
We tend to remember the great civilizations of the past in part by their
public works, such as the Egyptian pyramids and the medieval cathe-
drals of Europe, which were technically challenging to create. Perhaps

it is in our nature to “push the limits,” and we admire others who do so. The chal-
lenge of innovative construction continues today. As space in our cities becomes
scarce, many urban planners prefer to build vertically rather than horizontally.
The newest tall buildings push the limits of our abilities, not only in structural
design but also in areas that we might not think of, such as elevator design and
operation, aerodynamics, and construction techniques. The photo above shows
the 1149-ft-high Las Vegas Stratosphere Tower, the tallest observation tower in
the United States. It required many innovative techniques in its assembly. The
construction crane shown in use is 400 ft tall.

Designers of buildings, bridges, and other structures will use new technolo-
gies and new materials, some based on nature’s designs. Pound for pound, spider
silk is stronger than steel, and structural engineers hope to use cables of synthetic
spider silk fibers to build earthquake-resistant suspension bridges. Smart struc-
tures, which can detect impending failure from cracks and fatigue, are now close
to reality, as are active structures that incorporate powered devices to counteract
wind and other forces. The MATLAB Financial toolbox is useful for financial
evaluation of large construction projects, and the MATLAB Partial Differential
Equation toolbox can be used for structural design. ■

Photo courtesy of Stratosphere Corporation.

Engineering in the 21st Century. . .

Innovative Construction

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 52 CONFIRMING PAGES

53

C H A P T E R 2

Numeric, Cell, and
Structure Arrays
OUTLINE
2.1 One- and Two-Dimensional Numeric Arrays

2.2 Multidimensional Numeric Arrays

2.3 Element-by-Element Operations

2.4 Matrix Operations

2.5 Polynomial Operations Using Arrays

2.6 Cell Arrays

2.7 Structure Arrays

2.8 Summary

Problems

One of the strengths of MATLAB is the capability to handle collections of items,
called arrays, as if they were a single entity. The array-handling feature means
that MATLAB programs can be very short.

The array is the basic building block in MATLAB. The following classes of
arrays are available in MATLAB 7:

Array
numeric character logical cell structure function handle Java

So far we have used only numeric arrays, which are arrays containing only
numeric values. Within the numeric class are the subclasses single (single preci-
sion), double (double precision), int8, int16, and int32 (signed 8-bit, 16-bit, and
32-bit integers), and uint8, uint16, and uint32 (unsigned 8-bit, 16-bit, and 32-bit
integers). A character array is an array containing strings. The elements of logical

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 53 CONFIRMING PAGES

arrays are “true” or “false,” which, although represented by the symbols 1 and
0, are not numeric quantities. We will study the logical arrays in Chapter 4. Cell
arrays and structure arrays are covered in Sections 2.6 and 2.7. Function handles
are treated in Chapter 3. The Java class is not covered in this text.

The first four sections of this chapter treat concepts that are essential to under-
standing MATLAB and therefore must be covered. Section 2.5 treats polynomial
applications. Sections 2.6 and 2.7 introduce two types of arrays that are useful for
some specialized applications.

2.1 One- and Two-Dimensional Numeric Arrays
We can represent the location of a point in three-dimensional space by three
Cartesian coordinates x, y, and z. These three coordinates specify a vector p. (In
mathematical text we often use boldface type to indicate vectors.) The set of unit
vectors i, j, k, whose lengths are 1 and whose directions coincide with the x, y,
and z axes, respectively, can be used to express the vector mathematically as fol-
lows: p � xi � yj � zk. The unit vectors enable us to associate the vector
components x, y, z with the proper coordinate axes; therefore, when we write p �
5i � 7j � 2k, we know that the x, y, and z coordinates of the vector are 5, 7, and
2, respectively. We can also write the components in a specific order, separate
them with a space, and identify the group with brackets, as follows: [5 7 2]. As
long as we agree that the vector components will be written in the order x, y, z,
we can use this notation instead of the unit-vector notation. In fact, MATLAB
uses this style for vector notation. MATLAB allows us to separate the compo-
nents with commas for improved readability if we desire so that the equivalent
way of writing the preceding vector is [5, 7, 2]. This expression is a row vector,
which is a horizontal arrangement of the elements.

We can also express the vector as a column vector, which has a vertical
arrangement. A vector can have only one column, or only one row. Thus, a
vector is a one-dimensional array. In general, arrays can have more than one
column and more than one row.

Creating Vectors in MATLAB

The concept of a vector can be generalized to any number of components. In
MATLAB a vector is simply a list of scalars, whose order of appearance in the
list might be significant, as it is when specifying xyz coordinates. As another
example, suppose we measure the temperature of an object once every hour.
We can represent the measurements as a vector, and the 10th element in the
list is the temperature measured at the 10th hour.

To create a row vector in MATLAB, you simply type the elements inside a
pair of square brackets, separating the elements with a space or a comma. Brackets
are required for arrays unless you use the colon operator to create the array. In
this case you should not use brackets, but you can optionally use parentheses.
The choice between a space or comma is a matter of personal preference,
although the chance of an error is less if you use a comma. (You can also use a
comma followed by a space for maximum readability.)

54 CHAPTER 2 Numeric, Cell, and Structure Arrays

ROW VECTOR

COLUMN VECTOR

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 54 CONFIRMING PAGES

To create a column vector, you can separate the elements by semicolons;
alternatively, you can create a row vector and then use the transpose notation (’),
which converts a row vector into a column vector, or vice versa. For example:

>>g = [3;7;9]
g =

3
7
9

>>g = [3,7,9]’
g =

3
7
9

The third way to create a column vector is to type a left bracket ([) and the first
element, press Enter, type the second element, press Enter, and so on until
you type the last element followed by a right bracket (]) and Enter. On the
screen this sequence looks like

>>g = [3
7
9]
g =

3
7
9

Note that MATLAB displays row vectors horizontally and column vectors
vertically.

You can create vectors by “appending” one vector to another. For example,
to create the row vector u whose first three columns contain the values of r =
[2,4,20] and whose fourth, fifth, and sixth columns contain the values of
w = [9,-6,3], you type u = [r,w]. The result is the vector u =
[2,4,20,9,-6,3].

The colon operator (:) easily generates a large vector of regularly spaced
elements. Typing

>>x = m:q:n

creates a vector x of values with a spacing q. The first value is m. The last value
is n if m - n is an integer multiple of q. If not, the last value is less than n. For
example, typing x = 0:2:8 creates the vector x = [0,2,4,6,8], whereas
typing x = 0:2:7 creates the vector x = [0,2,4,6]. To create a row vec-
tor z consisting of the values from 5 to 8 in steps of 0.1, you type z = 5:0.1:8.
If the increment q is omitted, it is presumed to be 1. Thus y = -3:2 produces
the vector y = [-3,-2,-1,0,1,2].

2.1 One- and Two-Dimensional Numeric Arrays 55

TRANSPOSE

pal34870_ch02_052-111.qxd 12/9/09 2:42 PM Page 55 CONFIRMING PAGES

The increment q can be negative. In this case m should be greater than n. For
example, u = 10:-2:4 produces the vector [10,8,6,4].

The linspace command also creates a linearly spaced row vector, but in-
stead you specify the number of values rather than the increment. The syntax is
linspace(x1,x2,n), where x1 and x2 are the lower and upper limits and n
is the number of points. For example, linspace(5,8,31) is equivalent to
5:0.1:8. If n is omitted, the spacing is 1.

The logspace command creates an array of logarithmically spaced
elements. Its syntax is logspace(a,b,n), where n is the number of points
between 10a and 10b. For example, x = logspace(-1,1,4) produces the
vector x = [0.1000, 0.4642, 2.1544, 10.000]. If n is omitted, the
number of points defaults to 50.

Two-Dimensional Arrays

An array having rows and columns is a two-dimensional array that is sometimes
called a matrix. In mathematical text, if possible, vectors are usually denoted by
boldface lowercase letters and matrices by boldface uppercase letters. An exam-
ple of a matrix having three rows and two columns is

We refer to the size of an array by the number of rows and the number of
columns. For example, an array with 3 rows and 2 columns is said to be a
3 � 2 array. The number of rows is always stated first! We sometimes represent
a matrix A as [aij] to indicate its elements aij. The subscripts i and j, called
indices, indicate the row and column location of the element aij. The row number
must always come first! For example, the element a32 is in row 3, column 2. Two
matrices A and B are equal if they have the same size and if all their correspond-
ing elements are equal, that is, aij � bij for every value of i and j.

Creating Matrices

The most direct way to create a matrix is to type the matrix row by row, separat-
ing the elements in a given row with spaces or commas and separating the rows
with semicolons. Brackets are required. For example, typing

>>A = [2,4,10;16,3,7];

creates the following matrix:

If the matrix has many elements, you can press Enter and continue typing on
the next line. MATLAB knows you are finished entering the matrix when you
type the closing bracket (]).

A = c 2 4 10

16 3 7
d

M = J
2 5

-3 4

-7 1
K

56 CHAPTER 2 Numeric, Cell, and Structure Arrays

ARRAY SIZE

MATRIX

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 56 CONFIRMING PAGES

You can append a row vector to another row vector to create either a third
row vector or a matrix (if both vectors have the same number of columns). Note
the difference between the results given by [a,b] and [a;b] in the following
session:

>>a = [1,3,5];
>>b = [7,9,11];
>>c = [a,b]
c =

1 3 5 7 9 11
>> D = [a;b]
D =

1 3 5
7 9 11

Matrices and the Transpose Operation

The transpose operation interchanges the rows and columns. In mathematics text
we denote this operation by the superscript T. For an m � n matrix A with m
rows and n columns, AT (read “A transpose”) is an n � m matrix.

If AT � A, the matrix A is symmetric. Note that the transpose operation converts
a row vector into a column vector, and vice versa.

If the array contains complex elements, the transpose operator (’) produces
the complex conjugate transpose; that is, the resulting elements are the complex
conjugates of the original array’s transposed elements. Alternatively, you can use
the dot transpose operator (.’) to transpose the array without producing com-
plex conjugate elements, for example, A.’. If all the elements are real, the oper-
ators ‘ and.’ give the same result.

Array Addressing

Array indices are the row and column numbers of an element in an array and are used
to keep track of the array’s elements. For example, the notation v(5) refers to the
fifth element in the vector v, and A(2,3) refers to the element in row 2, column 3
in the matrix A. The row number is always listed first! This notation enables you to
correct entries in an array without retyping the entire array. For example, to change
the element in row 1, column 3 of a matrix D to 6, you can type D(1,3) = 6.

The colon operator selects individual elements, rows, columns, or “subar-
rays” of arrays. Here are some examples:

■ v(:) represents all the row or column elements of the vector v.
■ v(2:5) represents the second through fifth elements; that is v(2), v(3),

v(4), v(5).

A = c -2 6

-3 5
d AT

= c -2 -3

6 5
d

2.1 One- and Two-Dimensional Numeric Arrays 57

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 57 CONFIRMING PAGES

■ A(:,3) denotes all the elements in the third column of the matrix A.
■ A(3,:) denotes all the elements in the third row of A.
■ A(:,2:5) denotes all the elements in the second through fifth columns of A.
■ A(2:3,1:3) denotes all the elements in the second and third rows that

are also in the first through third columns.
■ v = A(:) creates a vector v consisting of all the columns of A stacked

from first to last.
■ A(end,:) denotes the last row in A, and A(:,end) denotes the last

column.

You can use array indices to extract a smaller array from another array. For ex-
ample, if you create the array B

(2.1–1)

by typing

>>B = [2,4,10,13;16,3,7,18;8,4,9,25;3,12,15,17];

and then type

>>C = B(2:3,1:3);

you can produce the following array:

The empty array contains no elements and is expressed as []. Rows and
columns can be deleted by setting the selected row or column equal to the empty
array. This step causes the original matrix to collapse to a smaller one. For example,
A(3,:) = [] deletes the third row in A, while A(:,2:4) = [] deletes the
second through fourth columns in A. Finally, A([1 4],:) = [] deletes the first
and fourth rows of A.

Suppose we type A = [6,9,4;1,5,7] to define the following matrix:

Typing A(1,5) = 3 changes the matrix to

Because A did not have five columns, its size is automatically expanded to ac-
cept the new element in column 5. MATLAB adds zeros to fill out the remaining
elements.

A = c6 9 4 0 3

1 5 7 0 0
d

A = c6 9 4

1 5 7
d

C = c16 3 7

8 4 9
d

B = ≥
2 4 10 13

16 3 7 18

8 4 9 25

3 12 15 17

¥

58 CHAPTER 2 Numeric, Cell, and Structure Arrays

EMPTY ARRAY

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 58 CONFIRMING PAGES

MATLAB does not accept negative or zero indices, but you can use negative
increments with the colon operator. For example, typing B = A(:,5:-1:1)
reverses the order of the columns in A and produces

Suppose that C = [-4,12,3,5,8]. Then typing B(2,:) = C replaces row 2
of B with C. Thus B becomes

Suppose that D = [3,8,5;4,-6,9]. Then typing E = D([2,2,2],:)
repeats row 2 of D three times to obtain

Using clear to Avoid Errors

You can use the clear command to protect yourself from accidentally reusing an
array that has the wrong dimension. Even if you set new values for an array, some
previous values might still remain. For example, suppose you had previously created
the 2 � 2 array A = [2, 5; 6, 9], and then you create the 5 � 1 arrays x =
(1:5)’ and y = (2:6)’. Note that parentheses are needed here to use the trans-
pose operator. Suppose you now redefineA so that its columns will bex andy. If you
then typeA(:,1) = x to create the first column, MATLAB displays an error mes-
sage telling you that the number of rows in A and x must be the same. MATLAB
thinksA should be a 2 � 2 matrix becauseAwas previously defined to have only two
rows and its values remain in memory. The clear command wipes A and all other
variables from memory and avoids this error. To clear A only, type clear A before
typing A(:,1) = x.

