the like. Figure 7.55 shows an input signal named
Function that instructs the control circuit to perform a particular task. The control circuit is
synchronized by a clock input, which is the same clock signal that controls the k registers.

Figure 7.56 provides a more detailed view of how the registers from Figure 7.55 can
be connected to a bus. To keep the picture simple, 2 two-bit registers are shown, but the
same scheme can be used for larger registers. For register R1, two tri-state buffers enabled
by R1out are used to connect each flip-flop output to a wire in the bus. The D input on
each flip-flop is connected to a 2-to-1 multiplexer, whose select input is controlled by R1in.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 60 Page number 440 black

440

D
Q Q

C
lo

ck

D
Q Q

R
1
i
n

R
1
o
u
t

D
Q Q

D
Q Q

R
2
i
n

R
2
o
u
t

B
us

R
1

R
2

Fi
g

u
re

7
.5

6
D
et
ai
ls

fo
r
co

nn
ec

tin
g
re
gi
ste

rs
to

a
bu

s.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 61 Page number 441 black

7.14 Design Examples 441

If R1in = 0, the flip-flops are loaded from their Q outputs; hence the stored data does
not change. But if R1in = 1, data is loaded into the flip-flops from the bus. Instead of
using multiplexers on the flip-flop inputs, one could attempt to connect the D inputs on
the flip-flops directly to the bus. Then it is necessary to control the clock inputs on all
flip-flops to ensure that they are clocked only when new data should be loaded into the
register. This approach is not good because it may happen that different flip-flops will be
clocked at slightly different times, leading to a problem known as clock skew. A detailed
discussion of the issues related to the clocking of flip-flops is provided in section 10.3.

The system in Figure 7.55 can be used in many different ways, depending on the design
of the control circuit and on how many registers and other circuit blocks are connected to
the bus. As a simple example, consider a system that has three registers, R1, R2, and R3.
Each register is connected to the bus as indicated in Figure 7.56. We will design a control
circuit that performs a single function—it swaps the contents of registers R1 and R2, using
R3 for temporary storage.

The required swapping is done in three steps, each needing one clock cycle. In the first
step the contents of R2 are transferred into R3. Then the contents of R1 are transferred into
R2. Finally, the contents of R3, which are the original contents of R2, are transferred into
R1. Note that we say that the contents of one register, Ri, are “transferred” into another
register, Rj. This jargon is commonly used to indicate that the new contents of Rj will be
a copy of the contents of Ri. The contents of Ri are not changed as a result of the transfer.
Therefore, it would be more precise to say that the contents of Ri are “copied” into Rj.

Using a Shift Register for Control
There are many ways to design a suitable control circuit for the swap operation. One

possibility is to use the left-to-right shift register shown in Figure 7.57. Assume that the
reset input is used to clear the flip-flops to 0. Hence the control signals R1in, R1out , and so
on are not asserted, because the shift register outputs have the value 0. The serial input w
normally has the value 0. We assume that changes in the value of w are synchronized to
occur shortly after the active clock edge. This assumption is reasonable because w would
normally be generated as the output of some circuit that is controlled by the same clock
signal. When the desired swap should be performed, w is set to 1 for one clock cycle, and

D Q

QClock

D Q

Q

D Q

Q

w

R2
out

R3
in

,

Reset

R1
out

R2
in

, R3
out

R1
in

,

Figure 7.57 A shift-register control circuit.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 62 Page number 442 black

442 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

then w returns to 0. After the next active clock edge, the output of the left-most flip-flop
becomes equal to 1, which asserts both R2out and R3in. The contents of register R2 are
placed onto the bus wires and are loaded into register R3 on the next active clock edge.
This clock edge also shifts the contents of the shift register, resulting in R1out = R2in = 1.
Note that since w is now 0, the first flip-flop is cleared, causing R2out = R3in = 0. The
contents of R1 are now on the bus and are loaded into R2 on the next clock edge. After this
clock edge the shift register contains 001 and thus asserts R3out and R1in. The contents of
R3 are now on the bus and are loaded into R1 on the next clock edge.

Using the control circuit in Figure 7.57, when w changes to 1 the swap operation does
not begin until after the next active clock edge. We can modify the control circuit so that
it starts the swap operation in the same clock cycle in which w changes to 1. One possible
approach is illustrated in Figure 7.58. The reset signal is used to set the shift-register
contents to 100, by presetting the left-most flip-flop to 1 and clearing the other two flip-
flops. As long as w = 0, the output control signals are not asserted. When w changes to 1,
the signals R2out and R3in are immediately asserted and the contents of R2 are placed onto
the bus. The next active clock edge loads this data into R3 and also shifts the shift register
contents to 010. Since the signal R1out is now asserted, the contents of R1 appear on the
bus. The next clock edge loads this data into R2 and changes the shift register contents to
001. The contents of R3 are now on the bus; this data is loaded into R1 at the next clock
edge, which also changes the shift register contents to 100. We assume that w had the value
1 for only one clock cycle; hence the output control signals are not asserted at this point.
It may not be obvious to the reader how to design a circuit such as the one in Figure 7.58,
because we have presented the design in an ad hoc fashion. In section 8.3 we will show
how this circuit can be designed using a more formal approach.

The circuit in Figure 7.58 assumes that a preset input is available on the left-most
flip-flop. If the flip-flop has only a clear input, then we can use the equivalent circuit
shown in Figure 7.59. In this circuit we use the Q output of the left-most flip-flop and also
complement the input to this flip-flop by using a NOR gate instead of an OR gate.

D Q

QClock

D Q

Q

D Q

Q

w

R2
out

R3
in

, R1
out

R2
in

, R3
out

R1
in

,

P

Reset

Figure 7.58 A modified control circuit.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 63 Page number 443 black

7.14 Design Examples 443

D Q

QClock

D Q

Q

D Q

Q

w

R2
out

R3
in

, R1
out

R2
in

, R3
out

R1
in

,

Reset

Figure 7.59 A modified version of the circuit in Figure 7.58.

Using a Multiplexer to Implement a Bus
In Figure 7.55 we used tri-state buffers to control access to the bus. An alternative

approach is to use multiplexers, as depicted in Figure 7.60. The outputs of each register
are connected to a multiplexer. This multiplexer’s output is connected to the inputs of the
registers, thus realizing the bus. The multiplexer select inputs determine which register’s
contents appear on the bus. Although the figure shows just one multiplexer symbol, we
actually need one multiplexer for each bit in the registers. For example, assume that
there are 4 eight-bit registers, R1 to R4, plus the externally-supplied eight-bit Data. To
interconnect them, we need eight 5-to-1 multiplexers. In Figure 7.57 we used a shift

Data

R1in

Multiplexers

R2in Rkin

Bus

Clock

S j 1–

S
0

R1 R2 Rk

Figure 7.60 Using multiplexers to implement a bus.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 64 Page number 444 black

444 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

register to implement the control circuit. A similar approach can be used with multiplexers.
The signals that control when data is loaded into a register, like R1in, can still be connected
directly to the shift-register outputs. However, instead of using control signals like R1out
to place the contents of a register onto the bus, we have to generate the select inputs for the
multiplexers. One way to do so is to connect the shift-register outputs to an encoder circuit
that produces the select inputs for the multiplexer. We discussed encoder circuits in sec-
tion 6.3.

The tri-state buffer and multiplexer approaches for implementing a bus are both equally
valid. However, some types of chips, such as most PLDs, do not contain a sufficient number
of tri-state buffers to realize even moderately large buses. In such chips the multiplexer-
based approach is the only practical alternative. In practice, circuits are designed with CAD
tools. If the designer describes the circuit using tri-state buffers, but there are not enough
such buffers in the target device, then the CAD tools automatically produce an equivalent
circuit that uses multiplexers.

VHDLCode
This section presents VHDL code for our circuit example that swaps the contents of

two registers. We first give the code for the style of circuit in Figure 7.55 that uses tri-
state buffers to implement the bus and then give the code for the style of circuit in Figure
7.60 that uses multiplexers. The code is written in a hierarchical fashion, using subcircuits
for the registers, tri-state buffers, and the shift register. Figure 7.61 gives the code for
an n-bit register of the type in Figure 7.56. The number of bits in the register is set by

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY regn IS
GENERIC (N : INTEGER :� 8) ;
PORT (R : IN STD LOGIC VECTOR(N−1 DOWNTO 0) ;

Rin, Clock : IN STD LOGIC ;
Q : OUT STD LOGIC VECTOR(N−1 DOWNTO 0)) ;

END regn ;

ARCHITECTURE Behavior OF regn IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL Clock’EVENT AND Clock � ’1’ ;
IF Rin � ’1’ THEN

Q <� R ;
END IF ;

END PROCESS ;
END Behavior ;

Figure 7.61 Code for an n-bit register of the type in Figure 7.56.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 65 Page number 445 black

7.14 Design Examples 445

the generic parameter N , which has the default value of 8. The process that describes the
register specifies that if the input Rin = 1, then the flip-flops are loaded from the n-bit input
R. Otherwise, the flip-flops retain their presently stored values. The circuit synthesized
from this code has a 2-to-1 multiplexer controlled by Rin connected to the D input on each
flip-flop, as depicted in Figure 7.56.

Figure 7.62 gives the code for a subcircuit that represents n tri-state buffers, each
enabled by the input E. The number of buffers is set by the generic parameter N . The
inputs to the buffers are the n-bit signal X , and the outputs are the n-bit signal F . The
architecture uses the syntax (OTHERS => ’Z’) to specify that the output of each buffer is
set to the value Z if E = 0; otherwise, the output is set to F = X .

Figure 7.63 provides the code for a shift register that can be used to implement the
control circuit in Figure 7.57. The number of flip-flops is set by the generic parameter K ,
which has the default value of 4. The shift register has an active-low asynchronous reset
input. The shift operation is defined with a FOR LOOP in the style used in Example 7.9.

To use the entities in Figures 7.61 through 7.63 as subcircuits, we have to provide
component declarations for each one. For convenience, we placed these declarations inside
a single package, named components, which is shown in Figure 7.64. This package is used
in the code given in Figure 7.65. It represents the digital system in Figure 7.55 with 3
eight-bit registers, R1, R2, and R3.

The circuit in Figure 7.55 includes tri-state buffers that are used to place n bits of
externally supplied data on the bus. In the code in Figure 7.65, these buffers are instantiated
in the statement labeled tri_ext. Each of the eight buffers is enabled by the input signal
Extern, and the data inputs on the buffers are attached to the eight-bit signal Data. When
Extern = 1, the value of Data is placed on the bus, which is represented by the signal
BusWires. The BusWires port represents the circuit’s output. This port has the mode
INOUT, which is required because BusWires is connected to the outputs of tri-state buffers
and these buffers are connected to the inputs of the registers.