Some Useful Array Functions

MATLAB has many functions for working with arrays (see Table 2.1–1). Here is
a summary of some of the more commonly used functions.

The max(A) function returns the algebraically greatest element in A if A is
a vector having all real elements. It returns a row vector containing the greatest
elements in each column if A is a matrix containing all real elements. If any of
the elements are complex, max(A) returns the element that has the largest mag-
nitude. The syntax [x,k] = max(A) is similar to max(A), but it stores the
maximum values in the row vector x and their indices in the row vector k.

If A and B have the same size, C = max(A,B) creates an array the same
size, having the maximum value from each corresponding location in A and B.
For example, the following A and B matrices give the C matrix shown.

E = J
4 -6 9

4 -6 9

4 -6 9
K

B = c 3 0 4 9 6

-4 12 3 5 8
d

B = c3 0 4 9 6

0 0 7 5 1
d

2.1 One- and Two-Dimensional Numeric Arrays 59

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 59 CONFIRMING PAGES

The functions min(A) and [x,k] = min(A) are the same as max(A)
and [x,k] = max(A) except that they return minimum values.

The function size(A) returns a row vector [m n] containing the sizes of
the m � n array A. The length(A) function computes either the number of el-
ements of A if A is a vector or the largest value of m or n if A is an m � n matrix.

For example, if

thenmax(A) returns the vector[6,2]; min(A) returns the vector[-10,-5];
size(A) returns [3,2]; and length(A) returns 3.

The sum(A) function sums the elements in each column of the array A and
returns a row vector containing the sums. The sort(A) function sorts each
column of the array A in ascending order and returns an array the same size as A.

If A has one or more complex elements, the max, min, and sort functions
act on the absolute values of the elements and return the element that has the largest
magnitude.

A = J
6 2

-10 -5

3 0 K

A = c1 6 4

3 7 2
d B = c3 4 7

1 5 8
d C = c3 6 7

3 7 8
d

60 CHAPTER 2 Numeric, Cell, and Structure Arrays

Table 2.1–1 Basic syntax of array functions*

Command Description

find(x) Computes an array containing the indices of the nonzero elements of the array x.
[u,v,w] = find(A) Computes the arrays u and v, containing the row and column indices of the nonzero

elements of the matrix A, and the array w, containing the values of the nonzero
elements. The array w may be omitted.

length(A) Computes either the number of elements of A if A is a vector or the largest value of
m or n if A is an m � n matrix.

linspace(a,b,n) Creates a row vector of n regularly spaced values between a and b.
logspace(a,b,n) Creates a row vector of n logarithmically spaced values between a and b.
max(A) Returns the algebraically largest element in A if A is a vector. Returns a row vector

containing the largest elements in each column if A is a matrix. If any of the ele-
ments are complex, max(A) returns the elements that have the largest magnitudes.

[x,k] = max(A) Similar to max(A) but stores the maximum values in the row vector x and their
indices in the row vector k.

min(A) Same as max(A) but returns minimum values.
[x,k] = min(A) Same as [x,k] = max(A) but returns minimum values.
norm(x) Computes a vector’s geometric length
size(A) Returns a row vector [m n] containing the sizes of the m � n array A.
sort(A) Sorts each column of the array A in ascending order and returns an array the same

size as A.
sum(A) Sums the elements in each column of the array A and returns a row vector contain-

ing the sums.

*Many of these functions have extended syntax. See the text and MATLAB help for more discussion.

2x 2
1 + x 2

2 +
Á

+ x2
n.

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 60 CONFIRMING PAGES

For example, if

then max(A) returns the vector [-10,-5] and min(A) returns the vector
[3+4i,0]. (The magnitude of 3 � 4i is 5.)

The sort will be done in descending order if the form sort(A,‘descend’)
is used. The min, max, and sort functions can be made to act on the rows in-
stead of the columns by transposing the array.

The complete syntax of the sort function is sort(A, dim, mode),
where dim selects a dimension along which to sort and mode selects the direc-
tion of the sort, ‘ascend’ for ascending order and ‘descend’ for descend-
ing order. So, for example, sort(A,2, ‘descend’) would sort the
elements in each row of A in descending order.

The find(x) command computes an array containing the indices of the
nonzero elements of the vector x. The syntax [u,v,w] = find(A) computes
the arrays u and v, containing the row and column indices of the nonzero elements
of the matrix A, and the array w, containing the values of the nonzero elements.
The array w may be omitted.

For example, if

then the session

>>A = [6, 0, 3; 0, 4, 0; 2, 7, 0];
>>[u, v, w] = find(A)

returns the vectors

The vectors u and v give the (row, column) indices of the nonzero values,
which are listed in w. For example, the second entries in u and v give the indices
(3, 1), which specifies the element in row 3, column 1 of A, whose value is 2.

These functions are summarized in Table 2.1–1.

Magnitude, Length, and Absolute Value of a Vector

The terms magnitude, length, and absolute value are often loosely used in everyday
language, but you must keep their precise meaning in mind when using MATLAB.

w = ≥
6
2
4
7
3

¥v = ≥
1
1
2
2
3

¥u = ≥
1
3
2
3
1

¥

A = J
6 0 3

0 4 0

2 7 0
K

A = J
6 2

-10 -5

3 + 4i 0
K

2.1 One- and Two-Dimensional Numeric Arrays 61

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 61 CONFIRMING PAGES

The MATLAB length command gives the number of elements in the vector. The
magnitude of a vector x having real elements x1, x2, . . . , xn is a
scalar, given by and is the same as the vector’s geo-
metric length. The absolute value of a vector x is a vector whose elements are the
absolute values of the elements of x. For example, if x = [2,-4,5], its length
is 3; its magnitude is and its absolute value is
[2,4,5]. The length, magnitude, and absolute value of x are computed by
length(x), norm(x), and abs(x), respectively.

Test Your Understanding

T2.1–1 For the matrix B, find the array that results from the operation [B;B’]. Use
MATLAB to determine what number is in row 5, column 3 of the result.

T2.1–2 For the same matrix B, use MATLAB to (a) find the largest and smallest
elements in B and their indices and (b) sort each column in B to
create a new matrix C.

The Variable Editor

The MATLAB Workspace Browser provides a graphical interface for managing
the workspace. You can use it to view, save, and clear workspace variables. It in-
cludes the Variable Editor, a graphical interface for working with variables,
including arrays. To open the Workspace Browser, type workspace at the
Command window prompt. The browser appears as shown in Figure 2.1–1.

Keep in mind that the Desktop menus are context-sensitive. Thus their
contents will change depending on which features of the browser and Variable
Editor you are currently using. The Workspace Browser shows the name of
each variable, its value, array size, and class. The icon for each variable illus-
trates its class.

B = ≥
2 4 10 13

16 3 7 18

8 4 9 25

3 12 15 17

¥

222
+ (-4)2

+ 52
= 6.7082;

2x2
1 + x2

2 +
Á

+ x2
n,

62 CHAPTER 2 Numeric, Cell, and Structure Arrays

Figure 2.1–1 The Workspace Browser.

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 62 CONFIRMING PAGES

From the Workspace Browser you can open the Variable Editor to view and
edit a visual representation of two-dimensional numeric arrays, with the rows and
columns numbered. To open the Variable Editor from the Workspace Browser,
double-click on the variable you want to open. The Variable Editor opens, dis-
playing the values for the selected variable. The Variable Editor appears as shown
in Figure 2.1–2.

To open a variable, you can also right-click it and use the Context menu. Re-
peat the steps to open additional variables into the Variable Editor. In the Variable
Editor, access each variable via its tab at the bottom of the window, or use the
Window menu. You can also open the Variable Editor directly from the Command
window by typing open(‘var’), where var is the name of the variable to be
edited. Once an array is displayed in the Variable Editor, you can change a value in
the array by clicking on its location, typing in the new value, and pressing Enter.

Right-clicking on a variable brings up the Context menu, which can be used
to edit, save, or clear the selected variable, or to plot the rows of the variable ver-
sus its columns (this type of plot is discussed in Chapter 5).

You can also clear a variable from theWorkspace Browser by first highlight-
ing it in the Browser, then clicking on Delete in the Edit menu.

2.2 Multidimensional Numeric Arrays
MATLAB supports multidimensional arrays. For more information, type help
datatypes.

A three-dimensional array has the dimension m � n � q. A four-dimensional
array has the dimension m � n � q � r, and so forth. The first two dimensions are
the row and column, as with a matrix. The higher dimensions are called pages. You
can think of a three-dimensional array as layers of matrices. The first layer is page 1;
the second layer is page 2, and so on. If A is a 3 � 3 � 2 array, you can access the

2.2 Multidimensional Numeric Arrays 63

Figure 2.1–2 The Variable Editor.

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 63 CONFIRMING PAGES

element in row 3, column 2 of page 2 by typing A(3,2,2). To access all of
page 1, type A(:,:,1). To access all of page 2, type A(:,:,2). The ndims
command returns the number of dimensions. For example, for the array A just
described, ndims(A) returns the value 3.

You can create a multidimensional array by first creating a two-dimensional
array and then extending it. For example, suppose you want to create a three-
dimensional array whose first two pages are

To do so, first create page 1 as a 3 � 3 matrix and then add page 2, as follows:

>>A = [4,6,1;5,8,0;3,9,2];
>>A(:,:,2) = [6,2,9;0,3,1;4,7,5];

Another way to produce such an array is with the cat command. Typing
cat(n,A,B,C,...) creates a new array by concatenating the arrays A, B,
C, and so on along the dimension n. Note that cat(1,A,B) is the same as
[A;B] and that cat(2,A,B) is the same as [A,B]. For example, suppose we
have the 2 � 2 arrays A and B:

Then C = cat(3,A,B) produces a three-dimensional array composed of two
layers; the first layer is the matrix A, and the second layer is the matrix B. The
element C(m,n,p) is located in row m, column n, and layer p. Thus the element
C(2,1,1) is 9, and the element C(2,2,2) is 3.

Multidimensional arrays are useful for problems that involve several parame-
ters. For example, if we have data on the temperature distribution in a rectangular
object, we could represent the temperatures as an array T with three dimensions.

2.3 Element-by-Element Operations
To increase the magnitude of a vector, multiply it by a scalar. For example, to
double the magnitude of the vector r = [3,5,2], multiply each component by
2 to obtain [6,10,4]. In MATLAB you type v = 2*r.

Multiplying a matrix A by a scalar w produces a matrix whose elements are
the elements of A multiplied by w. For example:

This multiplication is performed in MATLAB as follows:

>>A = [2,9;5,-7];
>>3*A

3 c2 9

5 -7
d = c 6 27

15 -21
d

B = c4 6

7 3
dA = c8 2

9 5
d

J
4 6 1

5 8 0

3 9 2
K J

6 2 9

0 3 1

4 7 5
K

64 CHAPTER 2 Numeric, Cell, and Structure Arrays

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 64 CONFIRMING PAGES

Thus multiplication of an array by a scalar is easily defined and easily car-
ried out. However, multiplication of two arrays is not so straightforward. In fact,
MATLAB uses two definitions of multiplication: (1) array multiplication and
(2) matrix multiplication. Division and exponentiation must also be carefully
defined when you are dealing with operations between two arrays. MATLAB has
two forms of arithmetic operations on arrays. In this section we introduce one
form, called array operations, which are also called element-by-element opera-
tions. In the next section we introduce matrix operations. Each form has its own
applications, which we illustrate by examples.

Array Addition and Subtraction

Array addition can be done by adding the corresponding components. To add the
arrays r = [3,5,2] and v = [2,-3,1] to create w in MATLAB, you type
w = r + v. The result is w = [5,2,3].

When two arrays have identical size, their sum or difference has the same
size and is obtained by adding or subtracting their corresponding elements. Thus
C � A � B implies that cij � aij � bij if the arrays are matrices. The array C has
the same size as A and B. For example,

(2.3–1)

Array subtraction is performed in a similar way.
The addition shown in Equation (2.3–1) is performed in MATLAB as follows:

>>A = [6,-2;10,3];
>>B = [9,8;-12,14]
>>A+B
ans =

15 6
-2 17

Array addition and subtraction are associative and commutative. For addi-
tion these properties mean that

(2.3–2)

(2.3–3)

Array addition and subtraction require that both arrays be the same size. The only
exception to this rule in MATLAB occurs when we add or subtract a scalar to or
from an array. In this case the scalar is added or subtracted from each element in
the array. Table 2.3–1 gives examples.

Element-by-Element Multiplication

MATLAB defines element-by-element multiplication only for arrays that are the same
size. The definition of the product x.*y, where x and y each have n elements, is

x.*y = [x(1)y(1), x(2)y(2) . . . , x(n)y(n)]

A + B + C = B + C + A = A + C + B

(A + B) + C = A + (B + C)

c 6 -2

10 3
d + c 9 8

-12 14
d = c 15 6

-2 17
d

2.3 Element-by-Element Operations 65

ARRAY
OPERATIONS

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 65 CONFIRMING PAGES

if x and y are row vectors. For example, if

(2.3–4)

then z = x.*y gives

This type of multiplication is sometimes called array multiplication.
If u and v are column vectors, the result of u.*v is a column vector.
Note that x’ is a column vector with size 3 � 1 and thus does not have the

same size as y, whose size is 1 � 3. Thus for the vectors x and y the operations
x’.*y and y.*x’ are not defined in MATLAB and will generate an error mes-
sage. With element-by-element multiplication, it is important to remember that
the dot (.) and the asterisk (*) form one symbol (.*). It might have been better
to have defined a single symbol for this operation, but the developers of
MATLAB were limited by the selection of symbols on the keyboard.

The generalization of array multiplication to arrays with more than one row or
column is straightforward. Both arrays must be the same size. The array operations
are performed between the elements in corresponding locations in the arrays. For
example, the array multiplication operation A.*B results in a matrix C that has the
same size as A and B and has the elements cij � aij bij. For example, if

then C = A.*B gives this result:

C = c11(-7) 5(8)

-9(6) 4(2)
d = c -77 40

-54 8
d

B = c -7 8

6 2
dA = c 11 5

-9 4
d

z = [2(-7), 4(3), -5(-8)] = [-14, 12, 40]

y = [-7, 3, -8]x = [2, 4, -5]

66 CHAPTER 2 Numeric, Cell, and Structure Arrays

Table 2.3–1 Element-by-element operations

Symbol Operation Form Example

� Scalar-array addition A � b [6,3]�2�[8,5]
� Scalar-array subtraction A � b [8,3]�5�[3,�2]
� Array addition A � B [6,5]�[4,8]�[10,13]
� Array subtraction A � B [6,5]�[4,8]�[2,�3]
.* Array multiplication A.*B [3,5].*[4,8]�[12,40]
./ Array right division A./B [2,5]./[4,8]�[2/4,5/8]
.\ Array left division A.\B [2,5].\[4,8]�[2\4,5\8]
.^ Array exponentiation A.^B [3,5].^2�[3^2,5^2]

2.^[3,5]�[2^3,2^5]
[3,5].^[2,4]�[3^2,5^4]

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 66 CONFIRMING PAGES

2.3 Element-by-Element Operations 67

EXAMPLE 2.3–1 Vectors and Displacement

Suppose two divers start at the surface and establish the following coordinate system: x is
to the west, y is to the north, and z is down. Diver 1 swims 55 ft west, 36 ft north, and then
dives 25 ft. Diver 2 dives 15 ft, then swims east 20 ft and then north 59 ft. (a) Find the dis-
tance between diver 1 and the starting point. (b) How far in each direction must diver 1
swim to reach diver 2? How far in a straight line must diver 1 swim to reach diver 2?

■ Solution
(a) Using the xyz coordinates selected, the position of diver 1 is r � 55i � 36j � 25k, and
the position of diver 2 is r � �20i � 59j � 15k. (Note that diver 2 swam east, which is
in the negative x direction.) The distance from the origin of a point xyz is given by

that is, by the magnitude of the vector pointing from the origin to the
point xyz. This distance is computed in the following session.

>>r = [55,36,25];w = [-20,59,15];
>>dist1 = sqrt(sum(r.*r))
dist1 =

70.3278

The distance is approximately 70 ft. The distance could also have been computed from
norm(r).

(b) The location of diver 2 relative to diver 1 is given by the vector v pointing from
diver 1 to diver 2. We can find this vector using vector subtraction: v � w � r. Continue
the above MATLAB session as follows:

>>v = w-r
v =

-75 23 -10
>>dist2 = sqrt(sum(v.*v))
dist2 =

79.0822

Thus to reach diver 2 by swimming along the coordinate directions, diver 1 must swim
75 ft east, 23 ft north, and 10 ft up. The straight-line distance between them is approxi-
mately 79 ft.

1x2
+ y2

+ z2,

Vectorized Functions

The built-in MATLAB functions such as sqrt(x) and exp(x) automatically
operate on array arguments to produce an array result the same size as the array ar-
gument x. Thus these functions are said to be vectorized functions.

Thus, when multiplying or dividing these functions, or when raising them to a
power, you must use element-by-element operations if the arguments are arrays. For
example, to compute z � (ey sin x) cos2 x, you must type z = exp(y).*
sin(x).*(cos(x)).^2. Obviously, you will get an error message if the size of
x is not the same as the size of y. The result z will have the same size as x and y.

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 67 CONFIRMING PAGES

68 CHAPTER 2 Numeric, Cell, and Structure Arrays

EXAMPLE 2.3–2 Aortic Pressure Model

The following equation is a specific case of one model used to describe the blood pres-
sure in the aorta during systole (the period following the closure of the heart’s aortic
valve). The variable t represents time in seconds, and the dimensionless variable y
represents the pressure difference across the aortic valve, normalized by a constant refer-
ence pressure.

Plot this function for t � 0.

■ Solution
Note that if t is a vector, the MATLAB functions exp(-8*t) and
sin(9.7*t+pi/2) will also be vectors the same size as t. Thus we must use
element-by-element multiplication to compute y(t).

We must decide on the proper spacing to use for the vector t and its upper limit.
The sine function sin(9.7t � �/2) oscillates with a frequency of 9.7 rad/sec, which is
9.7/(2�) � 1.5 Hz. Thus its period is 1/1.5 � 2/3 sec. The spacing of t should be a small
fraction of the period in order to generate enough points to plot the curve. Thus we select
a spacing of 0.003 to give approximately 200 points per period.

y(t) = e-8t sina9.7t +

�

2
b

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
–0.2

0

0.2

0.4

0.6

0.8

1

1.2

t (sec)

N
or

m
al

iz
ed

 P
re

ss
ur

e
D

iff
er

en
ce

 y
(t

)

Figure 2.3–1 Aortic pressure response for Example 2.3–2.

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 68 CONFIRMING PAGES

The amplitude of the sine wave decays with time because the sine is multiplied by the
decaying exponential e�8t. The exponential’s initial value is e0 � 1, and it will be 2 per-
cent of its initial value at t � 0.5 (because e�8 (0.5) � 0.02). Thus we select the upper limit
of t to be 0.5. The session is

>>t = 0:0.003:0.5;
>>y = exp(-8*t).*sin(9.7*t+pi/2);
>>plot(t,y),xlabel(‘t (sec)’), . . .

ylabel(‘Normalized Pressure Difference y(t)’)

The plot is shown in Figure 2.3–1. Note that we do not see much of an oscillation
despite the presence of a sine wave. This is so because the period of the sine wave is
greater than the time it takes for the exponential e�8t to become essentially zero.

2.3 Element-by-Element Operations 69

Element-by-Element Division

The definition of element-by-element division, also called array division, is sim-
ilar to the definition of array multiplication except, of course, that the elements
of one array are divided by the elements of the other array. Both arrays must be
the same size. The symbol for array right division is . /. For example, if

then z = x./y gives

Also, if

then C = A./B gives

The array left division operator (.\) is defined to perform element-by-element
division using left division. Refer to Table 2.3–1 for examples. Note that A.\B is
not equivalent to A./B.

C = c24>(-4) 20>5
-9>3 4>2 d = c -6 4

-3 2
d

B = c -4 5

3 2
dA = c 24 20

-9 4
d

z = [8>(-2), 12>6, 15>5] = [-4, 2, 3]

y = [-2, 6, 5]x = [8, 12, 15]

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 69 CONFIRMING PAGES

■ Solution
For example, the average speed on the first route is 560/10.3 � 54.4 mi/hr. First we de-
fine the row vectors d and t from the distance and time data. Then, to find the average
speed on each route using MATLAB, we use array division. The session is

>>d = [560, 440, 490, 530, 370]
>>t = [10.3, 8.2, 9.1, 10.1, 7.5]
>>speed = d./t
speed =

54.3689 53.6585 53.8462 52.4752 49.3333

The results are in miles per hour. Note that MATLAB displays more significant figures
than is justified by the three-significant-figure accuracy of the given data, so we should
round the results to three significant figures before using them.

To find the highest average speed and the corresponding route, continue the session
as follows:

>>[highest_speed, route] = max(speed)
highest_speed =

54.3689
route =

1

The first route has the highest speed.
If we did not need the speeds for every route, we could have solved this problem by

combining two lines as follows: [highest_speed, route] = max(d./t).

70 CHAPTER 2 Numeric, Cell, and Structure Arrays

EXAMPLE 2.3–3 Transportation Route Analysis

The following table gives data for the distance traveled along five truck routes and the cor-
responding time required to traverse each route. Use the data to compute the average speed
required to drive each route. Find the route that has the highest average speed.

1 2 3 4 5

Distance (mi) 560 440 490 530 370
Time (hr) 10.3 8.2 9.1 10.1 7.5

Element-by-Element Exponentiation

MATLAB enables us not only to raise arrays to powers but also to raise scalars
and arrays to array powers. To perform exponentiation on an element-by-
element basis, we must use the .^ symbol. For example, if x = [3, 5, 8],
then typing x.^3 produces the array [33, 53, 83] � [27, 125, 512]. If x =
0:2:6, then typing x.^2 returns the array [02, 22, 42, 62] � [0, 4, 16, 36]. If

A = c4 -5

2 3
d

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 70 CONFIRMING PAGES

then B = A.^3 gives this result:

We can raise a scalar to an array power. For example, if p = [2, 4, 5],
then typing 3.^p produces the array [32, 34, 35] � [9, 81, 243]. This example
illustrates a common situation in which it helps to remember that .^ is a single
symbol; the dot in 3.^p is not a decimal point associated with the number 3.
The following operations, with the value of p given here, are equivalent and
give the correct answer:

3.^p
3.0.^p
3..^p
(3).^p
3.^[2,4,5]

With array exponentiation, the power may be an array if the base is a scalar or if
the power’s dimensions are the same as the base dimensions. For example if, x =
[1,2,3] and y = [2,3,4], then y.^x gives the answer 2964. If A =
[1,2; 3,4], then 2.^A gives the array [2,4;8,16].

Test Your Understanding

T2.3–1 Given the matrices

find (a) their array product, (b) their array right division (A divided by
B), and (c) B raised to the third power element by element.
(Answers: (a) [�147, �81; �162, 32], (b) [�3, �9; �2,
2], and (c) [�343, �27; 729, 64].)

B = c–7 –3

9 4
dA = c 21 27

-18 8
d

B = c43 (-5)3

23 33 d = c64 -125

8 27
d

2.3 Element-by-Element Operations 71

EXAMPLE 2.3–4 Current and Power Dissipation in Resistors

The current i passing through an electrical resistor having a voltage � across it is given
by Ohm’s law, , where R is the resistance. The power dissipated in the resistor is
given by . The following table gives data for the resistance and voltage for five resis-
tors. Use the data to compute (a) the current in each resistor and (b) the power dissipated
in each resistor.

�2/R
i = �/R

1 2 3 4 5

R (�) 104 2 � 104 3.5 � 104 105 2 � 105

� (V) 120 80 110 200 350

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 71 CONFIRMING PAGES

■ Solution
(a) First we define two row vectors, one containing the resistance values and one containing
the voltage values. To find the current using MATLAB, we use array division.
The session is

>>R = [10000, 20000, 35000, 100000, 200000];
>>v = [120, 80, 110, 200, 350];
>>current = v./R
current =

0.0120 0.0040 0.0031 0.0020 0.0018

The results are in amperes and should be rounded to three significant figures because the
voltage data contains only three significant figures.

(b) To find the power , use array exponentiation and array division. The
session continues as follows:

>>power = v.^2./R
power =

1.4400 0.3200 0.3457 0.4000 0.6125

These numbers are the power dissipation in each resistor in watts. Note that the statement
v.^2./R is equivalent to (v.^2)./R. Although the rules of precedence are unam-
biguous here, we can always put parentheses around quantities if we are unsure how
MATLAB will interpret our commands.

P = �2/R

i = �/R

72 CHAPTER 2 Numeric, Cell, and Structure Arrays

EXAMPLE 2.3–5 A Batch Distillation Process

Consider a system for heating a liquid benzene/toluene solution to distill a pure benzene
vapor. A particular batch distillation unit is charged initially with 100 mol of a 60 percent
mol benzene/40 percent mol toluene mixture. Let L (mol) be the amount of liquid remain-
ing in the still, and let x (mol B/mol) be the benzene mole fraction in the remaining
liquid. Conservation of mass for benzene and toluene can be applied to derive the follow-
ing relation [Felder, 1986].

Determine what mole fraction of benzene remains when L � 70. Note that it is difficult
to solve this equation directly for x. Use a plot of x versus L to solve the problem.

■ Solution
This equation involves both array multiplication and array exponentiation. Note that
MATLAB enables us to use decimal exponents to evaluate L. It is clear that L must be in
the range 0 	 L 	 100; however, we do not know the range of x, except that

L = 100 a x

0.6
b0.625

 a1 - x

0.4
b-1.625

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 72 CONFIRMING PAGES

x � 0. Therefore, we must make a few guesses for the range of x, using a session like the
following. We find that L > 100 if x > 0.6, so we choose x = 0:0.001:0.6. We use
the ginput function to find the value of x corresponding to L � 70.