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY trin IS
GENERIC (N : INTEGER :� 8) ;
PORT (X : IN STD LOGIC VECTOR(N−1 DOWNTO 0) ;

E : IN STD LOGIC ;
F : OUT STD LOGIC VECTOR(N−1 DOWNTO 0)) ;

END trin ;

ARCHITECTURE Behavior OF trin IS
BEGIN

F <� (OTHERS �> ’Z’) WHEN E � ’0’ ELSE X ;
END Behavior ;

Figure 7.62 Code for an n-bit tri-state buffer.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 66 Page number 446 black

446 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY shiftr IS - - left-to-right shift register with async reset
GENERIC (K : INTEGER :� 4) ;
PORT (Resetn, Clock, w : IN STD LOGIC ;

Q : BUFFER STD LOGIC VECTOR(1 TO K)) ;
END shiftr ;

ARCHITECTURE Behavior OF shiftr IS
BEGIN

PROCESS (Resetn, Clock)
BEGIN

IF Resetn � ’0’ THEN
Q <� (OTHERS �> ’0’) ;

ELSIF Clock’EVENT AND Clock � ’1’ THEN
Genbits: FOR i IN K DOWNTO 2 LOOP

Q(i) <� Q(i−1) ;
END LOOP ;
Q(1) <� w ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.63 Code for the shift register in Figure 7.57.

We assume that a three-bit control signal named RinExt exists, which is used to allow
the externally supplied data to be loaded from the bus into registers R1, R2, or R3. The
RinExt input is not shown in Figure 7.55, to keep the figure simple, but it would be generated
by the same external circuit block that produces Extern and Data. When RinExt(1) = 1,
the data on the bus is loaded into register R1; when RinExt(2) = 1, the data is loaded into
R2; and when RinExt(3) = 1, the data is loaded into R3.

In Figure 7.65 the three-bit shift register is instantiated in the statement labeled control.
The outputs of the shift register are the three-bit signal Q. The next three statements connect
Q to the control signals that determine when data is loaded into each register, which are
represented by the three-bit signal Rin. The signals Rin(1), Rin(2), and Rin(3) in the
code correspond to the signals R1in, R2in, and R3in in Figure 7.55. As specified in Figure
7.57, the left-most shift-register output, Q(1), controls when data is loaded into register R3.
Similarly, Q(2) controls register R2, and Q(3) controls R1. Each bit in Rin is ORed with the
corresponding bit in RinExt so that externally supplied data can be stored in the registers
as discussed above. The code also connects the shift-register outputs to the enable inputs,
called Rout, on the tri-state buffers that connect the registers to the bus. Figure 7.57 shows
that Q(1) is used to put the contents of R2 onto the bus; hence Rout(2) is assigned the value

January 24, 2008 14:23 vra_29532_ch07 Sheet number 67 Page number 447 black

7.14 Design Examples 447

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

PACKAGE components IS

COMPONENT regn - - register
GENERIC (N : INTEGER :� 8) ;
PORT (R : IN STD LOGIC VECTOR(N−1 DOWNTO 0) ;

Rin, Clock : IN STD LOGIC ;
Q : OUT STD LOGIC VECTOR(N−1 DOWNTO 0)) ;

END COMPONENT ;

COMPONENT shiftr - - left-to-right shift register with async reset
GENERIC (K : INTEGER :� 4) ;
PORT (Resetn, Clock, w : IN STD LOGIC ;

Q : BUFFER STD LOGIC VECTOR(1 TO K)) ;
END component ;

COMPONENT trin - - tri-state buffers
GENERIC (N : INTEGER :� 8) ;
PORT (X : IN STD LOGIC VECTOR(N−1 DOWNTO 0) ;

E : IN STD LOGIC ;
F : OUT STD LOGIC VECTOR(N−1 DOWNTO 0)) ;

END COMPONENT ;

END components ;

Figure 7.64 Package and component declarations.

of Q(1). Similarly, Rout(1) is assigned the value of Q(2), and Rout(3) is assigned the value
of Q(3). The remaining statements in the code instantiate the registers and tri-state buffers
in the system.

VHDLCode Using Multiplexers
Figure 7.66 shows how the code in Figure 7.65 can be modified to use multiplexers

instead of tri-state buffers. Using the circuit structure shown in Figure 7.60, the bus is
implemented using eight 4-to-1 multiplexers. Three of the data inputs on each 4-to-1
multiplexer are connected to one bit from registers R1, R2, and R3. The fourth data input is
connected to one bit of the Data input signal to allow externally supplied data to be written
into the registers. When the shift register’s contents are 000, the multiplexers select Data
to be placed on the bus. This data is loaded into the register selected by RinExt. It is loaded
into R1 if RinExt(1) = 1, R2 if RinExt(2) = 1, and R3 if RinExt(3) = 1.

TheRout signal in Figure 7.65, which is used as the enable inputs on the tri-state buffers
connected to the bus, is not needed for the multiplexer implementation. Instead, we have

January 24, 2008 14:23 vra_29532_ch07 Sheet number 68 Page number 448 black

448 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE work.components.all ;

ENTITY swap IS
PORT (Data : IN STD LOGIC VECTOR(7 DOWNTO 0) ;

Resetn, w : IN STD LOGIC ;
Clock, Extern : IN STD LOGIC ;
RinExt : IN STD LOGIC VECTOR(1 TO 3) ;
BusWires : INOUT STD LOGIC VECTOR(7 DOWNTO 0)) ;

END swap ;

ARCHITECTURE Behavior OF swap IS
SIGNAL Rin, Rout, Q : STD LOGIC VECTOR(1 TO 3) ;
SIGNAL R1, R2, R3 : STD LOGIC VECTOR(7 DOWNTO 0) ;

BEGIN
control: shiftr GENERIC MAP (K �> 3)

PORT MAP (Resetn, Clock, w, Q) ;
Rin(1) <� RinExt(1) OR Q(3) ;
Rin(2) <� RinExt(2) OR Q(2) ;
Rin(3) <� RinExt(3) OR Q(1) ;
Rout(1) <� Q(2) ; Rout(2) <� Q(1) ; Rout(3) <� Q(3) ;

tri ext: trin PORT MAP (Data, Extern, BusWires) ;
reg1: regn PORT MAP (BusWires, Rin(1), Clock, R1) ;
reg2: regn PORT MAP (BusWires, Rin(2), Clock, R2) ;
reg3: regn PORT MAP (BusWires, Rin(3), Clock, R3) ;
tri1: trin PORT MAP (R1, Rout(1), BusWires) ;
tri2: trin PORT MAP (R2, Rout(2), BusWires) ;
tri3: trin PORT MAP (R3, Rout(3), BusWires) ;

END Behavior ;

Figure 7.65 A digital system like the one in Figure 7.55.

to provide the select inputs on the multiplexers. In the architecture body in Figure 7.66,
the shift-register outputs are called Q. These signals are used to generate the Rin control
signals for the registers in the same way as shown in Figure 7.65. We said in the discussion
concerning Figure 7.60 that an encoder is needed between the shift-register outputs and the
multiplexer select inputs. A suitable encoder is described in the selected signal assignment
labeled encoder. It produces the multiplexer select inputs, which are named S. It sets
S = 00 when the shift register contains 000, S = 10 when the shift register contains 100,
and so on, as given in the code. The multiplexers are described by the selected signal
assignment labeledmuxes. This statement places the value ofData onto the bus (BusWires)
if S = 00, the contents of register R1 if S = 01, and so on. Using this scheme, when the
swap operation is not active, the multiplexers place the bits from the Data input on the bus.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 69 Page number 449 black

7.14 Design Examples 449

LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE work.components.all ;
ENTITY swapmux IS

PORT (Data : IN STD LOGIC VECTOR(7 DOWNTO 0) ;
Resetn, w : IN STD LOGIC ;
Clock : IN STD LOGIC ;
RinExt : IN STD LOGIC VECTOR(1 TO 3) ;
BusWires : BUFFER STD LOGIC VECTOR(7 DOWNTO 0)) ;

END swapmux ;

ARCHITECTURE Behavior OF swapmux IS
SIGNAL Rin, Q : STD LOGIC VECTOR(1 TO 3) ;
SIGNAL S : STD LOGIC VECTOR(1 DOWNTO 0) ;
SIGNAL R1, R2, R3 : STD LOGIC VECTOR(7 DOWNTO 0) ;

BEGIN
control: shiftr GENERIC MAP (K �> 3)

PORT MAP (Resetn, Clock, w, Q) ;
Rin(1) <� RinExt(1) OR Q(3) ;
Rin(2) <� RinExt(2) OR Q(2) ;
Rin(3) <� RinExt(3) OR Q(1) ;

reg1: regn PORT MAP (BusWires, Rin(1), Clock, R1) ;
reg2: regn PORT MAP (BusWires, Rin(2), Clock, R2) ;
reg3: regn PORT MAP (BusWires, Rin(3), Clock, R3) ;
encoder:
WITH Q SELECT

S <� ”00” WHEN ”000”,
”10” WHEN ”100”,
”01” WHEN ”010”,
”11” WHEN OTHERS;

muxes: - -eight 4-to-1 multiplexers
WITH S SELECT

BusWires <� Data WHEN ”00”,
R1 WHEN ”01”,
R2 WHEN ”10”,
R3 WHEN OTHERS ;

END Behavior ;

Figure 7.66 Using multiplexers to implement a bus.

In Figure 7.66 we use two selected signal assignments, one to describe an encoder and
the other to describe the bus multiplexers. A simpler approach is to use a single selected
signal assignment as shown in Figure 7.67. The statement labeled muxes specifies directly
which signal should appear on BusWires for each pattern of the shift-register outputs. The
circuit synthesized from this statement is similar to an 8-to-1 multiplexer with the three

January 24, 2008 14:23 vra_29532_ch07 Sheet number 70 Page number 450 black

450 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

ARCHITECTURE Behavior OF swapmux IS
SIGNAL Rin, Q : STD LOGIC VECTOR(1 TO 3) ;
SIGNAL R1, R2, R3 : STD LOGIC VECTOR(7 DOWNTO 0) ;

BEGIN
control: shiftr GENERIC MAP (K �> 3)

PORT MAP (Resetn, Clock, w, Q) ;
Rin(1) <� RinExt(1) OR Q(3) ;
Rin(2) <� RinExt(2) OR Q(2) ;
Rin(3) <� RinExt(3) OR Q(1) ;

reg1: regn PORT MAP (BusWires, Rin(1), Clock, R1) ;
reg2: regn PORT MAP (BusWires, Rin(2), Clock, R2) ;
reg3: regn PORT MAP (BusWires, Rin(3), Clock, R3) ;

muxes:
WITH Q SELECT

BusWires <� Data WHEN ”000”,
R2 WHEN ”100”,
R1 WHEN ”010”,
R3 WHEN OTHERS ;

END Behavior ;

Figure 7.67 A simplified version of the architecture in Figure 7.66.

select inputs connected to the shift-register outputs. However, only half of the multiplexer
circuit is actually generated by the synthesis tools because there are only four data inputs.
The circuit generated from the code in Figure 7.67 is the same as the one generated from
the code in Figure 7.66.

Figure 7.68 gives an example of a timing simulation for a circuit synthesized from the
code in Figure 7.67. In the first half of the simulation, the circuit is reset, and the contents
of registers R1 and R2 are initialized. The hex value 55 is loaded into R1, and the value AA
is loaded into R2. The clock edge at 275 ns, marked by the vertical reference line in Figure
7.68, loads the value w = 1 into the shift register. The contents of R2 (AA) then appear on
the bus and are loaded into R3 by the clock edge at 325 ns. Following this clock edge, the
contents of the shift register are 010, and the data stored in R1 (55) is on the bus. The clock
edge at 375 ns loads this data into R2 and changes the shift register to 001. The contents
of R3 (AA) now appear on the bus and are loaded into R1 by the clock edge at 425 ns. The
shift register is now in state 000, and the swap is completed.

7.14.2 Simple Processor

A second example of a digital system like the one in Figure 7.55 is shown in Figure 7.69.
It has four n-bit registers, R0, . . . ,R3, that are connected to the bus using tri-state buffers.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 71 Page number 451 black

7.14 Design Examples 451

Figure 7.68 Timing simulation for the VHDL code in Figure 7.67.

External data can be loaded into the registers from the n-bit Data input, which is connected
to the bus using tri-state buffers enabled by the Extern control signal. The system also
includes an adder/subtractor module. One of its data inputs is provided by an n-bit register,
A, that is attached to the bus, while the other data input, B, is directly connected to the bus.
If the AddSub signal has the value 0, the module generates the sum A+ B; if AddSub = 1,
the module generates the difference A − B. To perform the subtraction, we assume that
the adder/subtractor includes the required XOR gates to form the 2’s complement of B, as
discussed in section 5.3. The register G stores the output produced by the adder/subtractor.
The A and G registers are controlled by the signals Ain, Gin, and Gout .

The system in Figure 7.69 can perform various functions, depending on the design of
the control circuit. As an example, we will design a control circuit that can perform the four
operations listed in Table 7.2. The left column in the table shows the name of an operation
and its operands; the right column indicates the function performed in the operation. For
the Load operation the meaning of Rx ← Data is that the data on the external Data input
is transferred across the bus into any register, Rx, where Rx can be R0 to R3. The Move
operation copies the data stored in register Ry into register Rx. In the table the square
brackets, as in [Rx], refer to the contents of a register. Since only a single transfer across
the bus is needed, both the Load and Move operations require only one step (clock cycle) to
be completed. The Add and Sub operations require three steps, as follows: In the first step
the contents of Rx are transferred across the bus into register A. Then in the next step, the
contents of Ry are placed onto the bus. The adder/subtractor module performs the required
function, and the results are stored in register G. Finally, in the third step the contents of G
are transferred into Rx.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 72 Page number 452 black

452

R
3
i
n

B
us

C
lo

ck

R
0
i
n

R
0
o
u
t

R
3
o
u
t

C
on

tr
ol

 c
ir

cu
it

Fu
nc

tio
n

G

R
0

R
3

A A
dd

Su
b

A
i
n

G
i
n

G
o
u
t

E
xt

er
n

D
at

a

w

D
on

e

B

Fi
g

u
re

7
.6

9
A

di
gi
ta
ls

ys
te
m

th
at

im
pl
em

en
ts

a
si
m
pl
e
pr

oc
es
so

r.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 73 Page number 453 black

7.14 Design Examples 453

Table 7.2 Operations
performed in the
processor.

Operation Function Performed

Load Rx, Data Rx← Data

Move Rx,Ry Rx← [Ry]
Add Rx,Ry Rx← [Rx] + [Ry]
Sub Rx,Ry Rx← [Rx] − [Ry]

A digital system that performs the types of operations listed in Table 7.2 is usually
called a processor. The specific operation to be performed at any given time is indicated
using the control circuit input named Function. The operation is initiated by setting the w
input to 1, and the control circuit asserts the Done output when the operation is completed.

In Figure 7.55 we used a shift register to implement the control circuit. It is possible
to use a similar design for the system in Figure 7.69. To illustrate a different approach,
we will base the design of the control circuit on a counter. This circuit has to generate the
required control signals in each step of each operation. Since the longest operations (Add
and Sub) need three steps (clock cycles), a two-bit counter can be used. Figure 7.70 shows
a two-bit up-counter connected to a 2-to-4 decoder. Decoders are discussed in section
6.2. The decoder is enabled at all times by setting its enable (En) input permanently to the
value 1. Each of the decoder outputs represents a step in an operation. When no operation
is currently being performed, the count value is 00; hence the T0 output of the decoder is
asserted. In the first step of an operation, the count value is 01, and T1 is asserted. During the
second and third steps of the Add and Sub operations, T2 and T3 are asserted, respectively.

In each of steps T0 to T3, various control signal values have to be generated by the
control circuit, depending on the operation being performed. Figure 7.71 shows that the
operation is specified with six bits, which form the Function input. The two left-most bits,
F = f1 f0, are used as a two-bit number that identifies the operation. To represent Load,
Move, Add, and Sub, we use the codes f1 f0 = 00, 01, 10, and 11, respectively. The inputs
Rx1Rx0 are a binary number that identifies the Rx operand, while Ry1Ry0 identifies the Ry
operand. The Function inputs are stored in a six-bit Function Register when the FRin signal
is asserted.

Figure 7.71 also shows three 2-to-4 decoders that are used to decode the information
encoded in the F , Rx, and Ry inputs. We will see shortly that these decoders are included
as a convenience because their outputs provide simple-looking logic expressions for the
various control signals.

The circuits in Figures 7.70 and 7.71 form a part of the control circuit. Using the input
w and the signals T0, . . . ,T3, I0, . . . , I3, X0, . . . ,X3, and Y0, . . . ,Y3, we will show how to
derive the rest of the control circuit. It has to generate the outputs Extern, Done, Ain, Gin,
Gout , AddSub, R0in, . . . ,R3in, and R0out, . . . ,R3out . The control circuit also has to generate
the Clear and FRin signals used in Figures 7.70 and 7.71.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 74 Page number 454 black

454 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

Clock

T 0

Reset

Up-counter
Clear

w0 En

y0

w1

y1 y2 y3

1

T 1 T 2 T 3

2-to-4 decoder

Q1 Q0

Figure 7.70 A part of the control circuit for the processor.

Clock

X
0

w
0 En

y
0

w
1

y
1

y
2

y
3

1

X
1

X
2

X
3

2-to-4 decoder

Function Register

Y
0

w
0 En

y
0

w
1

y
1

y
2

y
3

1

Y
1

Y
2

Y
3

2-to-4 decoder

I
0

En

y
0

y
1

y
2

y
3

1

I
1

I
2

I
3

2-to-4 decoder

FRin

f
1

f
0

Rx
1

Rx
0

Ry
1

Ry
0

w
0

w
1

Function

Figure 7.71 The function register and decoders.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 75 Page number 455 black

7.14 Design Examples 455

Table 7.3 Control signals asserted in each operation/time step.

T1 T2 T3

(Load): I0 Extern, Rin = X ,

Done

(Move): I1 Rin = X ,Rout = Y ,

Done

(Add): I2 Rout = X ,Ain Rout = Y ,Gin, Gout ,Rin = X ,

AddSub = 0 Done

(Sub): I3 Rout = X ,Ain Rout = Y ,Gin, Gout ,Rin = X ,

AddSub = 1 Done

Clear and FRin are defined in the same way for all operations. Clear is used to ensure
that the count value remains at 00 as long asw = 0 and no operation is being executed. Also,
it is used to clear the count value to 00 at the end of each operation. Hence an appropriate
logic expression is

Clear = w T0 + Done

The FRin signal is used to load the values on the Function inputs into the Function Register
when w changes to 1. Hence

FRin = wT0

The rest of the outputs from the control circuit depend on the specific step being performed
in each operation. The values that have to be generated for each signal are shown in Table
7.3. Each row in the table corresponds to a specific operation, and each column represents
one time step. The Extern signal is asserted only in the first step of the Load operation.
Therefore, the logic expression that implements this signal is

Extern = I0T1

Done is asserted in the first step of Load and Move, as well as in the third step of Add and
Sub. Hence

Done = (I0 + I1)T1 + (I2 + I3)T3

The Ain, Gin, and Gout signals are asserted in the Add and Sub operations. Ain is asserted in
step T1, Gin is asserted in T2, and Gout is asserted in T3. The AddSub signal has to be set to
0 in the Add operation and to 1 in the Sub operation. This is achieved with the following
logic expressions

Ain = (I2 + I3)T1

Gin = (I2 + I3)T2

Gout = (I2 + I3)T3

AddSub = I3

January 24, 2008 14:23 vra_29532_ch07 Sheet number 76 Page number 456 black

456 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

The values of R0in, . . . ,R3in are determined using either the X0, . . . ,X3 signals or the
Y0, . . . ,Y3 signals. In Table 7.3 these actions are indicated by writing either Rin = X or
Rin = Y . The meaning of Rin = X is that R0in = X0, R1in = X1, and so on. Similarly, the
values of R0out, . . . ,R3out are specified using either Rout = X or Rout = Y .

We will develop the expressions for R0in and R0out by examining Table 7.3 and then
show how to derive the expressions for the other register control signals. The table shows
that R0in is set to the value of X0 in the first step of both the Load and Move operations and
in the third step of both the Add and Sub operations, which leads to the expression

R0in = (I0 + I1)T1X0 + (I2 + I3)T3X0

Similarly, R0out is set to the value of Y0 in the first step of Move. It is set to X0 in the
first step of Add and Sub and to Y0 in the second step of these operations, which gives

R0out = I1T1Y0 + (I2 + I3)(T1X0 + T2Y0)

The expressions for R1in and R1out are the same as those for R0in and R0out except that X1

and Y1 are used in place of X0 and Y0. The expressions for R2in, R2out , R3in, and R3out are
derived in the same way.