>>x = 0:0.001:0.6;
>>L = 100*(x/0.6).^(0.625).*((1-x)/0.4).^(-1.625);
>>plot(L,x),grid,xlabel(‘L(mol)’),ylabel(‘x (mol B/mol)’), ...

[L,x] = ginput(1)

The plot is shown in Figure 2.3–2. The answer is x � 0. 52 if L � 70. The
plot shows that the remaining liquid becomes leaner in benzene as the liquid amount be-
comes smaller. Just before the still is empty (L � 0), the liquid is pure toluene.

2.4 Matrix Operations 73

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L (mol)

x
(m

ol
 B

/m
ol

)

Figure 2.3–2 Plot for Example 2.3–5.

2.4 Matrix Operations
Matrix addition and subtraction are identical to element-by-element addition and
subtraction. The corresponding matrix elements are summed or subtracted.
However, matrix multiplication and division are not the same as element-by-
element multiplication and division.

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 73 CONFIRMING PAGES

Multiplication of Vectors

Recall that vectors are simply matrices with one row or one column. Thus matrix
multiplication and division procedures apply to vectors as well, and we will in-
troduce matrix multiplication by considering the vector case first.

The vector dot product u
 w of the vectors u and w is a scalar and can be
thought of as the perpendicular projection of u onto w. It can be computed from
|u||w| cos �, where � is the angle between the two vectors and |u|, |w| are the mag-
nitudes of the vectors. Thus if the vectors are parallel and in the same direction,
� � 0 and u
 w � |u||w|. If the vectors are perpendicular, � � 90º and thus u
 w � 0.
Because the unit vectors i, j, and k have unit length,

(2.4–1)

Because the unit vectors are perpendicular,

(2.4–2)

Thus the vector dot product can be expressed in terms of unit vectors as

Carrying out the multiplication algebraically and using the properties given by
(2.4–1) and (2.4–2), we obtain

The matrix product of a row vector u with a column vector w is defined in
the same way as the vector dot product; the result is a scalar that is the sum of the
products of the corresponding vector elements; that is,

if each vector has three elements. Thus the result of multiplying a 1 � 3 vec-
tor by a 3 � 1 vector is a 1 � 1 array, that is, a scalar. This definition
applies to vectors having any number of elements, as long as both vectors
have the same number of elements.

Thus the result of multiplying a 1 � n vector by an n � 1 vector is a 1 � 1 array,
that is, a scalar.

3u1 u2 u34 J
w1

w2

w3
K = u1w1 + u2w2 + u3w3

u # w = u1w1 + u2w2 + u3w3

u # w = (u1i + u2 j + u3k) # (w1i + w2 j + w3k)

i # j � i # k � j # k � 0

i # i � j # j � k # k � 1

74 CHAPTER 2 Numeric, Cell, and Structure Arrays

EXAMPLE 2.4–1 Miles Traveled

Table 2.4–1 gives the speed of an aircraft on each leg of a certain trip and the time spent
on each leg. Compute the miles traveled on each leg and the total miles traveled.

■ Solution
We can define a row vector s containing the speeds and a row vector t containing the
times for each leg. Thus s = [200, 250, 400, 300] and t = [2, 5, 3, 4].

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 74 CONFIRMING PAGES

To find the miles traveled on each leg, we multiply the speed by the time. To do so, we
use the MATLAB symbol .*, which specifies the multiplication s.*t to produce the
row vector whose elements are the products of the corresponding elements in s and t:

s.*t

This vector contains the miles traveled by the aircraft on each leg of the trip.
To find the total miles traveled, we use the matrix product, denoted by s*t’. In this

definition the product is the sum of the individual element products; that is,

s*t’

These two examples illustrate the difference between array multiplication s.*t and
matrix multiplication s*t’.

= [200(2) + 250(5) + 400(3) + 300(4)] = 4050

= [200(2), 250(5), 400(3), 300(4)] = [400, 1250, 1200, 1200]

2.4 Matrix Operations 75

Table 2.4–1 Aircraft speeds and times per leg

Leg

1 2 3 4

Speed (mi/hr) 200 250 400 300
Time (hr) 2 5 3 4

Vector-Matrix Multiplication

Not all matrix products are scalars. To generalize the preceding multiplication to
a column vector multiplied by a matrix, think of the matrix as being composed of
row vectors. The scalar result of each row-column multiplication forms an ele-
ment in the result, which is a column vector. For example:

(2.4–3)

Thus the result of multiplying a 2 � 2 matrix by a 2 � 1 vector is a 2 � 1 array,
that is, a column vector. Note that the definition of multiplication requires that the
number of columns in the matrix be equal to the number of rows in the vector.
In general, the product Ax, where A has p columns, is defined only if x has
p rows. If A has m rows and x is a column vector, the result of Ax is a
column vector with m rows.

Matrix-Matrix Multiplication

We can expand this definition of multiplication to include the product of two
matrices AB. The number of columns in A must equal the number of rows in B. The
row-column multiplications form column vectors, and these column vectors form the

c2 7

6 -5
d c3

9
d = c2(3) + 7(9)

6(3) - 5(9)
d = c 69

-27
d

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 75 CONFIRMING PAGES

matrix result. The product AB has the same number of rows as A and the same num-
ber of columns as B. For example,

(2.4–4)

Use the operator * to perform matrix multiplication in MATLAB. The fol-
lowing MATLAB session shows how to perform the matrix multiplication
shown in (2.4–4).

>>A = [6,-2;10,3;4,7];
>>B = [9,8;-5,12];
>>A*B

Element-by-element multiplication is defined for the following product:

However, this product is not defined for matrix multiplication, because the first
matrix has three columns, but the second matrix does not have three rows. Thus
if we were to type [3, 1, 7]*[4, 6, 5] in MATLAB, we would receive
an error message.

The following product is defined in matrix multiplication and gives the re-
sult shown:

The following product is also defined:

Evaluating Multivariable Functions

To evaluate a function of two variables, say, z � f (x, y), for the values x � x1, x2,
. . . , xm and y � y1, y2, . . . , yn, define the m � n matrices:

y = ≥
y1 y2

Á yn

y1 y2
Á yn

o o o o

y1 y2
Á yn

¥x = ≥
x1 x1

Á x1

x2 x2
Á x2

o o o o

xm xm
Á xm

¥

[10 6] c7 4

5 2
d = [10(7) + 6(5) 10(4) + 6(2)] = [100 52]

J
x1

x2

x3
K [y1 y2 y3] = J

x1y1 x1y2 x1y3

x2y1 x2y2 x2y3

x3y1 x3y2 x3y3
K

[3 1 7][4 6 5] = [12 6 35]

= J
64 24

75 116

1 116 K
 J

6 -2

10 3

4 7
K c 9 8

-5 12
d = J

(6)(9) + (-2)(-5) (6)(8) + (-2)(12)

(10)(9) + (3)(-5) (10)(8) + (3)(12)

(4)(9) + (7)(-5) (4)(8) + (7)(12) K

76 CHAPTER 2 Numeric, Cell, and Structure Arrays

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 76 CONFIRMING PAGES

When the function z � f (x, y) is evaluated in MATLAB using array operations, the
resulting m � n matrix z has the elements zij � f (xi, yj). We can extend this technique
to functions of more than two variables by using multidimensional arrays.

2.4 Matrix Operations 77

EXAMPLE 2.4–2 Height versus Velocity

The maximum height h achieved by an object thrown with a speed at an angle � to the
horizontal, neglecting drag, is

Create a table showing the maximum height for the following values of and �:

The rows in the table should correspond to the speed values, and the columns should cor-
respond to the angles.

■ Solution
The program is shown below.

g = 9.8; v = 10:2:20;
theta = 50:10:80;
h = (v’.ˆ2)*(sind(theta).ˆ2)/(2*g);
table = [0, theta; v’, h]

The arrays v and theta contain the given velocities and angles. The array v is 1 � 6
and the array theta is 1 � 4. Thus the term v’.ˆ2 is a 6 � 1 array, and the term
sind(theta).ˆ2 is a 1 � 4 array. The product of these two arrays, h, is a matrix prod-
uct and is a (6 � 1)(1 � 4) � (6 � 4) matrix.

The array [0, theta] is 1 � 5 and the array [v’, h] is 6 � 5, so the matrix
table is 7 � 5. The following table shows the matrix table rounded to one decimal place.
From this table we can see that the maximum height is 8.8 m if � 14 m/s and � � 70º.y

� = 50°, 60°, 70°, 80°y = 10, 12, 14, 16, 18, 20 m/s

y

h =
y2 sin2 �

2g

y

0 50 60 70 80

10 3.0 3.8 4.5 4.9
12 4.3 5.5 6.5 7.1
14 5.9 7.5 8.8 9.7
16 7.7 9.8 11.5 12.7
18 9.7 12.4 14.6 16.0
20 12.0 15.3 18.0 19.8

Test Your Understanding

T2.4–1 Use MATLAB to compute the dot product of the following vectors:

Check your answer by hand. (Answer: �6.)

w = 5i + 3j - 4k
u = 6i - 8j + 3k

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 77 CONFIRMING PAGES

T2.4–2 Use MATLAB to show that

J
7 4

-3 2

5 9
K c1 8

7 6
d = J

35 80

11 -12

68 94
K

78 CHAPTER 2 Numeric, Cell, and Structure Arrays

EXAMPLE 2.4–3 Manufacturing Cost Analysis

Table 2.4–2 shows the hourly cost of four types of manufacturing processes. It also shows
the number of hours required of each process to produce three different products. Use
matrices and MATLAB to solve the following. (a) Determine the cost of each process to
produce 1 unit of product 1. (b) Determine the cost to make 1 unit of each product. (c) Sup-
pose we produce 10 units of product 1, 5 units of product 2, and 7 units of product 3.
Compute the total cost.

■ Solution
(a) The basic principle we can use here is that cost equals the hourly cost times the
number of hours required. For example, the cost of using the lathe for product 1 is
($10/hr)(6 hr) � $60, and so forth for the other three processes. If we define the row vec-
tor of hourly costs to be hourly_costs and define the row vector of hours required for
product 1 to be hours_1, then we can compute the costs of each process for product 1
using element-by-element multiplication. In MATLAB the session is

>>hourly_cost = [10, 12, 14, 9];
>>hours_1 = [6, 2, 3, 4];
>>process_cost_1 = hourly_cost.*hours_1
process_cost_1 =

60 24 42 36

These are the costs of each of the four processes to produce 1 unit of product 1.
(b) To compute the total cost of 1 unit of product 1, we can use the vectors

hourly_costs and hours_1 but apply matrix multiplication instead of element-by-
element multiplication, because matrix multiplication sums the individual products. The
matrix multiplication gives

Table 2.4–2 Cost and time data for manufacturing processes

Hours required to produce one unit

Process Hourly cost ($) Product 1 Product 2 Product 3

Lathe 10 6 5 4
Grinding 12 2 3 1
Milling 14 3 2 5
Welding 9 4 0 3

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 78 CONFIRMING PAGES

We can perform similar multiplication for products 2 and 3, using the data in the table.
For product 2:

For product 3:

These three operations could have been accomplished in one operation by defining a
matrix whose columns are formed by the data in the last three columns of the table:

In MATLAB the session continues as follows. Remember that we must use the transpose
operation to convert the row vectors into column vectors.

>>hours_2 = [5, 3, 2, 0];
>>hours_3 = [4, 1, 5, 3];
>>unit_cost = hourly_cost*[hours_1’, hours_2’, hours_3’]
unit_cost =

162 114 149

Thus the costs to produce 1 unit each of products 1, 2, and 3 are $162, $114, and $149,
respectively.

(c) To find the total cost to produce 10, 5, and 7 units, respectively, we can use ma-
trix multiplication:

[10 5 7] J
162

114

149
K = 1620 + 570 + 1043 = 3233

[10 12 14 9] ≥
6 5 4

2 3 1

3 2 5

4 0 3

¥ = J
60 + 24 + 42 + 36

50 + 36 + 28 + 0

40 + 12 + 70 + 27 K = [162 114 149]

[10 12 14 9] ≥
4

1

5

3

¥ = 10(4) + 12(1) + 14(5) + 9(3) = 149

[10 12 14 9] ≥
5

3

2

0

¥ = 10(5) + 12(2) + 14(3) + 9(0) = 114

[10 12 14 9] ≥
6

2

3

4

¥ = 10(6) + 12(2) + 14(3) + 9(4) = 162

2.4 Matrix Operations 79

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 79 CONFIRMING PAGES

In MATLAB the session continues as follows. Note the use of the transpose operator on
the vector unit_cost.

>>units = [10, 5, 7];
>>total_cost = units*unit_cost’
total_cost =

3233

The total cost is $3233.

80 CHAPTER 2 Numeric, Cell, and Structure Arrays

The General Matrix Multiplication Case

We can state the general result for matrix multiplication as follows: Suppose A
has dimension m � p and B has dimension p � q. If C is the product AB, then C
has dimension m � q and its elements are given by

(2.4–5)

for all i � 1, 2, . . . , m and j � 1, 2, . . . , q. For the product to be defined, the ma-
trices A and B must be conformable; that is, the number of rows in B must equal
the number of columns in A. The product has the same number of rows as A and
the same number of columns as B.

Matrix multiplication does not have the commutative property; that is, in
general, AB BA. Reversing the order of matrix multiplication is a common and
easily made mistake.