The circuits shown in Figures 7.70 and 7.71, combined with the circuits represented
by the above expressions, implement the control circuit in Figure 7.69.

Processors are extremely useful circuits that are widely used. We have presented only
the most basic aspects of processor design. However, the techniques presented can be
extended to design realistic processors, such as modern microprocessors. The interested
reader can refer to books on computer organization for more details on processor design
[1–2].

VHDLCode
In this section we give two different styles of VHDL code for describing the system

in Figure 7.69. The first style uses tri-state buffers to represent the bus, and it gives the
logic expressions shown above for the outputs of the control circuit. The second style of
code uses multiplexers to represent the bus, and it uses CASE statements that correspond
to Table 7.3 to describe the outputs of the control circuit.

VHDL code for an up-counter is shown in Figure 7.52. A modified version of this
counter, named upcount, is shown in the code in Figure 7.72. It has a synchronous reset
input, which is active high. In Figure 7.64 we defined the package named components,
which provides component declarations for a number of subcircuits. In the VHDL code for
the processor, we will use the regn and trin components listed in Figure 7.64, but not the
shiftr component. We created a new package called subccts for use with the processor. The
code is not shown here, but it includes component declarations for regn (Figure 7.61), trin
(Figure 7.62), upcount, and dec2to4 (Figure 6.30).

Complete code for the processor is given in Figure 7.73. In the architecture body, the
statements labeled counter and decT instantiate the subcircuits in Figure 7.70. Note that we
have assumed that the circuit has an active-high reset input, Reset, which is used to initialize
the counter to 00. The statement Func <= F & Rx & Ry uses the concatenate operator to
create the six-bit signal Func, which represents the inputs to the Function Register in Figure
7.71. The next statement instantiates the Function Register with the data inputs Func and

January 24, 2008 14:23 vra_29532_ch07 Sheet number 77 Page number 457 black

7.14 Design Examples 457

LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.std logic unsigned.all ;

ENTITY upcount IS
PORT (Clear, Clock : IN STD LOGIC ;

Q : BUFFER STD LOGIC VECTOR(1 DOWNTO 0)) ;
END upcount ;

ARCHITECTURE Behavior OF upcount IS
BEGIN

upcount: PROCESS (Clock)
BEGIN

IF (Clock’EVENT AND Clock � ’1’) THEN
IF Clear � ’1’ THEN

Q <� ”00” ;
ELSE

Q <� Q + ’1’ ;
END IF ;

END IF;
END PROCESS;

END Behavior ;

Figure 7.72 Code for a two-bit up-counter with synchronous reset.

the outputs FuncReg. The statements labeled decI, decX, and decY instantiate the decoders
in Figure 7.71. Following these statements the previously derived logic expressions for
the outputs of the control circuit are given. For R0in, . . . ,R3in and R0out, . . . ,R3out , a
GENERATE statement is used to produce the expressions.

At the end of the code, the tri-state buffers and registers in the processor are instantiated,
and the adder/subtractor module is described using a selected signal assignment.

Using Multiplexers and CASE Statements
We showed in Figure 7.60 that a bus can be implemented using multiplexers, rather than

tri-state buffers. VHDL code that describes the processor using this approach is shown in
Figure 7.74. The same entity declaration given in Figure 7.73 can be used and is not shown
in Figure 7.74. The code illustrates a different way of describing the control circuit in the
processor. It does not give logic expressions for the signals Extern, Done, and so on, as we
did in Figure 7.73. Instead, CASE statements are used to represent the information shown
in Table 7.3. These statements are provided inside the process labeled controlsignals. Each
control signal is first assigned the value 0, as a default. This is required because the CASE
statements specify the values of the control signals only when they should be asserted, as
we did in Table 7.3. As explained for Figure 7.35, when the value of a signal is not specified,

January 24, 2008 14:23 vra_29532_ch07 Sheet number 78 Page number 458 black

458 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.std logic signed.all ;
USE work.subccts.all ;

ENTITY proc IS
PORT (Data : IN STD LOGIC VECTOR(7 DOWNTO 0) ;

Reset, w : IN STD LOGIC ;
Clock : IN STD LOGIC ;
F, Rx, Ry : IN STD LOGIC VECTOR(1 DOWNTO 0) ;
Done : BUFFER STD LOGIC ;
BusWires : INOUT STD LOGIC VECTOR(7 DOWNTO 0)) ;

END proc ;

ARCHITECTURE Behavior OF proc IS
SIGNAL Rin, Rout : STD LOGIC VECTOR(0 TO 3) ;
SIGNAL Clear, High, AddSub : STD LOGIC ;
SIGNAL Extern, Ain, Gin, Gout, FRin : STD LOGIC ;
SIGNAL Count, Zero : STD LOGIC VECTOR(1 DOWNTO 0) ;
SIGNAL T, I, X, Y : STD LOGIC VECTOR(0 TO 3) ;
SIGNAL R0, R1, R2, R3 : STD LOGIC VECTOR(7 DOWNTO 0) ;
SIGNAL A, Sum, G : STD LOGIC VECTOR(7 DOWNTO 0) ;
SIGNAL Func, FuncReg : STD LOGIC VECTOR(1 TO 6) ;

BEGIN
Zero <� ”00” ; High <� ’1’ ;
Clear <� Reset OR Done OR (NOT w AND T(0)) ;
counter: upcount PORT MAP (Clear, Clock, Count) ;
decT: dec2to4 PORT MAP (Count, High, T);
Func <� F & Rx & Ry ;
FRin <� w AND T(0) ;
functionreg: regn GENERIC MAP (N �> 6)

PORT MAP (Func, FRin, Clock, FuncReg) ;
decI: dec2to4 PORT MAP (FuncReg(1 TO 2), High, I) ;
decX: dec2to4 PORT MAP (FuncReg(3 TO 4), High, X) ;
decY: dec2to4 PORT MAP (FuncReg(5 TO 6), High, Y) ;
Extern <� I(0) AND T(1) ;
Done <� ((I(0) OR I(1)) AND T(1)) OR ((I(2) OR I(3)) AND T(3)) ;
Ain <� (I(2) OR I(3)) AND T(1) ;
Gin <� (I(2) OR I(3)) AND T(2) ;
Gout <� (I(2) OR I(3)) AND T(3) ;
AddSub <� I(3) ;

. . . continued in Part b.

Figure 7.73 Code for the processor (Part a).

January 24, 2008 14:23 vra_29532_ch07 Sheet number 79 Page number 459 black

7.14 Design Examples 459

RegCntl:
FOR k IN 0 TO 3 GENERATE

Rin(k) <� ((I(0) OR I(1)) AND T(1) AND X(k)) OR
((I(2) OR I(3)) AND T(3) AND X(k)) ;

Rout(k) <� (I(1) AND T(1) AND Y(k)) OR
((I(2) OR I(3)) AND ((T(1) AND X(k)) OR (T(2) AND Y(k)))) ;

END GENERATE RegCntl ;
tri extern: trin PORT MAP (Data, Extern, BusWires) ;
reg0: regn PORT MAP (BusWires, Rin(0), Clock, R0) ;
reg1: regn PORT MAP (BusWires, Rin(1), Clock, R1) ;
reg2: regn PORT MAP (BusWires, Rin(2), Clock, R2) ;
reg3: regn PORT MAP (BusWires, Rin(3), Clock, R3) ;
tri0: trin PORT MAP (R0, Rout(0), BusWires) ;
tri1: trin PORT MAP (R1, Rout(1), BusWires) ;
tri2: trin PORT MAP (R2, Rout(2), BusWires) ;
tri3: trin PORT MAP (R3, Rout(3), BusWires) ;
regA: regn PORT MAP (BusWires, Ain, Clock, A) ;
alu:
WITH AddSub SELECT

Sum <� A + BusWires WHEN ’0’,
A − BusWires WHEN OTHERS ;

regG: regn PORT MAP (Sum, Gin, Clock, G) ;
triG: trin PORT MAP (G, Gout, BusWires) ;

END Behavior ;

Figure 7.73 Code for the processor (Part b).

the signal retains its current value. This implied memory results in a feedback connection
in the synthesized circuit. We avoid this problem by providing the default value of 0 for
each of the control signals involved in the CASE statements.

In Figure 7.73 the statements labeled decT and decI are used to decode the Count
signal and the stored values of the F input, respectively. The decT decoder has the outputs
T0, . . . ,T3, and decI produces I0, . . . , I3. In Figure 7.74 these two decoders are not used,
because they do not serve a useful purpose in this code. Instead, the signals T and I are
defined as two-bit signals, which are used in the CASE statements. The code sets T to the
value of Count, while I is set to the value of the two left-most bits in the Function Register,
which correspond to the stored values of the input F .

There are two nested levels of CASE statements. The first one enumerates the possible
values of T . For each WHEN clause in this CASE statement, which represents a column
in Table 7.3, there is a nested CASE statement that enumerates the four values of I . As
indicated by the comments in the code, the nested CASE statements correspond exactly to
the information given in Table 7.3.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 80 Page number 460 black

460 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

ARCHITECTURE Behavior OF proc IS
SIGNAL X, Y, Rin, Rout : STD LOGIC VECTOR(0 TO 3) ;
SIGNAL Clear, High, AddSub : STD LOGIC ;
SIGNAL Extern, Ain, Gin, Gout, FRin : STD LOGIC ;
SIGNAL Count, Zero, T, I : STD LOGIC VECTOR(1 DOWNTO 0) ;
SIGNAL R0, R1, R2, R3 : STD LOGIC VECTOR(7 DOWNTO 0) ;
SIGNAL A, Sum, G : STD LOGIC VECTOR(7 DOWNTO 0) ;
SIGNAL Func, FuncReg, Sel : STD LOGIC VECTOR(1 TO 6) ;

BEGIN
Zero <� ”00” ; High <� ’1’ ;
Clear <� Reset OR Done OR (NOT w AND NOT T(1) AND NOT T(0)) ;
counter: upcount PORT MAP (Clear, Clock, Count) ;
T <� Count ;
Func <� F & Rx & Ry ;
FRin <� w AND NOT T(1) AND NOT T(0) ;
functionreg: regn GENERIC MAP (N �> 6)

PORT MAP (Func, FRin, Clock, FuncReg) ;
I <� FuncReg(1 TO 2) ;
decX: dec2to4 PORT MAP (FuncReg(3 TO 4), High, X) ;
decY: dec2to4 PORT MAP (FuncReg(5 TO 6), High, Y) ;

controlsignals: PROCESS (T, I, X, Y)
BEGIN

Extern <� ’0’ ; Done <� ’0’ ; Ain <� ’0’ ; Gin <� ’0’ ;
Gout <� ’0’ ; AddSub <� ’0’ ; Rin <� ”0000” ; Rout <� ”0000” ;
CASE T IS WHEN ”00” �> - - no signals asserted in time step T0

WHEN ”01” �> - - define signals asserted in time step T1
CASE I IS

WHEN ”00” �> - - Load
Extern <� ’1’ ; Rin <� X ; Done <� ’1’ ;

WHEN ”01” �> - - Move
Rout <� Y ; Rin <� X ; Done <� ’1’ ;

WHEN OTHERS �> - - Add, Sub
Rout <� X ; Ain <� ’1’ ;

END CASE ;

. . . continued in Part b

Figure 7.74 Alternative code for the processor (Part a).

At the end of Figure 7.74, the bus is described using a selected signal assignment. This
statement represents multiplexers that place the appropriate data onto BusWires, depending
on the values of Rout , Gout , and Extern.

The circuits synthesized from the code in Figures 7.73 and 7.74 are functionally equiv-
alent. The style of code in Figure 7.74 has the advantage that it does not require the manual

January 24, 2008 14:23 vra_29532_ch07 Sheet number 81 Page number 461 black

7.14 Design Examples 461

WHEN ”10” �> - - define signals asserted in time step T2
CASE I IS

WHEN ”10” �> - - Add
Rout <� Y ; Gin <� ’1’ ;

WHEN ”11” �> - - Sub
Rout <� Y ; AddSub <� ’1’ ; Gin <� ’1’ ;

WHEN OTHERS �> - - Load, Move
END CASE ;

WHEN OTHERS �> - - define signals asserted in time step T3
CASE I IS

WHEN ”00” �> - - Load
WHEN ”01” �> - - Move
WHEN OTHERS �> - - Add, Sub

Gout <� ’1’ ; Rin <� X ; Done <� ’1’ ;
END CASE ;

END CASE ;
END PROCESS ;
reg0: regn PORT MAP (BusWires, Rin(0), Clock, R0) ;
reg1: regn PORT MAP (BusWires, Rin(1), Clock, R1) ;
reg2: regn PORT MAP (BusWires, Rin(2), Clock, R2) ;
reg3: regn PORT MAP (BusWires, Rin(3), Clock, R3) ;
regA: regn PORT MAP (BusWires, Ain, Clock, A) ;
alu: WITH AddSub SELECT

Sum <� A + BusWires WHEN ’0’,
A − BusWires WHEN OTHERS ;

regG: regn PORT MAP (Sum, Gin, Clock, G) ;
Sel <� Rout & Gout & Extern ;
WITH Sel SELECT

BusWires <� R0 WHEN ”100000”,
R1 WHEN ”010000”,
R2 WHEN ”001000”,
R3 WHEN ”000100”,
G WHEN ”000010”,
Data WHEN OTHERS ;

END Behavior ;

Figure 7.74 Alternative code for the processor (Part b).

effort of analyzing Table 7.3 to generate the logic expressions for the control signals used
for Figure 7.73. By using the style of code in Figure 7.74, these expressions are produced
automatically by the VHDL compiler as a result of analyzing the CASE statements. The
style of code in Figure 7.74 is less prone to careless errors. Also, using this style of code it
would be straightforward to provide additional capabilities in the processor, such as adding
other operations.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 82 Page number 462 black

462 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

We synthesized a circuit to implement the code in Figure 7.74 in a chip. Figure 7.75
gives an example of the results of a timing simulation. Each clock cycle in which w = 1
in this timing diagram indicates the start of an operation. In the first such operation, at 250
ns in the simulation time, the values of both inputs F and Rx are 00. Hence the operation
corresponds to “Load R0, Data.” The value of Data is 2A, which is loaded into R0 on the
next positive clock edge. The next operation loads 55 into register R1, and the subsequent
operation loads 22 into R2. At 850 ns the value of the input F is 10, while Rx = 01 and
Ry = 00. This operation is “Add R1, R0.” In the following clock cycle, the contents of
R1 (55) appear on the bus. This data is loaded into register A by the clock edge at 950 ns,
which also results in the contents of R0 (2A) being placed on the bus. The adder/subtractor
module generates the correct sum (7F), which is loaded into register G at 1050 ns. After
this clock edge the new contents of G (7F) are placed on the bus and loaded into register
R1 at 1150 ns. Two more operations are shown in the timing diagram. The one at 1250
ns (“Move R3, R1”) copies the contents of R1 (7F) into R3. Finally, the operation starting
at 1450 ns (“Sub R3, R2”) subtracts the contents of R2 (22) from the contents of R3 (7F),
producing the correct result, 7F − 22 = 5D.

Figure 7.75 Timing simulation for the VHDL code in Figure 7.74.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 83 Page number 463 black

7.14 Design Examples 463

7.14.3 Reaction Timer

We showed in Chapter 3 that electronic devices operate at remarkably fast speeds, with the
typical delay through a logic gate being less than 1 ns. In this example we use a logic circuit
to measure the speed of a much slower type of device—a person.

We will design a circuit that can be used to measure the reaction time of a person to
a specific event. The circuit turns on a small light, called a light-emitting diode (LED). In
response to the LED being turned on, the person attempts to press a switch as quickly as
possible. The circuit measures the elapsed time from when the LED is turned on until the
switch is pressed.

To measure the reaction time, a clock signal with an appropriate frequency is needed.
In this example we use a 100 Hz clock, which measures time at a resolution of 1/100 of a
second. The reaction time can then be displayed using two digits that represent fractions
of a second from 00/100 to 99/100.

Digital systems often include high-frequency clock signals to control various subsys-
tems. In this case assume the existence of an input clock signal with the frequency 102.4
kHz. From this signal we can derive the required 100 Hz signal by using a counter as a clock
divider. A timing diagram for a four-bit counter is given in Figure 7.22. It shows that the
least-significant bit output, Q0, of the counter is a periodic signal with half the frequency of
the clock input. Hence we can view Q0 as dividing the clock frequency by two. Similarly,
the Q1 output divides the clock frequency by four. In general, output Qi in an n-bit counter
divides the clock frequency by 2i+1. In the case of our 102.4 kHz clock signal, we can use
a 10-bit counter, as shown in Figure 7.76a. The counter output c9 has the required 100 Hz
frequency because 102400 Hz/1024 = 100 Hz.

The reaction timer circuit has to be able to turn an LED on and off. The graphical
symbol for an LED is shown in blue in Figure 7.76b. Small blue arrows in the symbol
represent the light that is emitted when the LED is turned on. The LED has two terminals:
the one on the left in the figure is the cathode, and the terminal on the right is the anode. To
turn the LED on, the cathode has to be set to a lower voltage than the anode, which causes
a current to flow through the LED. If the voltages on its two terminals are equal, the LED
is off.

Figure 7.76b shows one way to control the LED, using an inverter. If the input voltage
VLED = 0, then the voltage at the cathode is equal to VDD; hence the LED is off. But
if VLED = VDD, the cathode voltage is 0 V and the LED is on. The amount of current
that flows is limited by the value of the resistor RL. This current flows through the LED
and the NMOS transistor in the inverter. Since the current flows into the inverter, we
say that the inverter sinks the current. The maximum current that a logic gate can sink
without sustaining permanent damage is usually called IOL, which stands for the “maxi-
mum current when the output is low.” The value of RL is chosen such that the current
is less than IOL. As an example assume that the inverter is implemented inside a PLD
device. The typical value of IOL, which would be specified in the data sheet for the PLD,
is about 12 mA. For VDD = 5 V, this leads to RL ≈ 450 � because 5 V /450 � = 11
mA (there is actually a small voltage drop across the LED when it is turned on, but we
ignore this for simplicity). The amount of light emitted by the LED is proportional to
the current flow. If 11 mA is insufficient, then the inverter should be implemented in a

January 24, 2008 14:23 vra_29532_ch07 Sheet number 84 Page number 464 black

464 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

D Q

Q

(a) Clock divider

10-bit counter
Clock

c0c1c9

Two-digit BCD counter

w0

a

w1

b

w2 w3

g

w0

a

w1

b

w2 w3

g

BCD0BCD1
E

Converter Converter

c9

VDD

R

w

VDD

RL

(c) Push-button switch, LED, and 7-segment displays

Reset Clear

VDD

RL

VDD

V LED

1
0

1

(b) LED circuit

Figure 7.76 A reaction-timer circuit.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 85 Page number 465 black

7.14 Design Examples 465

buffer chip, like those described in section 3.5, because buffers provide a higher value
of IOL.

The complete reaction-timer circuit is illustrated in Figure 7.76c, with the inverter
from part (b) shaded in grey. The graphical symbol for a push-button switch is shown in
the top left of the diagram. The switch normally makes contact with the top terminals, as
depicted in the figure. When depressed, the switch makes contact with the bottom terminals;
when released, it automatically springs back to the top position. In the figure the switch is
connected such that it normally produces a logic value of 1, and it produces a 0 pulse when
pressed.

When depressed, the push-button switch causes the D flip-flop to be synchronously
reset. The output of this flip-flop determines whether the LED is on or off, and it also
provides the count enable input to a two-digit BCD counter. As discussed in section 7.11,
each digit in a BCD counter has four bits that take the values 0000 to 1001. Thus the
counting sequence can be viewed as decimal numbers from 00 to 99. A circuit for the
BCD counter is given in Figure 7.28. In Figure 7.76c both the flip-flop and the counter are
clocked by the c9 output of the clock divider in part (a) of the figure. The intended use of
the reaction-timer circuit is to first depress the switch to turn off the LED and disable the
counter. Then the Reset input is asserted to clear the contents of the counter to 00. The
input w normally has the value 0, which keeps the flip-flop cleared and prevents the count
value from changing. The reaction test is initiated by setting w = 1 for one c9 clock cycle.
After the next positive edge of c9, the flip-flop output becomes a 1, which turns on the LED.
We assume that w returns to 0 after one clock cycle, but the flip-flop output remains at 1
because of the 2-to-1 multiplexer connected to the D input. The counter is then incremented
every 1/100 of a second. Each digit in the counter is connected through a code converter to
a 7-segment display, which we described in the discussion for Figure 6.25. When the user
depresses the switch, the flip-flop is cleared, which turns off the LED and stops the counter.
The two-digit display shows the elapsed time to the nearest 1/100 of a second from when
the LED was turned on until the user was able to respond by depressing the switch.