The associative and distributive properties hold for matrix multiplication.
The associative property states that

(2.4–6)

The distributive property states that

(2.4–7)

Applications to Cost Analysis

Project cost data stored in tables must often be analyzed in several ways. The ele-
ments in MATLAB matrices are similar to the cells in a spreadsheet, and MATLAB
can perform many spreadsheet-type calculations for analyzing such tables.

(AB)C � A(BC)

A(B + C) � AB + AC

Z

cij = a
p

k=1
aik bkj

EXAMPLE 2.4–4 Product Cost Analysis
Table 2.4–3 shows the costs associated with a certain product, and Table 2.4–4 shows the
production volume for the four quarters of the business year. Use MATLAB to find the
quarterly costs for materials, labor, and transportation; the total material, labor, and trans-
portation costs for the year; and the total quarterly costs.

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 80 CONFIRMING PAGES

■ Solution
The costs are the product of the unit cost and the production volume. Thus we define two
matrices: U contains the unit costs in Table 2.4–3 in thousands of dollars, and P contains
the quarterly production data in Table 2.4–4.

>>U = [6, 2, 1;2, 5, 4;4, 3, 2;9, 7, 3];
>>P = [10, 12, 13, 15;8, 7, 6, 4;12, 10, 13, 9;6, 4, 11, 5];

Note that if we multiply the first column in U by the first column in P, we obtain the
total materials cost for the first quarter. Similarly, multiplying the first column in U by the
second column in P gives the total materials cost for the second quarter. Also, multiply-
ing the second column in U by the first column in P gives the total labor cost for the first
quarter, and so on. Extending this pattern, we can see that we must multiply the transpose
of U by P. This multiplication gives the cost matrix C.

>>C = U’*P

The result is

Each column in C represents one quarter. The total first-quarter cost is the sum of the ele-
ments in the first column, the second-quarter cost is the sum of the second column, and so
on. Thus because the sum command sums the columns of a matrix, the quarterly costs are
obtained by typing

>>Quarterly_Costs = sum(C)

The resulting vector, containing the quarterly costs in thousands of dollars, is [400 351 509
355]. Thus the total costs in each quarter are $400,000; $351,000; $509,000; and $355,000.

C = J
178 162 241 179

138 117 172 112

84 72 96 64
K

2.4 Matrix Operations 81

Table 2.4–3 Product costs

Unit costs ($ � 103)

Product Materials Labor Transportation

1 6 2 1
2 2 5 4
3 4 3 2
4 9 7 3

Table 2.4–4 Quarterly production volume

Product Quarter 1 Quarter 2 Quarter 3 Quarter 4

1 10 12 13 15
2 8 7 6 4
3 12 10 13 9
4 6 4 11 5

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 81 CONFIRMING PAGES

The elements in the first row of C are the material costs for each quarter; the ele-
ments in the second row are the labor costs, and those in the third row are the transporta-
tion costs. Thus to find the total material costs, we must sum across the first row of C.
Similarly, the total labor and total transportation costs are the sums across the second and
third rows of C. Because the sum command sums columns, we must use the transpose of
C. Thus we type the following:

>>Category_Costs � sum(C’)

The resulting vector, containing the category costs in thousands of dollars, is [760 539
316]. Thus the total material costs for the year are $760,000; the labor costs are $539,000;
and the transportation costs are $316,000.

We displayed the matrix C only to interpret its structure. If we need not display C,
the entire analysis would consist of only four command lines.

>>U = [6, 2, 1;2, 5, 4;4, 3, 2;9, 7, 3];
>>P = [10, 12, 13, 15;8, 7, 6, 4;12, 10, 13, 9;6, 4, 11, 5];
>>Quarterly_Costs = sum(U’*P)
Quarterly_Costs =

400 351 509 355
>>Category_Costs = sum((U’*P)’)
Category_Costs =

760 539 316

This example illustrates the compactness of MATLAB commands.

Special Matrices

Two exceptions to the noncommutative property are the null matrix, denoted by
0, and the identity, or unity, matrix, denoted by I. The null matrix contains all
zeros and is not the same as the empty matrix [], which has no elements. The
identity matrix is a square matrix whose diagonal elements are all equal to 1,
with the remaining elements equal to 0. For example, the 2 � 2 identity matrix is

These matrices have the following properties:

MATLAB has specific commands to create several special matrices. Type
help specmat to see the list of special matrix commands; also check Table 2.4–5.
The identity matrix I can be created with the eye(n) command, where n is
the desired dimension of the matrix. To create the 2 � 2 identity matrix, you type
eye(2). Typing eye(size(A)) creates an identity matrix having the same
dimension as the matrix A.

IA � AI � A
0A � A0 � 0

I = c1 0

0 1
d

82 CHAPTER 2 Numeric, Cell, and Structure Arrays

NULL MATRIX

IDENTITY MATRIX

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 82 CONFIRMING PAGES

Sometimes we want to initialize a matrix to have all zero elements. The
zeros command creates a matrix of all zeros. Typing zeros(n) creates an
n � n matrix of zeros, whereas typing zeros(m,n) creates an m � n matrix of
zeros, as will typing A(m,n) = 0. Typing zeros(size(A)) creates a
matrix of all zeros having the same dimension as the matrix A. This type of
matrix can be useful for applications in which we do not know the required
dimension ahead of time. The syntax of the ones command is the same, except
that it creates arrays filled with 1s.

For example, to create and plot the function

the script file is

x1 = 0:0.01:2;
f1 = 10*ones(size(x1));
x2 = 2.01:0.01:4.99;
f2 = zeros(size(x2));
x3 = 5:0.01:7;
f3 = -3*ones(size(x3));
f = [f1, f2, f3];
x = [x1, x2, x3];
plot(x,f),xlabel(‘x’),ylabel(‘y’)

(Consider what the plot would look like if the command plot(x,f) were re-
placed with the command plot(x1,f1,x2,f2,x3,f3).)

Matrix Division and Linear Algebraic Equations

Matrix division uses both the right and left division operators, / and \, for various
applications, a principal one being the solution of sets of linear algebraic equa-
tions. Chapter 8 covers a related topic, the matrix inverse.

f (x) = L
10 0 … x … 2

0 2 6 x 6 5

-3 5 … x … 7

2.4 Matrix Operations 83

Table 2.4–5 Special matrices

Command Description

eye(n) Creates an n � n identity matrix.
eye(size(A)) Creates an identity matrix the same size as the matrix A.
ones(n) Creates an n � n matrix of 1s.
ones(m,n) Creates an m � n array of 1s.
ones(size(A)) Creates an array of 1s the same size as the array A.
zeros(n) Creates an n � n matrix of 0s.
zeros(m,n) Creates an m � n array of 0s.
zeros(size(A)) Creates an array of 0s the same size as the array A.

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 83 CONFIRMING PAGES

You can use the left division operator (\) in MATLAB to solve sets of linear
algebraic equations. For example, consider the set

To solve such sets in MATLAB you must create two arrays; we will call them
A and B. The array A has as many rows as there are equations and as many
columns as there are variables. The rows of A must contain the coefficients of
x, y, and z in that order. In this example, the first row of A must be 6, 12, 4; the
second row must be 7, �2, 3; and the third row must be 2, 8, �9. The array B
contains the constants on the right-hand side of the equation; it has one column
and as many rows as there are equations. In this example, the first row of B is
70, the second is 5, and the third is 64. The solution is obtained by typing A\B.
The session is

>>A = [6,12,4;7,-2,3;2,8,-9];
>>B = [70;5;64];
>>Solution = A\B
Solution =

3
5
-2

The solution is x � 3, y � 5, and z � �2.
The left division method works fine when the equation set has a unique

solution. To learn how to deal with problems having a nonunique solution (or
perhaps no solution at all!), see Chapter 8.

Test Your Understanding

T2.4–3 Use MATLAB to solve the following set of equations.

(Answer: x � 2, y � �5, z � 10.)

Matrix Exponentiation

Raising a matrix to a power is equivalent to repeatedly multiplying the matrix by
itself, for example, A2 � AA. This process requires the matrix to have the same
number of rows as columns; that is, it must be a square matrix. MATLAB uses
the symbol ^ for matrix exponentiation. To find A2, type A^2.

 14x + 9y - 5z = -67

 -5x - 3y + 7z = 75

 6x - 4y + 8z = 112

 2x + 8y - 9z = 64

 7x - 2y + 3z = 05

 6x + 12y + 4z = 70

84 CHAPTER 2 Numeric, Cell, and Structure Arrays

LEFT DIVISION
METHOD

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 84 CONFIRMING PAGES

We can raise a scalar n to a matrix power A, if A is square, by typing n^A,
but the applications for such a procedure are in advanced courses. However,
raising a matrix to a matrix power—that is, AB—is not defined, even if A and B
are square.

Special Products

Many applications in physics and engineering use the cross product and dot
product; for example, calculations to compute moments and force compo-
nents use these special products. If A and B are vectors with three elements,
the cross product command cross(A,B) computes the three-element vector
that is the cross product A � B. If A and B are 3 � n matrices, cross(A,B)
returns a 3 � n array whose columns are the cross products of the correspond-
ing columns in the 3 � n arrays A and B. For example, the moment M with
respect to a reference point O due to the force F is given by M � r � F, where
r is the position vector from the point O to the point where the force F is ap-
plied. To find the moment in MATLAB, you type M = cross(r,F).

The dot product command dot(A,B) computes a row vector of length n
whose elements are the dot products of the corresponding columns of the m � n
arrays A and B. To compute the component of the force F along the direction
given by the vector r, you type dot(F,r).

2.5 Polynomial Operations Using Arrays
MATLAB has some convenient tools for working with polynomials. Type help
polyfun for more information on this category of commands. We will use the
following notation to describe a polynomial:

We can describe a polynomial in MATLAB with a row vector whose elements
are the polynomial’s coefficients, starting with the coefficient of the highest
power of x. This vector is [a1, a2, a3, . . . , an�1, an, an�1]. For example, the vector
[4,-8,7,-5] represents the polynomial 4x3 � 8x2 � 7x � 5.

Polynomial roots can be found with the roots(a) function, where a is the
array containing the polynomial coefficients. For example, to obtain the roots of
x3 � 12x2 � 45x � 50 � 0, you type y = roots([1,12,45,50]). The an-
swer (y) is a column array containing the values �2, �5, �5.

The poly(r) function computes the coefficients of the polynomial whose
roots are specified by the array r. The result is a row array that contains the poly-
nomial’s coefficients. For example, to find the polynomial whose roots are 1 and
3 � 5i, the session is

>>p = poly([1,3+5i, 3-5i])
p =

1 -7 40 -34

Thus the polynomial is x3 � 7x2 � 40x � 34.

f(x) = a1x
n

+ a2x
n - 1

+ a3x
n - 2

+
Á

+ an - 1x
2

+ anx + an + 1

2.5 Polynomial Operations Using Arrays 85

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 85 CONFIRMING PAGES

Polynomial Addition and Subtraction

To add two polynomials, add the arrays that describe their coefficients. If the
polynomials are of different degrees, add zeros to the coefficient array of the
lower-degree polynomial. For example, consider

f (x) � 9x3 � 5x2 � 3x � 7

whose coefficient array is f � [9,�5,3,7] and

g(x) � 6x2 � x � 2

whose coefficient array is g = [6,-1,2]. The degree of g(x) is 1 less that of
f (x). Therefore, to add f (x) and g(x), we append one zero to g to “fool”
MATLAB into thinking g(x) is a third-degree polynomial. That is, we
type g = [0 g] to obtain [0,6,-1,2] for g. This vector represents g(x) �
0x3 � 6x2 � x � 2. To add the polynomials, type h = f+g. The result is
h = [9,1,2,9], which corresponds to h(x) � 9x3 � x2 � 2x � 9. Subtrac-
tion is done in a similar way.

Polynomial Multiplication and Division

To multiply a polynomial by a scalar, simply multiply the coefficient array by
that scalar. For example, 5h(x) is represented by [45,5,10,45].

Multiplication and division of polynomials are easily done with MATLAB.
Use the conv function (it stands for “convolve”) to multiply polynomials
and use the deconv function (deconv stands for “deconvolve”) to perform
synthetic division. Table 2.5–1 summarizes these functions, as well as the poly,
polyval, and roots functions.

86 CHAPTER 2 Numeric, Cell, and Structure Arrays

Table 2.5–1 Polynomial functions

Command Description

conv(a,b) Computes the product of the two polynomials described by the coefficient arrays a and b.
The two polynomials need not be of the same degree. The result is the coefficient array
of the product polynomial.

[q,r] � Computes the result of dividing a numerator polynomial, whose coefficient array is num,
deconv (num,den) by a denominator polynomial represented by the coefficient array den. The quotient

polynomial is given by the coefficient array q, and the remainder polynomial is given by
the coefficient array r.

poly(r) Computes the coefficients of the polynomial whose roots are specified by the vector r. The
result is a row vector that contains the polynomial’s coefficients arranged in descending
order of power.

polyval(a,x) Evaluates a polynomial at specified values of its independent variable x, which can be a
matrix or a vector. The polynomial’s coefficients of descending powers are stored in the
array a. The result is the same size as x.

roots(a) Computes the roots of a polynomial specified by the coefficient array a. The result is a
column vector that contains the polynomial’s roots.