VHDLCode
To describe the circuit in Figure 7.76c usingVHDLcode, we can make use of subcircuits

for the BCD counter and the 7-segment code converter. The code for the latter subcircuit is
given in Figure 6.47 and is not repeated here. Code for the BCD counter, which represents
the circuit in Figure 7.28, is shown in Figure 7.77. The two-digit BCD output is represented
by the 2 four-bit signalsBCD1 andBCD0. TheClear input is used to provide a synchronous
reset for both digits in the counter. If E = 1, the count value is incremented on the positive
clock edge, and if E = 0, the count value is unchanged. Each digit can take the values from
0000 to 1001.

Figure 7.78 gives the code for the reaction timer. The input signal Pushn represents the
value produced by the push-button switch. The output signal LEDn represents the output
of the inverter that is used to control the LED. The two 7-segment displays are controlled
by the seven-bit signals Digit1 and Digit 0.

In Figure 7.56 we showed how a register, R, can be designed with a control signal Rin.
If Rin = 1 data is loaded into the register on the active clock edge and if Rin = 0, the stored
contents of the register are not changed. The flip-flop in Figure 7.76 is used in the same

January 24, 2008 14:23 vra_29532_ch07 Sheet number 86 Page number 466 black

466 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.std logic unsigned.all ;

ENTITY BCDcount IS
PORT (Clock : IN STD LOGIC ;

Clear, E : IN STD LOGIC ;
BCD1, BCD0 : BUFFER STD LOGIC VECTOR(3 DOWNTO 0)) ;

END BCDcount ;

ARCHITECTURE Behavior OF BCDcount IS
BEGIN

PROCESS (Clock)
BEGIN

IF Clock’EVENT AND Clock � ’1’ THEN
IF Clear � ’1’ THEN

BCD1 <� ”0000” ; BCD0 <� ”0000” ;
ELSIF E � ’1’ THEN

IF BCD0 � ”1001” THEN
BCD0 <� ”0000” ;
IF BCD1 � ”1001” THEN

BCD1 <� ”0000”;
ELSE

BCD1 <� BCD1 + ’1’ ;
END IF ;

ELSE
BCD0 <� BCD0 + ’1’ ;

END IF ;
END IF ;

END IF;
END PROCESS;

END Behavior ;

Figure 7.77 Code for the two-digit BCD counter in Figure 7.28.

way. If w = 1, the flip-flop is loaded with the value 1, but if w = 0 the stored value in the
flip-flop is not changed. This circuit is described by the process labeled flipflop in Figure
7.78, which also includes a synchronous reset input. We have chosen to use a synchronous
reset because the flip-flop output is connected to the enable input E on the BCD counter.
As we know from the discussion in section 7.3, it is important that all signals connected to
flip-flops meet the required setup and hold times. The push-button switch can be pressed at
any time and is not synchronized to the c9 clock signal. By using a synchronous reset for
the flip-flop in Figure 7.76, we avoid possible timing problems in the counter.

The flip-flop output is called LED, which is inverted to produce the LEDn signal that
controls the LED. In the device used to implement the circuit, LEDnwould be generated by

January 24, 2008 14:23 vra_29532_ch07 Sheet number 87 Page number 467 black

7.14 Design Examples 467

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY reaction IS
PORT (c9, Reset : IN STD LOGIC ;

w, Pushn : IN STD LOGIC ;
LEDn : OUT STD LOGIC ;
Digit1, Digit0 : BUFFER STD LOGIC VECTOR(1 TO 7)) ;

END reaction ;

ARCHITECTURE Behavior OF reaction IS
COMPONENT BCDcount

PORT (Clock : IN STD LOGIC ;
Clear, E : IN STD LOGIC ;
BCD1, BCD0 : BUFFER STD LOGIC VECTOR(3 DOWNTO 0)) ;

END COMPONENT ;
COMPONENT seg7

PORT (bcd : IN STD LOGIC VECTOR(3 DOWNTO 0) ;
leds : OUT STD LOGIC VECTOR(1 TO 7)) ;

END COMPONENT ;
SIGNAL LED : STD LOGIC ;
SIGNAL BCD1, BCD0 : STD LOGIC VECTOR(3 DOWNTO 0) ;

BEGIN
flipflop: PROCESS
BEGIN

WAIT UNTIL c9’EVENT AND c9 � ’1’ ;
IF Pushn � ’0’ THEN

LED <� ’0’ ;
ELSIF w � ’1’ THEN

LED <� ’1’ ;
END IF ;

END PROCESS ;

LEDn <� NOT LED ;
counter: BCDcount PORT MAP (c9, Reset, LED, BCD1, BCD0) ;
seg1 : seg7 PORT MAP (BCD1, Digit1) ;
seg0 : seg7 PORT MAP (BCD0, Digit0) ;

END Behavior ;

Figure 7.78 Code for the reaction timer.

a buffer that is connected to an output pin on the chip package. If a PLD is used, this buffer
has the associated value of IOL = 12 mA that we mentioned earlier. At the end of Figure
7.78, the BCD counter and 7-segment code converters are instantiated as subcircuits.

A simulation of the reaction-timer circuit implemented in a chip is shown in Figure
7.79. Initially, Pushn is set to 0 to simulate depressing the switch to turn off the LED, and

January 24, 2008 14:23 vra_29532_ch07 Sheet number 88 Page number 468 black

468 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

Figure 7.79 Simulation of the reaction-timer circuit.

then Pushn returns to 1. Also, Reset is asserted to clear the counter. When w changes to 1,
the circuit sets LEDn to 0, which represents the LED being turned on. After some amount
of time, the switch will be depressed. In the simulation we arbitrarily set Pushn to 0 after
18 c9 clock cycles. Thus this choice represents the case when the person’s reaction time is
about 0.18 seconds. In human terms this duration is a very short time; for electronic circuits
it is a very long time. An inexpensive personal computer can perform tens of millions of
operations in 0.18 seconds!

7.14.4 Register Transfer Level (RTL) Code

At this point, we have introduced most of the VHDLconstructs that are needed for synthesis.
Most of our examples give behavioral code, utilizing IF-THEN-ELSE statements, CASE
statements, FOR loops, and so on. It is possible to write behavioral code in a style that
resembles a computer program, in which there is a complex flow of control with many loops
and branches. With such code, sometimes called high-level behavioral code, it is difficult to
relate the code to the final hardware implementation; it may even be difficult to predict what
circuit a high-level synthesis tool will produce. In this book we do not use the high-level
style of code. Instead, we present VHDL code in such a way that the code can be easily
related to the circuit that is being described. Most design modules presented are fairly small,
to facilitate simple descriptions. Larger designs are built by interconnecting the smaller
modules. This approach is usually referred to as the register-transfer level (RTL) style of
code. It is the most popular design method used in practice. RTL code is characterized by a
straightforward flow of control through the code; it comprises well-understood subcircuits
that are connected together in a simple way.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 89 Page number 469 black

7.15 Timing Analysis of Flip-flop Circuits 469

7.15 Timing Analysis of Flip-flop Circuits

In Figure 7.15 we showed the timing parameters associated with a D flip-flop. A simple
circuit that uses this flip-flop is given in Figure 7.80. We wish to calculate the maximum
clock frequency, Fmax, for which this circuit will operate properly, and also determine if the
circuit suffers from any hold time violations. In the literature, this type of analysis of circuits
is usually called timing analysis. We will assume that the flip-flop timing parameters have
the values tsu = 0.6 ns, th = 0.4 ns, and 0.8 ns ≤ tcQ ≤ 1.0 ns. A range of minimum and
maximum values is given for tcQ because, as we mentioned in section 7.4.4, this is the usual
way of dealing with variations in delay that exist in integrated circuit chips.

To calculate the minimum period of the clock signal, Tmin = 1/Fmax, we need to
consider all paths in the circuit that start and end at flip-flops. In this simple circuit there is
only one such path, which starts when data is loaded into the flip-flop by a positive clock
edge, propagates to the Q output after the tcQ delay, propagates through the NOT gate, and
finally must meet the setup requirement at the D input. Therefore

Tmin = tcQ + tNOT + tsu

Since we are interested in the longest delay for this calculation, the maximum value of
tcQ should be used. For the calculation of tNOT we will assume that the delay through any
logic gate can be calculated as 1+ 0.1k, where k is the number of inputs to the gate. For a
NOT gate this gives 1.1 ns, which leads to

Tmin = 1.0+ 1.1+ 0.6 = 2.7 ns

Fmax = 1/2.7 ns = 370.37 MHz

It is also necessary to check if there are any hold time violations in the circuit. In this
case we need to examine the shortest possible delay from a positive clock edge to a change
in the value of the D input. The delay is given by tcQ + tNOT = 0.8+ 1.1 = 1.9 ns. Since
1.9 ns > th = 0.4 ns there is no hold time violation.

As another example of timing analysis of flip-flop circuits, consider the counter circuit
shown in Figure 7.81. We wish to calculate the maximum clock frequency for which this
circuit will operate properly assuming the same flip-flop timing parameters as we did for

D Q

Q

Q

Clear

Clock

Figure 7.80 A simple flip-flop circuit.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 90 Page number 470 black

470 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

Clock

Enable D Q

Q

D Q

Q

D Q

Q

D Q

Q

Q0

Q1

Q2

Q3

Figure 7.81 A 4-bit counter.

Figure 7.80. We will again assume that the propagation delay through a logic gate can be
calculated as 1+ 0.1k.

There are many paths in this circuit that start and end at flip-flops. The longest such
path starts at flip-flop Q0 and ends at flip-flop Q3. The longest path in a circuit is often called
a critical path. The delay of the critical path includes the clock-to-Q delay of flip-flop Q0,
the propagation delay through three AND gates, and one XOR-gate delay. We must also
account for the setup time of flip-flop Q3. This gives

Tmin = tcQ + 3(tAND)+ tXOR + tsu

Using the maximum value of tcQ gives

Tmin = 1.0+ 3(1.2)+ 1.2+ 0.6 ns = 6.4 ns

Fmax = 1/6.4 ns = 156.25 MHz

January 24, 2008 14:23 vra_29532_ch07 Sheet number 91 Page number 471 black

7.16 Concluding Remarks 471

The shortest paths through the circuit are from each flip-flop to itself, through an XOR
gate. The minimum delay along each such path is tcQ + tXOR = 0.8+ 1.2 = 2.0 ns. Since
2.0 ns > th = 0.4 ns there are no hold time violations.

In the above analysis we assumed that the clock signal arrived at exactly the same time
at all four flip-flops. We will now repeat this analysis assuming that the clock signal still
arrives at flip-flops Q0, Q1, and Q2 simultaneously, but that there is a delay in the arrival
of the clock signal at flip-flop Q3. Such a variation in the arrival time of a clock signal at
different flip-flops is called clock skew, tskew, and can be caused by a number of factors.

In Figure 7.81 the critical path through the circuit is from flip-flop Q0 to Q3. However,
the clock skew at Q3 has the effect of reducing this delay, because it provides additional
time before data is loaded into this flip-flop. Taking a clock skew of 1.5 ns into account,
the delay of the path from flip-flop Q0 to Q3 is given by tcQ+ 3(tAND)+ tXOR+ tsu− tskew =
6.4−1.5 ns = 4.9 ns. There is now a different critical path through the circuit, which starts
at flip-flop Q0 and ends at Q2. The delay of this path gives

Tmin = tcQ + 2(tAND)+ tXOR + tsu
= 1.0+ 2(1.2)+ 1.2+ 0.6 ns

= 5.2 ns

Fmax = 1/5.2 ns = 192.31 MHz

In this case the clock skew results in an increase in the circuit’s maximum clock frequency.
But if the clock skew had been negative, which would be the case if the clock signal arrived
earlier at flip-flop Q3 than at other flip-flops, then the result would have been a reduced
Fmax.

Since the loading of data into flip-flop Q3 is delayed by the clock skew, it has the
effect of increasing the hold time requirement of this flip-flop to th + tskew, for all paths
that end at Q3 but start at Q0, Q1, or Q2. The shortest such path in the circuit is from
flip-flop Q2 to Q3 and has the delay tcQ + tAND + tXOR = 0.8+ 1.2+ 1.2 = 3.2 ns. Since
3.2 ns > th + tskew = 1.9 ns there is no hold time violation.

If we repeat the above hold time analysis for clock skew values tskew ≥ 3.2−th = 2.8 ns,
then hold time violations will exist. Thus, if tskew ≥ 2.8 ns the circuit will not work reliably
at any clock frequency. Due to the complications in circuit timing that arise in the presence
of clock skew, a good digital circuit design approach is to ensure that the clock signal
reaches all flip-flops with the smallest possible skew. We discuss clock synchronization
issues in section 10.3.

7.16 Concluding Remarks

In this chapter we have presented circuits that serve as basic storage elements in digital
systems. These elements are used to build larger units such as registers, shift registers,
and counters. Many other texts that deal with this material are available [3–11]. We
have illustrated how circuits with flip-flops can be described using VHDL code. More

January 24, 2008 14:23 vra_29532_ch07 Sheet number 92 Page number 472 black

472 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

information on VHDL can be found in [12–17]. In the next chapter a more formal method
for designing circuits with flip-flops will be presented.

7.17 Examples of Solved Problems

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.

Example 7.13 Problem: Consider the circuit in Figure 7.82a. Assume that the input C is driven by a
square wave signal with a 50% duty cycle. Draw a timing diagram that shows the waveforms
at points A and B. Assume that the propagation delay through each gate is 	 seconds.

Solution: The timing diagram is shown in Figure 7.82b.

Example 7.14 Problem: Determine the functional behavior of the circuit in Figure 7.83. Assume that
input w is driven by a square wave signal.

A

C

(b) Timing diagram

(a) Circuit

A

B

C

1∆ 1∆

2∆ 2∆ 2∆ 2∆

3∆ 3∆

B

Figure 7.82 Circuit for Example 7.13.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 93 Page number 473 black

7.17 Examples of Solved Problems 473

J Q

QK

J Q

QK 11

w

Q0
Q1

Clear

FF0 FF1

Figure 7.83 Circuit for Example 7.14.

Time FF0 FF1

interval J0 K0 Q0 J1 K1 Q1

Clear 1 1 0 0 1 0
t1 1 1 1 1 1 0
t2 0 1 0 0 1 1
t3 1 1 0 0 1 0
t4 1 1 1 1 1 0

Figure 7.84 Summary of the behavior of the circuit in Figure 7.83.

Solution: When both flip-flops are cleared, their outputs are Q0 = Q1 = 0. After the Clear
input goes high, each pulse on the w input will cause a change in the flip-flops as indicated
in Figure 7.84. Note that the figure shows the state of the signals after the changes caused
by the rising edge of a pulse have taken place.

In consecutive time intervals the values of Q1 Q0 are 00, 01, 10, 00, 01, and so on.
Therefore, the circuit generates the counting sequence: 0, 1, 2, 0, 1, and so on. Hence, the
circuit is a modulo-3 counter.

Example 7.15Problem: Figure 7.70 shows a circuit that generates four timing control signals T0, T1, T2,
and T3. Design a circuit that generates six such signals, T0 to T5.

Solution: The scheme of Figure 7.70 can be extended by using a modulo-6 counter, given
in Figure 7.26, and a decoder that produces the six timing signals. A simpler alternative is
possible by using a Johnson counter. Using three D-type flip-flops in a structure depicted
in Figure 7.30, we can generate six patterns of bits Q0Q1Q2 as shown in Figure 7.85. Then,

January 24, 2008 14:23 vra_29532_ch07 Sheet number 94 Page number 474 black

474 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

Clock cycle Q0 Q1 Q2 Control signal

0 0 0 0 T0 = Q0Q2

1 1 0 0 T1 = Q0Q1

2 1 1 0 T2 = Q1Q2

3 1 1 1 T3 = Q0Q2

4 0 1 1 T4 = Q0Q1

5 0 0 1 T5 = Q1Q2

Figure 7.85 Timing signals for Example 7.15.

using only six more two-input AND gates, as shown in the figure, we can obtain the desired
signals. Note that the patterns Q0Q1Q2 equal to 010 and 101 cannot occur in the Johnson
counter, so these cases are treated as don’t care conditions.

Example 7.16 Problem: Design a circuit that can be used to control a vending machine. The circuit has
five inputs: Q (quarter), D (dime), N (nickel), Coin, and Resetn. When a coin is deposited
in the machine, a coin-sensing mechanism generates a pulse on the appropriate input (Q,
D, or N). To signify the occurrence of the event, the mechanism also generates a pulse on
the line Coin. The circuit is reset by using the Resetn signal (active low). When at least
30 cents has been deposited, the circuit activates its output, Z. No change is given if the
amount exceeds 30 cents.

Design the required circuit by using the following components: a six-bit adder, a six-bit
register, and any number of AND, OR, and NOT gates.

Solution: Figure 7.86 gives a possible circuit. The value of each coin is represented by a
corresponding five-bit number. It is added to the current total, which is held in register S.
The required output is

Z = s5 + s4s3s2s1

The register is clocked by the negative edge of theCoin signal. This allows for a propagation
delay through the adder, and ensures that a correct sum will be placed into the register.

In Chapter 9 we will show how this type of control circuit can be designed using a
more structured approach.

Example 7.17 Problem: Write VHDL code to implement the circuit in Figure 7.86.

Solution: Figure 7.87 gives the desired code.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 95 Page number 475 black

7.17 Examples of Solved Problems 475

Adder

Register S

Z

s
5 0–

s
5

s
4

s
3

s
2

s
1

Coin

Resetn

0

N

D

Q

Figure 7.86 Circuit for Example 7.16.

Example 7.18Problem: In section 7.15 we presented a timing analysis for the counter circuit in Figure
7.81. Redesign this circuit to reduce the logic delay between flip-flops, so that the circuit
can operate at a higher maximum clock frequency.

Solution: As we showed in section 7.15, the performance of the counter circuit is limited
by the delay through its cascaded AND gates. To increase the circuit’s performance we
can refactor the AND gates as illustrated in Figure 7.88. The longest delay path in this
redesigned circuit, which starts at flip-flop Q0 and ends at Q3, provides the minimum clock
period

Tmin = tcQ + tAND + tXOR + tsu
= 1.0+ 1.4+ 1.2+ 0.6 ns = 4.2 ns

January 24, 2008 14:23 vra_29532_ch07 Sheet number 96 Page number 476 black

476 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.std logic signed.all ;

ENTITY vend IS
PORT (N, D, Q, Resetn, Coin : IN STD LOGIC ;

Z : OUT STD LOGIC) ;
END vend ;

ARCHITECTURE Behavior OF vend IS
SIGNAL X: STD LOGIC VECTOR(4 DOWNTO 0) ;
SIGNAL S: STD LOGIC VECTOR(5 DOWNTO 0) ;

BEGIN
X(0) <� N OR Q ;
X(1) <� D ;
X(2) <� N ;
X(3) <� D OR Q ;
X(4) <� Q ;
PROCESS (Resetn, Coin)
BEGIN

IF Resetn � ’0’ THEN
S <� ”000000” ;

ELSIF Coin’EVENT AND Coin � ’0’ THEN
S <� (’0’ & X) + S ;

END IF ;
END PROCESS ;
Z <� S(5) OR (S(4) AND S(3) AND S(2) AND S(1)) ;

END Behavior ;

Figure 7.87 Code for Example 7.17.

The redesigned counter has a maximum clock frequency of Fmax = 1/4.2 ns = 238.1 MHz,
compared to the result for the original counter, which was 156.25 MHz.

Problems

Answers to problems marked by an asterisk are given at the back of the book.

7.1 Consider the timing diagram in Figure P7.1. Assuming that the D and Clock inputs shown
are applied to the circuit in Figure 7.12, draw waveforms for the Qa, Qb, and Qc signals.

7.2 Can the circuit in Figure 7.3 be modified to implement an SR latch? Explain your answer.

7.3 Figure 7.5 shows a latch built with NOR gates. Draw a similar latch using NAND gates.
Derive its characteristic table and show its timing diagram.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 97 Page number 477 black

Problems 477

Clock

Enable D Q

Q

D Q

Q

D Q

Q

D Q

Q

Q0

Q1

Q2

Q3

Q2

Q2

Figure 7.88 A faster 4-bit counter.

*7.4 Show a circuit that implements the gated SR latch using NAND gates only.

7.5 Given a 100-MHz clock signal, derive a circuit using D flip-flops to generate 50-MHz
and 25-MHz clock signals. Draw a timing diagram for all three clock signals, assuming
reasonable delays.

*7.6 An SR flip-flop is a flip-flop that has set and reset inputs like a gated SR latch. Show how
an SR flip-flop can be constructed using a D flip-flop and other logic gates.

7.7 The gated SR latch in Figure 7.6a has unpredictable behavior if the S and R inputs are
both equal to 1 when the Clk changes to 0. One way to solve this problem is to create a
set-dominant gated SR latch in which the condition S = R = 1 causes the latch to be set to
1. Design a set-dominant gated SR latch and show the circuit.