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 86 CONFIRMING PAGES

The product of the polynomials f(x) and g(x) is

f (x)g(x) � (9x 3 � 5x2 � 3x � 7)(6x2 � x � 2)

� 54x5 � 39x4 � 41x3 � 29x2 � x � 14

Dividing f(x) by g(x) using synthetic division gives a quotient of

with a remainder of �0.5833x �8.1667. Here is the MATLAB session to per-
form these operations.

>>f = [9,-5,3,7];
>>g = [6,-1,2];
>>product = conv(f,g)
product =

54 -39 41 29 -1 14
>>[quotient, remainder] = deconv(f,g)
quotient =

1.5 -0.5833
remainder =

0 0 -0.5833 8.1667

The conv and deconv functions do not require that the polynomials be of the
same degree, so we did not have to fool MATLAB as we did when adding
the polynomials.

Plotting Polynomials

The polyval(a,x) function evaluates a polynomial at specified values of its
independent variable x, which can be a matrix or a vector. The polynomial’s
coefficient array is a. The result is the same size as x. For example, to evaluate
the polynomial f(x) � 9x3 � 5x2 � 3x � 7 at the points x � 0, 2, 4, . . . , 10, type

>>f = polyval([9,-5,3,7],[0:2:10]);

The resulting vector f contains six values that correspond to f(0), f(2), f(4), . . . , f(10).
The polyval function is very useful for plotting polynomials. To do this,

you should define an array that contains many values of the independent variable
x in order to obtain a smooth plot. For example, to plot the polynomial f(x) �
9x3 � 5x2 � 3x � 7 for �2 	 x 	 5, you type

>>x = -2:0.01:5;
>>polyval([9,-5,3,7], x);
>>plot (x,f),xlabel(x),ylabel(f(x)),grid

Polynomial derivatives and integrals are covered in Chapter 9.

f(x)

g(x)
=

9x3
- 5x2

+ 3x + 7

6x2
- x + 2

= 1.5x - 0.5833

2.5 Polynomial Operations Using Arrays 87

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 87 CONFIRMING PAGES

Test Your Understanding

T2.5–1 Use MATLAB to obtain the roots of

x3 � 13x2 � 52x � 6 � 0

Use the poly function to confirm your answer.

T2.5–2 Use MATLAB to confirm that

(20x3 � 7x2 � 5x � 10)(4x2 � 12x � 3)

� 80x5 � 212x4 � 124x3 � 121x2 � 105x � 30

T2.5–3 Use MATLAB to confirm that

with a remainder of 59x � 41.

T2.5–4 Use MATLAB to confirm that

when x � 2.

T2.5–5 Plot the polynomial

y � x3 � 13x2 � 52x � 6

over the range �7 	 x 	 1.

6x3
+ 4x2

- 5

12x3
- 7x2

+ 3x + 9
= 0.7108

12x3
+ 5x2

- 2x + 3

3x2
- 7x + 4

= 4x + 11

88 CHAPTER 2 Numeric, Cell, and Structure Arrays

EXAMPLE 2.5–1 Earthquake-Resistant Building Design

Buildings designed to withstand earthquakes must have natural frequencies of vibration
that are not close to the oscillation frequency of the ground motion. A building’s natural
frequencies are determined primarily by the masses of its floors and by the lateral stiff-
ness of its supporting columns (which act as horizontal springs). We can find these fre-
quencies by solving for the roots of a polynomial called the structure’s characteristic
polynomial (characteristic polynomials are discussed further in Chapter 9). Figure 2.5–1
shows the exaggerated motion of the floors of a three-story building. For such a building,
if each floor has a mass m and the columns have stiffness k, the polynomial is

where (models such as these are discussed in greater detail in [Palm,
2010]). The building’s natural frequencies in cycles per second are the positive roots of
this equation. Find the building’s natural frequencies in cycles per second for the case
where and k = 5 * 106 N/m.m = 1000 kg

� = k>4m�2

(� - f2)[(2� - f2)2
- �2] + �2f2

- 2�3

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 88 CONFIRMING PAGES

■ Solution
The characteristic polynomial consists of sums and products of lower-degree polynomi-
als. We can use this fact to have MATLAB do the algebra for us. The characteristic poly-
nomial has the form

where

The MATLAB script file is

k = 5e+6;m = 1000;
alpha = k/(4*m*pi^2);
p1 = [-1,0,alpha];
p2 = [-1,0,2*alpha];
p3 = [alpha^2,0,-2*alpha^3];
p4 = conv(p2,p2)-(0,0,0,0,alpha^2];
p5 = conv(p1,p4);
p6 = p5+[0,0,0,0,p3];
r = roots(p6)

The resulting positive roots and thus the frequencies, rounded to the nearest integer, are
20, 14, and 5 Hz.

p1 = � - f2 p2 = 2� - f2 p3 = �2f2
- 2�3

p1 Ap2
2 - �2 B + p3 = 0

2.5 Polynomial Operations Using Arrays 89

Columns

Floor

Floor

Floor

Ground Motion

Figure 2.5–1 Simple vibration model of a building subjected to
ground motion.

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 89 CONFIRMING PAGES

2.6 Cell Arrays
The cell array is an array in which each element is a bin, or cell, which can con-
tain an array. You can store different classes of arrays in a cell array, and you can
group data sets that are related but have different dimensions. You access cell
arrays using the same indexing operations used with ordinary arrays.

This is the only section in the text that uses cell arrays. Coverage of this sec-
tion is therefore optional. Some more advanced MATLAB applications, such as
those found in some of the toolboxes, do use cell arrays.

Creating Cell Arrays

You can create a cell array by using assignment statements or by using the
cell function. You can assign data to the cells by using either cell indexing
or content indexing. To use cell indexing, enclose in parentheses the cell sub-
scripts on the left side of the assignment statement and use the standard array
notation. Enclose the cell contents on the right side of the assignment statement
in braces {}.

90 CHAPTER 2 Numeric, Cell, and Structure Arrays

CELL INDEXING

CONTENT
INDEXING

EXAMPLE 2.6–1 An Environment Database

Suppose you want to create a 2 � 2 cell array A, whose cells contain the location, the
date, the air temperature (measured at 8 A.M., 12 noon, and 5 P.M.), and the water tem-
peratures measured at the same time in three different points in a pond. The cell array
looks like the following.

Walden Pond June 13, 1997

■ Solution
You can create this array by typing the following either in interactive mode or in a script
file and running it.

A(1,1) = {‘Walden Pond’};
A(1,2) = {‘June 13, 1997’};
A(2,1) = {[60,72,65]};
A(2,2) = {[55,57,56;54,56,55;52,55,53]};

If you do not yet have contents for a particular cell, you can type a pair of empty
braces { } to denote an empty cell, just as a pair of empty brackets [] denotes an empty
numeric array. This notation creates the cell but does not store any contents in it.

To use content indexing, enclose in braces the cell subscripts on the left side, using the
standard array notation. Then specify the cell contents on the right side of the assignment

J
55 57 56

54 56 55

52 55 53 K[60 72 65]

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 90 CONFIRMING PAGES

operator. For example:

A{1,1} = ‘Walden Pond’;
A{1,2} = ‘June 13, 1997’;
A{2,1} = [60,72,65];
A{2,2} = [55,57,56;54,56,55;52,55,53];

Type A at the command line. You will see

A �

‘Walden Pond’ ‘June 13, 1997’
[1x3 double] [3x3 double]

You can use the celldisp function to display the full contents. For example, typing
celldisp(A) displays
A{1,1} =

Walden Pond
A{2,1} =

60 72 65
.
.
.
etc.

The cellplot function produces a graphical display of the cell array’s
contents in the form of a grid. Type cellplot(A) to see this display for the
cell array A. Use commas or spaces with braces to indicate columns of cells and
use semicolons to indicate rows of cells (just as with numeric arrays). For exam-
ple, typing

B = {[2,4], [6,-9;3,5]; [7;2], 10};

creates the following 2 � 2 cell array:

10

You can preallocate empty cell arrays of a specified size by using the cell func-
tion. For example, type C = cell(3,5) to create the 3 � 5 cell array C and
fill it with empty matrices. Once the array has been defined in this way, you
can use assignment statements to enter the contents of the cells. For example,
type C(2,4) = {[6,-3,7]} to put the 1 � 3 array in cell (2,4) and type
C(1,5) = {1:10} to put the numbers from 1 to 10 in cell (1,5).
Type C(3,4) = {‘30 mph’} to put the string in cell (3,4).

[7 2]

c6 -9

3 5
d[2 4]

2.6 Cell Arrays 91

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 91 CONFIRMING PAGES

Accessing Cell Arrays

You can access the contents of a cell array by using either cell indexing or content
indexing. To use cell indexing to place the contents of cell (3,4) of the array C in
the new variable Speed, type Speed = C(3,4). To place the contents of
the cells in rows 1 to 3, columns 2 to 5 in the new cell array D, type D =
C(1:3,2:5). The new cell array D will have three rows, four columns, and
12 arrays. To use content indexing to access some of or all the contents in a
single cell, enclose the cell index expression in braces to indicate that you are
assigning the contents, not the cells themselves, to a new variable. For example,
typing Speed = C{3,4} assigns the contents ‘30 mph’ in cell (3,4) to the
variable Speed. You cannot use content indexing to retrieve the contents of
more than one cell at a time. For example, the statements G = C{1,:} and
C{1,:} = var, where var is some variable, are both invalid.

You can access subsets of a cell’s contents. For example, to obtain the sec-
ond element in the 1 � 3-row vector in the (2,4) cell of array C and assign it to the
variable r, you type r = C{2,4}(1,2). The result is r = -3.

2.7 Structure Arrays
Structure arrays are composed of structures. This class of arrays enables you to
store dissimilar arrays together. The elements in structures are accessed using
named fields. This feature distinguishes them from cell arrays, which are
accessed using the standard array indexing operations.

Structure arrays are used in this text only in this section. Some MATLAB
toolboxes do use structure arrays.

A specific example is the best way to introduce the terminology of structures.
Suppose you want to create a database of students in a course, and you want to in-
clude each student’s name, Social Security number, email address, and test scores.
Figure 2.7–1 shows a diagram of this data structure. Each type of data (name,
Social Security number, and so on) is a field, and its name is the field name. Thus
our database has four fields. The first three fields each contain a text string, while

92 CHAPTER 2 Numeric, Cell, and Structure Arrays

FIELD

Structure array “student”

Student(1) Student(2)

Name: John Smith

SSN: 392-77-1786

Email: smithj@myschool.edu

Tests: 67, 75, 84

Name: Mary Jones

SSN: 431-56-9832

Email: jonesm@myschool.edu

Tests: 84, 78, 93

Figure 2.7–1 Arrangement of data in the structure array student.

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 92 CONFIRMING PAGES

the last field (the test scores) contains a vector having numerical elements. A struc-
ture consists of all this information for a single student. A structure array is an
array of such structures for different students. The array shown in Figure 2.7–1 has
two structures arranged in one row and two columns.

Creating Structures

You can create a structure array by using assignment statements or by using the
struct function. The following example uses assignment statements to build a
structure. Structure arrays use the dot notation (.) to specify and to access the fields.
You can type the commands either in the interactive mode or in a script file.

2.7 Structure Arrays 93

EXAMPLE 2.7–1 A Student Database

Create a structure array to contain the following types of student data:

■ Student name.
■ Social Security number.
■ Email address.
■ Test scores.

Enter the data shown in Figure 2.7–1 into the database.

■ Solution
You can create the structure array by typing the following either in the interactive mode
or in a script file. Start with the data for the first student.

student.name = ‘John Smith’;
student.SSN = ‘392-77-1786’;
student.email = ‘smithj@myschool.edu’;
student.tests = [67,75,84];

If you then type

>>student

at the command line, you will see the following response:

name: ‘John Smith’
SSN: = ‘392-77-1786’
email: = ‘smithj@myschool.edu’
tests: = [67 75 84]

To determine the size of the array, type size(student). The result is ans � 1 1,
which indicates that it is a 1 � 1 structure array.

To add a second student to the database, use a subscript 2 enclosed in parentheses
after the structure array’s name and enter the new information. For example, type

student(2).name = ‘Mary Jones’;
student(2).SSN = ‘431-56-9832’;
student(2).email = ‘jonesm@myschool.edu’;
student(2).tests = [84,78,93];

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 93 CONFIRMING PAGES

This process “expands” the array. Before we entered the data for the second student, the
dimension of the structure array was 1 � 1 (it was a single structure). Now it is a 1 � 2 array
consisting of two structures, arranged in one row and two columns. You can confirm this
information by typing size(student), which returns ans � 1 2. If you now type
length(student), you will get the result ans = 2, which indicates that the array has
two elements (two structures). When a structure array has more than one structure, MATLAB
does not display the individual field contents when you type the structure array’s name. For
example, if you now type student, MATLAB displays

>>student =
1x2 struct array with fields:

name
SSN
email
tests

You can also obtain information about the fields by using the fieldnames function (see
Table 2.7–1). For example:

>>fieldnames(student)
ans =

‘name’
‘SSN’
‘email’
‘tests’

As you fill in more student information, MATLAB assigns the same number of fields and
the same field names to each element. If you do not enter some information—for
example, suppose you do not know someone’s email address—MATLAB assigns an
empty matrix to that field for that student.

94 CHAPTER 2 Numeric, Cell, and Structure Arrays

Table 2.7–1 Structure functions

Function Description

names = fieldnames(S) Returns the field names associated
with the structure array S as
names, a cell array of strings.

isfield(S,’field’) Returns 1 if ‘field’ is the
name of a field in the structure
array S and 0 otherwise.

isstruct(S) Returns 1 if the array S is a
structure array and 0 otherwise.

S = rmfield(S,’field’) Removes the field ‘field’
from the structure array S.

S = struct(‘f1’,’v1’,’f2’, Creates a structure array with the
’v2’, ...) fields ‘f1’, ‘f2’, . . . having

the values ‘v1’, ‘v2’,

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 94 CONFIRMING PAGES

The fields can he different sizes. For example, each name field can contain a differ-
ent number of characters, and the arrays containing the test scores can be different sizes,
as would be the case if a certain student did not take the second test.

2.7 Structure Arrays 95

In addition to the assignment statement, you can build structures using the
struct function, which lets you “preallocate” a structure array. To build a
structure array named sa_1, the syntax is

sa_1 = struct(‘field1’,’values1’,’field2’,values2’, . . .)

where the arguments are the field names and their values. The values arrays
values1, values2, . . . must all be arrays of the same size, scalar cells, or
single values. The elements of the values arrays are inserted into the correspond-
ing elements of the structure array. The resulting structure array has the same size
as the values arrays, or is 1 � 1 if none of the values arrays is a cell. For example,
to preallocate a 1 � 1 structure array for the student database, you type

student = struct(‘name’,’John Smith’, ‘SSN’, . . .
‘392-77-1786’,’email’,’smithj@myschool.edu’, . . .
‘tests’,[67,75,84])

Accessing Structure Arrays

To access the contents of a particular field, type a period after the structure array
name, followed by the field name. For example, typing student(2).name
displays the value ‘Mary Jones’. Of course, we can assign the result to a
variable in the usual way. For example, typing name2 = student(2).name
assigns the value ‘Mary Jones’ to the variable name2. To access elements
within a field, for example, John Smith’s second test score, type student(1).
tests(2). This entry returns the value 75. In general, if a field contains an array,
you use the array’s subscripts to access its elements. In this example the statement
student(1).tests(2) is equivalent to student(1,1).tests(2)
because student has one row.

To store all the information for a particular structure—say, all the informa-
tion about Mary Jones—in another structure array named M, you type M =
student(2). You can also assign or change values of field elements. For
example, typing student(2).tests(2) = 81 changes Mary Jones’s
second test score from 78 to 81.

Modifying Structures

Suppose you want to add phone numbers to the database. You can do this by typ-
ing the first student’s phone number as follows:

student(1).phone = ‘555-1653’

All the other structures in the array will now have a phone field, but these fields
will contain the empty array until you give them values.

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 95 CONFIRMING PAGES

To delete a field from every structure in the array, use the rmfield function.
Its basic syntax is

new_struc = rmfield(array,’field’);

where array is the structure array to be modified, ‘field’ is the field to be
removed, and new_struc is the name of the new structure array so created by
the removal of the field. For example, to remove the Social Security field and call
the new structure array new_student, type

new_student = rmfield(student,’SSN’);

Using Operators and Functions with Structures

You can apply the MATLAB operators to structures in the usual way. For
example, to find the maximum test score of the second student, you type
max(student(2).tests). The answer is 93.

The isfield function determines whether a structure array contains a partic-
ular field. Its syntax is isfield(S, ‘field’). It returns a value of 1 (which
means “true”) if ‘field’ is the name of a field in the structure array S. For exam-
ple, typing isfield(student, ‘name’) returns the result ans = 1.

The isstruct function determines whether an array is a structure array.
Its syntax is isstruct(S). It returns a value of 1 if S is a structure array and
0 otherwise. For example, typing isstruct(student) returns the result
ans = 1, which is equivalent to “true.”

Test Your Understanding

T2.7–1 Create the structure array student shown in Figure 2.7–1 and add the
following information about a third student: name: Alfred E. Newman;
SSN: 555-12-3456; e-mail: newmana@myschool.edu; tests: 55, 45, 58.

T2.7–2 Edit your structure array to change Newman’s second test score from
45 to 53.

T2.7–3 Edit your structure array to remove the SSN field.

2.8 Summary
You should now be able to perform basic operations and use arrays in MATLAB.
For example, you should be able to

■ Create, address, and edit arrays.
■ Perform array operations including addition, subtraction, multiplication,

division, and exponentiation.
■ Perform matrix operations including addition, subtraction, multiplication,

division, and exponentiation.

96 CHAPTER 2 Numeric, Cell, and Structure Arrays

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 96 CONFIRMING PAGES

■ Perform polynomial algebra.
■ Create databases using cell and structure arrays.

Table 2.8–1 is a reference guide to all the MATLAB commands introduced in
this chapter.

Key Terms with Page References

Problems 97

Absolute value, 61
Array addressing, 57
Array operations, 65
Array size, 56
Cell array, 90
Cell indexing, 90
Column vector, 54
Content indexing, 90
Empty array, 58
Field, 92

Identity matrix, 82
Left division method, 84
Length, 61
Magnitude, 61
Matrix, 56
Matrix operations, 73
Null matrix, 82
Row vector, 54
Structure arrays, 92
Transpose, 55

Table 2.8–1 Guide to commands introduced in Chapter 2

Special
characters Use

’ Transposes a matrix, creating complex
conjugate elements.

.’ Transposes a matrix without creating complex
conjugate elements.

; Suppresses screen printing; also denotes a new
row in an array.

: Represents an entire row or column of an array.

Tables

Array functions Table 2.1–1
Element-by-element operations Table 2.3–1
Product costs Table 2.4–3
Quarterly production volume Table 2.4–4
Special matrices Table 2.4–5
Polynomial functions Table 2.5–1
Structure functions Table 2.7–1

Problems
You can find the answers to problems marked with an asterisk at the end of the text.

Section 2.1

1. a. Use two methods to create the vector x having 100 regularly spaced
values starting at 5 and ending at 28.

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 97 CONFIRMING PAGES

b. Use two methods to create the vector x having a regular spacing of 0.2
starting at 2 and ending at 14.

c. Use two methods to create the vector x having 50 regularly spaced val-
ues starting at �2 and ending at 5.

2. a. Create the vector x having 50 logarithmically spaced values starting at
10 and ending at 1000.

b. Create the vector x having 20 logarithmically spaced values starting at
10 and ending at 1000.

3.* Use MATLAB to create a vector x having six values between 0 and 10
(including the endpoints 0 and 10). Create an array A whose first row
contains the values 3x and whose second row contains the values
5x � 20.

4. Repeat Problem 3 but make the first column of A contain the values 3x
and the second column contain the values 5x � 20.

5. Type this matrix in MATLAB and use MATLAB to carry out the following
instructions.

a. Create a vector v consisting of the elements in the second column of A.
b. Create a vector w consisting of the elements in the second row of A.

6. Type this matrix in MATLAB and use MATLAB to carry out the following
instructions.

a. Create a 4 � 3 array B consisting of all elements in the second
through fourth columns of A.

b. Create a 3 � 4 array C consisting of all elements in the second
through fourth rows of A.

c. Create a 2 � 3 array D consisting of all elements in the first two rows
and the last three columns of A.

7.* Compute the length and absolute value of the following vectors:
a. x � [2, 4, 7]
b. y � [2, �4, 7]
c. z � [5 � 3i, �3 � 4i, 2 � 7i]

A = ≥
3 7 -4 12

-5 9 10 2

6 13 8 11

15 5 4 1

¥

A = ≥
3 7 -4 12

-5 9 10 2

6 13 8 11

15 5 4 1

¥

98 CHAPTER 2 Numeric, Cell, and Structure Arrays

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 98 CONFIRMING PAGES

8. Given the matrix

a. Find the maximum and minimum values in each column.
b. Find the maximum and minimum values in each row.

9. Given the matrix

a. Sort each column and store the result in an array B.
b. Sort each row and store the result in an array C.
c. Add each column and store the result in an array D.
d. Add each row and store the result in an array E.

10. Consider the following arrays.

Write MATLAB expressions to do the following.
a. Select just the second row of B.
b. Evaluate the sum of the second row of B.
c. Multiply the second column of B and the first column of A element by

element.
d. Evaluate the maximum value in the vector resulting from element-by-

element multiplication of the second column of B with the first column
of A.

e. Use element-by-element division to divide the first row of A by the
first three elements of the third column of B. Evaluate the sum of the
elements of the resulting vector.

B = ln(A)A = ≥
1 4 2

2 4 100

7 9 7

3 � 42

¥

A = ≥
3 7 -4 12

-5 9 10 2

6 13 8 11

15 5 4 1

¥

A = ≥
3 7 -4 12

-5 9 10 2

6 13 8 11

15 5 4 1

¥

Problems 99

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 99 CONFIRMING PAGES

Section 2.2

11.* a. Create a three-dimensional array D whose three “layers” are these
matrices:

b. Use MATLAB to find the largest element in each layer of D and the
largest element in D.

Section 2.3

12.* Given the matrices

Use MATLAB to
a. Find A � B � C.
b. Find A � B � C.
c. Verify the associative law

d. Verify the commutative law

13.* Given the matrices

Use MATLAB to
a. Find the result of A times B using the array product.
b. Find the result of A divided by B using array right division.
c. Find B raised to the third power element by element.

14.* The mechanical work W done in using a force F to push a block through a
distance D is W � FD. The following table gives data on the amount of
force used to push a block through the given distance over five segments
of a certain path. The force varies because of the differing friction proper-
ties of the surface.

B = c14 -4

6 -2
dA = c56 32

24 -16
d

A + B + C � B + C + A � A + C + B

(A + B) + C � A + (B + C)

C = c -3 -9

7 8
dB = c 4 -5

12 -2
dA = c -7 11

4 9
d

C = J
-7 -5 2

10 6 1

3 -9 8 KB = J
6 9 -4

7 5 3

-8 2 1 KA = J
3 -2 1

6 8 -5

7 9 10
K

100 CHAPTER 2 Numeric, Cell, and Structure Arrays

Path segment

1 2 3 4 5

Force (N) 400 550 700 500 600
Distance (m) 3 0.5 0.75 1.5 5

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 100 CONFIRMING PAGES

Use MATLAB to find (a) the work done on each segment of the path and
(b) the total work done over the entire path.

15. Plane A is heading southwest at 300 mi/hr, while plane B is heading west
at 150 mi/hr. What are the velocity and the speed of plane A relative to
plane B?

16. The following table shows the hourly wages, hours worked, and output
(number of widgets produced) in one week for five widget makers.

Problems 101

Worker

1 2 3 4 5

Hourly wage ($) 5 5.50 6.50 6 6.25
Hours worked 40 43 37 50 45
Output (widgets) 1000 1100 1000 1200 1100

Use MATLAB to answer these questions:
a. How much did each worker earn in the week?
b. What is the total salary amount paid out?
c. How many widgets were made?
d. What is the average cost to produce one widget?
e. How many hours does it take to produce one widget on average?
f. Assuming that the output of each worker has the same quality, which

worker is the most efficient? Which is the least efficient?

17. Two divers start at the surface and establish the following coordinate sys-
tem: x is to the west, y is to the north, and z is down. Diver 1 swims 60 ft
east, then 25 ft south, and then dives 30 ft. At the same time, diver 2 dives
20 ft, swims east 30 ft and then south 55 ft.
a. Compute the distance between diver 1 and the starting point.
b. How far in each direction must diver 1 swim to reach diver 2?
c. How far in a straight line must diver 1 swim to reach diver 2?

18. The potential energy stored in a spring is kx2/2, where k is the spring con-
stant and x is the compression in the spring. The force required to com-
press the spring is kx. The following table gives the data for five springs:

Spring

1 2 3 4 5

Force (N) 11 7 8 10 9
Spring constant k (N/m) 1000 600 900 1300 700

Use MATLAB to find (a) the compression x in each spring and (b) the po-
tential energy stored in each spring.

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 101 CONFIRMING PAGES

19. A company must purchase five kinds of material. The following table
gives the price the company pays per ton for each material, along with the
number of tons purchased in the months of May, June, and July:

102 CHAPTER 2 Numeric, Cell, and Structure Arrays

Quantity purchased (tons)

Material Price ($/ton) May June July

1 300 5 4 6
2 550 3 2 4
3 400 6 5 3
4 250 3 5 4
5 500 2 4 3

Use MATLAB to answer these questions:
a. Create a 5�3 matrix containing the amounts spent on each item for

each month.
b. What is the total spent in May? in June? in July?
c. What is the total spent on each material in the three-month period?
d. What is the total spent on all materials in the three-month period?

20. A fenced enclosure consists of a rectangle of length L and width 2R, and a
semicircle of radius R, as shown in Figure P20. The enclosure is to be
built to have an area A of 1600 ft2. The cost of the fence is $40/ft for the
curved portion and $30/ft for the straight sides. Use the min function to
determine with a resolution of 0.01 ft the values of R and L required to
minimize the total cost of the fence. Also compute the minimum cost.

L

2R R

Figure P20

21. A water tank consists of a cylindrical part of radius r and height h, and a
hemispherical top. The tank is to be constructed to hold 500 m3 of fluid
when filled. The surface area of the cylindrical part is 2�rh, and its vol-
ume is �r2h. The surface area of the hemispherical top is given by 2�r2,
and its volume is given by 2�r3/3. The cost to construct the cylindrical
part of the tank is $300/m2 of surface area; the hemispherical part costs
$400/m2. Plot the cost versus r for 2 	 r 	 10 m, and determine the
radius that results in the least cost. Compute the corresponding height h.