7.8 Show how a JK flip-flop can be constructed using a T flip-flop and other logic gates.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 98 Page number 478 black

478 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

D

Clock

Figure P7.1 Timing diagram for Problem 7.1.

*7.9 Consider the circuit in Figure P7.2. Assume that the two NAND gates have much longer
(about four times) propagation delay than the other gates in the circuit. How does this
circuit compare with the circuits that we discussed in this chapter?

A

B

C

D

E

Figure P7.2 Circuit for Problem 7.9.

7.10 Write VHDL code that represents a T flip-flop with an asynchronous clear input. Use
behavioral code, rather than structural code.

7.11 Write VHDL code that represents a JK flip-flop. Use behavioral code, rather than structural
code.

7.12 Synthesize a circuit for the code written for problem 7.11 by using your CAD tools. Simulate
the circuit and show a timing diagram that verifies the desired functionality.

7.13 A universal shift register can shift in both the left-to-right and right-to-left directions, and
it has parallel-load capability. Draw a circuit for such a shift register.

7.14 Write VHDL code for a universal shift register with n bits.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 99 Page number 479 black

Problems 479

7.15 Design a four-bit synchronous counter with parallel load. Use T flip-flops, instead of the D
flip-flops used in section 7.9.3.

*7.16 Design a three-bit up/down counter using T flip-flops. It should include a control input
called Up/Down. If Up/Down = 0, then the circuit should behave as an up-counter. If
Up/Down = 1, then the circuit should behave as a down-counter.

7.17 Repeat problem 7.16 using D flip-flops.

*7.18 The circuit in Figure P7.3 looks like a counter. What is the sequence that this circuit counts
in?

T Q

Q

1 T Q

Q

T Q

Q

Q0 Q1 Q2

Clock

Figure P7.3 The circuit for Problem 7.18.

7.19 Consider the circuit in Figure P7.4. How does this circuit compare with the circuit in Figure
7.17? Can the circuits be used for the same purposes? If not, what is the key difference
between them?

Clock

S Q

Q

Clk

R

S Q

Q

Clk

R

Q

Q

J

K

Figure P7.4 Circuit for Problem 7.19.

7.20 Construct a NOR-gate circuit, similar to the one in Figure 7.11a, which implements a
negative-edge-triggered D flip-flop.

7.21 Write behavioral VHDL code that represents a 24-bit up/down-counter with parallel load
and asynchronous reset.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 100 Page number 480 black

480 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

7.22 Modify the VHDL code in Figure 7.52 by adding a parameter that sets the number of
flip-flops in the counter.

7.23 Write behavioral VHDL code that represents a modulo-12 up-counter with synchronous
reset.

*7.24 For the flip-flops in the counter in Figure 7.25, assume that tsu = 3 ns, th = 1 ns, and the
propagation delay through a flip-flop is 1 ns. Assume that each AND gate, XOR gate, and
2-to-1 multiplexer has the propagation delay equal to 1 ns. What is the maximum clock
frequency for which the circuit will operate correctly?

7.25 Write hierarchical code (structural) for the circuit in Figure 7.28. Use the counter in Fig-
ure 7.25 as a subcircuit.

7.26 Write VHDL code that represents an eight-bit Johnson counter. Synthesize the code with
your CAD tools and give a timing simulation that shows the counting sequence.

7.27 Write behavioral VHDLcode in the style shown in Figure 7.51 that represents a ring counter.
Your code should have a parameter N that sets the number of flip-flops in the counter.

*7.28 Write behavioral VHDL code that describes the functionality of the circuit shown in Fig-
ure 7.42.

7.29 Figure 7.65 gives VHDL code for a digital system that swaps the contents of two registers,
R1 and R2, using register R3 for temporary storage. Create an equivalent schematic using
your CAD tools for this system. Synthesize a circuit for this schematic and perform a timing
simulation.

7.30 Repeat problem 7.29 using the control circuit in Figure 7.59.

7.31 Modify the code in Figure 7.67 to use the control circuit in Figure 7.59. Synthesize the
code for implementation in a chip and perform a timing simulation.

7.32 In section 7.14.2 we designed a processor that performs the operations listed in Table 7.3.
Design a modified circuit that performs an additional operation SwapRx, Ry. This operation
swaps the contents of registers Rx and Ry. Use three bits f2 f1 f0 to represent the input F
shown in Figure 7.71 because there are now five operations, rather than four. Add a new
register, named Tmp, into the system, to be used for temporary storage during the swap
operation. Show logic expressions for the outputs of the control circuit, as was done in
section 7.14.2.

7.33 A ring oscillator is a circuit that has an odd number, n, of inverters connected in a ringlike
structure, as shown in Figure P7.5. The output of each inverter is a periodic signal with a
certain period.
(a) Assume that all the inverters are identical; hence they all have the same delay, called
tp. Let the output of one of the inverters be named f . Give an equation that expresses the
period of the signal f in terms of n and tp.

f

Figure P7.5 A ring oscillator.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 101 Page number 481 black

Problems 481

Reset

Interval

100 ns

Figure P7.6 Timing of signals for Problem 7.33

(b) For this part you are to design a circuit that can be used to experimentally measure the
delay tp through one of the inverters in the ring oscillator. Assume the existence of an input
called Reset and another called Interval. The timing of these two signals is shown in Fig-
ure P7.6. The length of time for which Interval has the value 1 is known. Assume that this
length of time is 100 ns. Design a circuit that uses the Reset and Interval signals and the
signal f from part (a) to experimentally measure tp. In your design you may use logic gates
and subcircuits such as adders, flip-flops, counters, registers, and so on.

7.34 A circuit for a gated D latch is shown in Figure P7.7. Assume that the propagation delay
through either a NAND gate or an inverter is 1 ns. Complete the timing diagram given in
the figure, which shows the signal values with 1 ns resolution.

Q

Clock

D

Q

A

1
0

1
0

1
0

1
0

A

D

Clock

Q

Figure P7.7 Circuit and timing diagram for Problem 7.34.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 102 Page number 482 black

482 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

*7.35 A logic circuit has two inputs, Clock and Start, and two outputs, f and g. The behavior of
the circuit is described by the timing diagram in Figure P7.8. When a pulse is received
on the Start input, the circuit produces pulses on the f and g outputs as shown in the
timing diagram. Design a suitable circuit using only the following components: a three-
bit resettable positive-edge-triggered synchronous counter and basic logic gates. For your
answer assume that the delays through all logic gates and the counter are negligible.

1
0

1
0

1
0

1
0

g

f

Start

Clock

Figure P7.8 Timing diagram for Problem 7.35.

7.36 Write behavioral VHDL code for a four-digit BCD counter.

7.37 Determine the maximum clock frequency that can be used for the circuit in Figure 7.25.
Use the timing parameters given in section 7.15.

7.38 Repeat problem 7.37 for the circuit in Figure 7.60.

7.39 (a) Draw a circuit that could be synthesized from the VHDL code in Figure P7.9.
(b) How would you modify this code to specify a crossbar switch?

7.40 A digital control circuit has three inputs: Start, Stop and Clock, as well as an output signal
Run. The Start and Stop signals are of indeterminate duration and may span many clock
cycles. When the Start signal goes to 1, the circuit must generate Run= 1. The Run signal
must remain high until the Stop signal goes to 1, at which time it has to return to 0. All
changes in the Run signal must be synchronized with the Clock signal.
(a) Design the desired control circuit.
(b) Write VHDL code that specifies the desired circuit.

January 24, 2008 14:23 vra_29532_ch07 Sheet number 103 Page number 483 black

References 483

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY problem IS
PORT (x1, x2, s: IN STD_LOGIC ;

y1, y2 : OUT STD_LOGIC) ;
END problem ;

ARCHITECTURE Behavior OF problem IS
BEGIN

PROCESS (x1, x2, s)
BEGIN

IF s = ’0’ THEN
y1 <= x1 ;
y2 <= x2 ;

ELSIF s = ’1’ THEN
y1 <= x2 ;

END IF ;
END PROCESS ;

END Behavior ;

Figure P7.9 Code for Problem 7.39.

References

1. V. C. Hamacher, Z. G. Vranesic, and S. G. Zaky, Computer Organization, 5th ed.,
(McGraw-Hill: New York, 2002).

2. D. A. Patterson and J. L. Hennessy, Computer Organization and Design—The
Hardware/Software Interface, 3rd ed., (Morgan Kaufmann: San Francisco, Ca.,
2004).

3. R. H. Katz and G. Borriello, Contemporary Logic Design, 2nd ed., (Pearson
Prentice-Hall: Upper Saddle River, N.J., 2005).

4. J. F. Wakerly, Digital Design Principles and Practices, 4th ed. (Prentice-Hall:
Englewood Cliffs, N.J., 2005).

5. C. H. Roth Jr., Fundamentals of Logic Design, 5th ed., (Thomson/Brooks/Cole:
Belmont, Ca., 2004).

6. M. M. Mano, Digital Design, 3rd ed. (Prentice-Hall: Upper Saddle River, N.J., 2002).

7. D. D. Gajski, Principles of Digital Design, (Prentice-Hall: Upper Saddle River, N.J.,
1997).

8. J. P. Daniels, Digital Design from Zero to One, (Wiley: New York, 1996).

January 24, 2008 14:23 vra_29532_ch07 Sheet number 104 Page number 484 black

484 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

9. V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit
Analysis and Design, (Prentice-Hall: Englewood Cliffs, N.J., 1995).

10. J. P. Hayes, Introduction to Logic Design, (Addison-Wesley: Reading, Ma., 1993).

11. E. J. McCluskey, Logic Design Principles, (Prentice-Hall: Englewood Cliffs, N.J.,
1986).

12. Institute of Electrical and Electronics Engineers, “1076-1993 IEEE Standard VHDL
Language Reference Manual,” 1993.

13. D. L. Perry, VHDL, 3rd ed., (McGraw-Hill: New York, 1998).

14. Z. Navabi, VHDL—Analysis and Modeling of Digital Systems, 2nd ed.
(McGraw-Hill: New York, 1998).

15. J. Bhasker, A VHDL Primer, 3rd ed. (Prentice-Hall: Englewood Cliffs, N.J., 1998).

16. K. Skahill, VHDL for Programmable Logic, (Addison-Wesley: Menlo Park, Ca.,
1996).

17. A. Dewey, Analysis and Design of Digital Systems with VHDL, (PWS Publishing Co.:
Boston, Ma., 1997).