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 102 CONFIRMING PAGES

22. Write a MATLAB assignment statement for each of the following func-
tions, assuming that w, x, y, and z are row vectors of equal length and that
c and d are scalars.

23. a. After a dose, the concentration of medication in the blood declines due
to metabolic processes. The half-life of a medication is the time re-
quired after an initial dosage for the concentration to be reduced by
one-half. A common model for this process is

where C(0) is the initial concentration, t is time (in hours), and k is
called the elimination rate constant, which varies among individuals.
For a particular bronchodilator, k has been estimated to be in the range
0.047 	 k 	 0.107 per hour. Find an expression for the half-life in
terms of k, and obtain a plot of the half-life versus k for the indicated
range.

b. If the concentration is initially zero and a constant delivery rate is
started and maintained, the concentration as a function of time is
described by

where a is a constant that depends on the delivery rate. Plot the con-
centration after 1 hr, C (1), versus k for the case where a � 1 and k is
in the range 0.047 	 k 	 0.107 per hour.

24. A cable of length Lc supports a beam of length Lb, so that it is horizon-
tal when the weight W is attached at the beam end. The principles of
statics can be used to show that the tension force T in the cable is
given by

where D is the distance of the cable attachment point to the beam pivot.
See Figure P24.

T =

LbLcW

D2L2
b - D2

C(t) =

a

k
 (1 - e-kt)

C(t) = C(0)e-kt

S =

x(2.15 + 0.35y)1.8

z(1 - x)yA =

e-c>(2x)

(ln y)2dz

E =

x + w/(y + z)

x + w/(y - z)
f =

1

12�c/x

Problems 103

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 103 CONFIRMING PAGES

a. For the case where W � 400 N, Lb � 3 m, and Lc � 5 m, use element-by-
element operations and the min function to compute the value of D that
minimizes the tension T. Compute the minimum tension value.

b. Check the sensitivity of the solution by plotting T versus D. How
much can D vary from its optimal value before the tension T increases
10 percent above its minimum value?

Section 2.4

25.* Use MATLAB to find the products AB and BA for the following
matrices:

26. Given the matrices

Use MATLAB to
a. Verify the associative property

b. Verify the distributive property

27. The following tables show the costs associated with a certain product and
the production volume for the four quarters of the business year. Use MAT-
LAB to find (a) the quarterly costs for materials, labor, and transportation;

(AB)C � A(BC)

A(B + C) � AB + AC

C = J
-4 -5 2

10 6 1

3 -9 8
KB = J

6 9 -4

7 5 3

-8 2 1 KA = J
4 -2 1

6 8 -5

7 9 10 K

B = c -7 -8

6 2
dA = c 11 5

-9 -4
d

104 CHAPTER 2 Numeric, Cell, and Structure Arrays

Lb

Lc

D W

Figure P24

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 104 CONFIRMING PAGES

(b) the total material, labor, and transportation costs for the year; and (c) the
total quarterly costs.

Problems 105

Unit product costs ($ � 103)

Product Materials Labor Transportation

1 7 3 2
2 3 1 3
3 9 4 5
4 2 5 4
5 6 2 1

Quarterly production volume

Product Quarter 1 Quarter 2 Quarter 3 Quarter 4

1 16 14 10 12
2 12 15 11 13
3 8 9 7 11
4 14 13 15 17
5 13 16 12 18

28.* Aluminum alloys are made by adding other elements to aluminum to im-
prove its properties, such as hardness or tensile strength. The following
table shows the composition of five commonly used alloys, which are
known by their alloy numbers (2024, 6061, and so on) [Kutz, 1999]. Obtain
a matrix algorithm to compute the amounts of raw materials needed to pro-
duce a given amount of each alloy. Use MATLAB to determine how much
raw material of each type is needed to produce 1000 tons of each alloy.

Composition of aluminum alloys

Alloy %Cu %Mg %Mn %Si %Zn

2024 4.4 1.5 0.6 0 0
6061 0 1 0 0.6 0
7005 0 1.4 0 0 4.5
7075 1.6 2.5 0 0 5.6
356.0 0 0.3 0 7 0

29. Redo Example 2.4–4 as a script file to allow the user to examine the ef-
fects of labor costs. Allow the user to input the four labor costs in the fol-
lowing table. When you run the file, it should display the quarterly costs
and the category costs. Run the file for the case where the unit labor costs
are $3000, $7000, $4000, and $8000, respectively.

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 105 CONFIRMING PAGES

30. Vectors with three elements can represent position, velocity, and accel-
eration. A mass of 5 kg, which is 3 m away from the x axis, starts at
x � 2 m and moves with a speed of 10 m/s parallel to the y axis. Its
velocity is thus described by v � [0, 10, 0], and its position is described
by r � [2, 10t � 3, 0]. Its angular momentum vector L is found from
L � m(r � v), where m is the mass. Use MATLAB to
a. Compute a matrix P whose 11 rows are the values of the position vec-

tor r evaluated at the times t � 0, 0.5, 1, 1.5, . . . , 5 s.
b. What is the location of the mass when t � 5 s?
c. Compute the angular momentum vector L. What is its direction?

31.* The scalar triple product computes the magnitude M of the moment of a
force vector F about a specified line. It is M � (r � F) . n, where r is the
position vector from the line to the point of application of the force and n
is a unit vector in the direction of the line.

Use MATLAB to compute the magnitude M for the case where
F � [12, �5, 4] N, r � [�3, 5, 2] m, and n � [6, 5, �7].

32. Verify the identity

for the vectors A � 7i � 3j � 7k, B � �6i � 2j � 3k, and
C � 2i � 8j � 8k.

33. The area of a parallelogram can be computed from |A � B|, where A and
B define two sides of the parallelogram (see Figure P33). Compute the
area of a parallelogram defined by A � 5i and B � i � 3j.

A : (B : C) � B (A # C) � C(A # B)

106 CHAPTER 2 Numeric, Cell, and Structure Arrays

Product costs

Unit costs ($ � 103)

Product Materials Labor Transportation

1 6 2 1
2 2 5 4
3 4 3 2
4 9 7 3

Quarterly production volume

Product Quarter 1 Quarter 2 Quarter 3 Quarter 4

1 10 12 13 15
2 8 7 6 4
3 12 10 13 9
4 6 4 11 5

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 106 CONFIRMING PAGES

34. The volume of a parallelepiped can be computed from |A
 (B �C)|,
where A, B, and C define three sides of the parallelepiped (see Fig-
ure P34). Compute the volume of a parallelepiped defined by A � 5i,
B � 2i � 4j, and C � 3i � 2k.

Problems 107

A

B

x

y

Figure P33

A

B

C

x

y

z

Figure P34

Section 2.5

35. Use MATLAB to plot the polynomials y � 3x4 � 6x3 � 8x2 � 4x � 90
and z � 3x3 � 5x2 � 8x � 70 over the interval �3 	 x 	 3. Properly
label the plot and each curve. The variables y and z represent current in
milliamperes; the variable x represents voltage in volts.

36. Use MATLAB to plot the polynomial y � 3x4 � 5x3 � 28x2 � 5x � 200
on the interval �1 	 x 	 1. Put a grid on the plot and use the ginput
function to determine the coordinates of the peak of the curve.

37. Use MATLAB to find the following product:

(10x3
- 9x2

- 6x + 12)(5x3
- 4x2

- 12x + 8)

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 107 CONFIRMING PAGES

38.* Use MATLAB to find the quotient and remainder of

39.* Use MATLAB to evaluate

at x � 5.

40. The ideal gas law provides one way to estimate the pressures and vol-
umes of a gas in a container. The law is

More accurate estimates can be made with the van der Waals equation

where the term b is a correction for the volume of the molecules and the
term a/V̂2 is a correction for molecular attractions. The values of a and b
depend on the type of gas. The gas constant is R, the absolute temperature
is T, and the gas specific volume is V̂ . If 1 mol of an ideal gas were con-
fined to a volume of 22.41 L at 0ºC (273.2 K), it would exert a pressure of
1 atm. In these units, R � 0.08206.
For chlorine (Cl2), a � 6.49 and b � 0.0562. Compare the specific
volume estimates V̂ given by the ideal gas law and the van der Waals
equation for 1 mol of Cl2 at 300 K and a pressure of 0.95 atm.

41. Aircraft A is flying east at 320 mi/hr, while aircraft B is flying south at
160 mi/hr. At 1:00 P.M. the aircraft are located as shown in Figure P41.

P =

RT

VN - b
-

a

VN 2

P =

RT

VN

24x3
- 9x2

- 7

10x3
+ 5x2

- 3x - 7

14x3
- 6x2

+ 3x + 9

5x2
+ 7x - 4

108 CHAPTER 2 Numeric, Cell, and Structure Arrays

800 mi

320 mi/h

410 mi

160 mi/h

A

B

Figure P41

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 108 CONFIRMING PAGES

a. Obtain the expression for the distance D between the aircraft as a func-
tion of time. Plot D versus time until D reaches its minimum value.

b. Use the roots function to compute the time when the aircraft are first
within 30 mi of each other.

42. The function

approaches � as x → 2 and as x → 5. Plot this function over the range 0 	
x 	 7. Choose an appropriate range for the y axis.

43. The following formulas are commonly used by engineers to predict the
lift and drag of an airfoil:

where L and D are the lift and drag forces, V is the airspeed, S is the wing
span, � is the air density, and CL and CD are the lift and drag coefficients.
Both CL and CD depend on �, the angle of attack, the angle between the
relative air velocity and the airfoil’s chord line.

Wind tunnel experiments for a particular airfoil have resulted in the
following formulas.

where � is in degrees.
Plot the lift and drag of this airfoil versus V for 0 	 V 	 150 mi/hr

(you must convert V to ft /sec; there is 5280 ft/mi). Use the values � �
0.002378 slug/ft3 (air density at sea level), � � 10º, and S � 36 ft. The re-
sulting values of L and D will be in pounds.

44. The lift-to-drag ratio is an indication of the effectiveness of an airfoil. Re-
ferring to Problem 43, the equations for lift and drag are

D =

1

2
 �CDSV 2

L =

1

2
 �CLSV 2

CD = 5.75 * 10-6�3
+ 5.09 * 10-4�2

+ 1.8 * 10-4� + 1.25 * 10-2

CL = 4.47 * 10-5�3
+ 1.15 * 10-3�2

+ 6.66 * 10-2� + 1.02 * 10-1

D =

1

2
�CDSV2

L =

1

2
�CLSV2

y =

3x2
- 12x + 20

x2
- 7x + 10

Problems 109

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 109 CONFIRMING PAGES

where, for a particular airfoil, the lift and drag coefficients versus angle of
attack � are given by

Using the first two equations, we see that the lift-to-drag ratio is given
simply by the ratio CL /CD.

Plot L/D versus � for �2º 	 � 	 22º. Determine the angle of attack that
maximizes L/D.

Section 2.6

45. a. Use both cell indexing and content indexing to create the following
2 � 2 cell array.

L

D
=

1
2�CLSV2

1
2�CDSV2

=

CL

CD

CD = 5.75 * 10-6�3
+ 5.09 * 10-4�2

+ 1.81 * 10-4� + 1.25 * 10-2

CL = 4.47 * 10-5�3
+ 1.15 * 10-3�2

+ 6.66 * 10-2� + 1.02 * 10-1

110 CHAPTER 2 Numeric, Cell, and Structure Arrays

Motor 28C Test ID 6

[6 5 1]c3 9

7 2
d

b. What are the contents of the (1,1) element in the (2,1) cell in this array?

46. The capacitance of two parallel conductors of length L and radius r, sepa-
rated by a distance d in air, is given by

where � is the permittitivity of air (� � 8.854 � 10�12 F/m). Create a cell
array of capacitance values versus d, L, and r for d � 0.003, 0.004, 0.005,
and 0.01 m; L � 1, 2, 3 m; and r � 0.001, 0.002, 0.003 m. Use MATLAB
to determine the capacitance value for d � 0.005, L � 2, and r � 0.001.

Section 2.7

47. a. Create a structure array that contains the conversion factors for con-
verting units of mass, force, and distance between the metric SI system
and the British Engineering System.

C =

��L

ln[(d - r)/r]

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 110 CONFIRMING PAGES

b. Use your array to compute the following:

■ The number of meters in 48 ft.
■ The number of feet in 130 m.
■ The number of pounds equivalent to 36 N.
■ The number of newtons equivalent to 10 lb.
■ The number of kilograms in 12 slugs.
■ The number of slugs in 30 kg.

48. Create a structure array that contains the following information fields con-
cerning the road bridges in a town: bridge location, maximum load (tons),
year built, year due for maintenance. Then enter the following data into
the array:

Problems 111

Location Max. load Year built Due for maintenance

Smith St. 80 1928 2011
Hope Ave. 90 1950 2013
Clark St. 85 1933 2012
North Rd. 100 1960 2012

Location Max. load Year built Due for maintenance

Shore Rd. 85 1997 2014

49. Edit the structure array created in Problem 48 to change the maintenance
data for the Clark St. bridge from 2102 to 2018.

50. Add the following bridge to the structure array created in Problem 48.

pal34870_ch02_052-111.qxd 12/9/09 2:17 PM Page 111 CONFIRMING PAGES

