

Foreword	v	
Editors	vi	IIIIIIOD
Contributing authors	vii	Biology today
Reviewers and Acknowledgments	viii	Unifying the
Ectudent		Living o
E-Student	xxiv	DNA is
E-instructor	xxvi	Life evol
	XXVI	Evolutio
Instructive Art Program	xxviii	The practice
The Learning System		Scientifi
The Learning System	XXX	Making
Case Guide	xxxii	Testing l
An Australian Facus		Experim
All Australiali Focus	xxxiv	Scientifi
New to this edition	xxxv	Ethics an

UCTION The nature of biology and science 1 2 v mes in biology 2 organisms are made of cells 2 the basis of life 3 3 lves onary relationships are summarised in classifications 4 5 of science c method 5 5 observations hypotheses by experiments 5 5 nental design c publication 6 nd social responsibility in science 6

PART 1 Cell biology and energetics

12

CHAPTER 1 Molecules of life

All life is composed of the same few elements	13
Elements are made of atoms	14
Electrons are in orbit around a nucleus	14
Chemical bonding of atoms makes molecules	15
Covalent bonds are created by sharing electrons between two atoms	10
Non-covalent bonds between atoms or molecules	17
Water is the medium of life	18
Water as a solvent	19
Hydrophobic interactions	19
Acids, bases and buffers	22
pH	22
Buffers	23
Biomolecules	23
Carbohydrates	24
Monosaccharides	20
Disaccharides	20
Polysaccharides	27

Lipids	32
Simple lipids	32
Biomembranes are formed from phospholipids and glycolipids	34
Polyisoprenoid lipids	34
Proteins	36
Structure and shape of proteins	38
Nucleic acids	43
Nucleotides	43
DNA and RNA	43

CHAPTER 2 The chemistry of life

Chemical reactions and life processes depend on energy	49
Energy and entropy	49
Laws of thermodynamics	50
The equilibrium state of a reaction determines its available energy	50
Free energy and the equilibrium constant	50
Spontaneous chemical reactions and free energy	51
Rates of chemical reactions, activation energy and catalysis	52

106

129

Enzymes are biological catalysts	53
Models of enzyme action	55
Factors affecting enzyme activity	50
Cofactors and coenzymes	57
Chemical reactions drive events in cells	58
Metabolism	58
ATP as an energy carrier	58
Major classes of enzymes	59
Electron transport pathways	61
Oxidation and reduction reactions	61
Biological electron carriers	62
Energy in fuel molecules	63

CHAPTER 3 Functioning cells

Eukaryotic cells	69
Membranes: boundaries and barriers	69
The nucleus	70
Ribosomes	76
Endomembrane system	76
Endoplasmic reticulum	76
The Golgi apparatus	78
Intracellular sorting and transport	78
Mitochondria	79
Plastids	80
Microbodies	82
The cytoskeleton	83
Motility: cilia and flagella	86
Comparison of prokaryotic and eukaryotic cells	88

CHAPTER 4 Movement across membranes

The plasma membrane: the interface between a cell and its environment	92
Why are membranes necessary?	92
Permeability of membranes	92
Diffusion	92
Diffusion of solutes in water	92
Diffusion across membranes	93
Ions diffuse along an electrochemical gradient	93
Membrane transporters	94
Diffusion through the lipid bilayer may be slow	94
Facilitated diffusion through channels and carriers	94
Diffusion through channels is controlled by 'gating' mechanisms	95
Aquaporins	96
Active transport	97
Voltage differences across membranes: a dynamic feature of all cells	98
Osmosis: passive movement of water	98
Water has free energy	98
Water moves in response to differences in water potential	98

Osmosis and cells	99
Transport of large molecules across membranes	101
Endocytosis	101
Exocytosis	102

CHAPTER 5 Harvesting energy

67

91

Harvesting chemical energy	107
Glycolysis: the initial processing of glucose	109
β-Oxidation: the initial processing of lipids	109
The citric acid cycle: completing the oxidation of fuels	110
Recycling electron carriers	111
The electron transport system: generating ATP	111
Fermentation: ATP production without oxygen	112
Harvesting light energy: photosynthesis	114
Light energy	115
Pigments: molecules that absorb light	116
Light-dependent reactions of photosynthesis	117
Chloroplasts trap photons	117
Photosystems I and II	117
Photosynthetic prokaryotes	119
Light-independent reactions of photosynthesis	120
Carbon fixation and the Calvin–Benson cycle	120
Photorespiration: competition between carbon dioxide and oxygen	122
The C ₄ pathway of photosynthesis	122
Crassulacean acid metabolism	124

CHAPTER 6 Cells, tissues and signals

Animal tissues	130
The extracellular matrix	130
Intercellular connections	131
Tight junctions	132
Anchoring junctions	133
Communicating (gap) junctions	134
Principal animal tissues	135
Epithelia	135
Connective tissue	137
Muscle	138
Nervous tissue	138
Plant cells: the importance of the cell wall	139
Cell wall structure	140
Development of plant cell walls	140
Plasmodesmata: links between plant cells	141
Plant tissue systems	142
Dermal tissue	142
Ground tissue	142
Vascular tissue	142

Cell signals	143
Types of signals	144
Responses to signals	144
Chemical stimuli	144
Physical stimuli	145
Signal processing	149
Direct receptor-mediated responses	149
G-protein-linked receptors	149
Receptor tyrosine kinases	152

CHAPTER 7 Cell division

The cell cycle	158
Mitosis and meiosis	158
Cell division in prokaryotes	158
The cell cycle in eukaryotes	159

NT along di tatan and add di tatan	150
Nuclear division and cell division	159
The cell cycle: an outline	159
Mitosis	161
Mitosis in animal cells	161
Cytokinesis in animal cells	164
Mitosis and cytokinesis in plant cells	164
The control of cell division in eukaryotes	166
Control of cell cycle progression	166
Cyclin–Cdk kinases regulate cell cycle progression	166
Checkpoint control of the cell cycle	167
Meiosis and the formation of haploid cells	167
Meiosis I	160
Prophase I	168
Meiosis II	171
Genetic consequences of meiosis	171

PART 2 Genetics and molecular biology

157

176

CHAPTER 8 Inheritance

Genetics: the science of biological information	17
The foundation for understanding genetics	17
Inheritance of a single gene	17
Mendel's experiments	17
Monohybrid cross	173
Multiple effects of single genes	18
Codominance and blood groups	18
Inheritance of combinations of genes	18
Dihybrid cross	18
Backcrosses and testcrosses	184
Mendelian inheritance in humans	184
The limits of Mendel's ideas	184
Sex linkage and chromosomes	18
Sex-linked genes	18
Genes are on chromosomes	18
X-linked traits in humans	18
Y-linkage and male sex determination	18
Linkage on autosomes	19
Linkage and recombination	19
Chromosome mapping	192
More variations on Mendel's observations	19.
Incomplete dominance	19.
Novel phenotypes through recombination	19
Phenotypes and environment	194

Penetrance and expressivity	195
Epistasis	196
Epigenetic regulation	196
X chromosome inactivation	196
Imprinting	197
Quantitative characters	198
Understanding genetics as the study of biological information	199

CHAPTER 9 Genes, chromosomes and DNA 204

Tracking the genetic material	205
Chromosome behaviour accounts for patterns of inheritance	205
Chromosome structure	205
Chromosomes consist of protein and DNA and are assembled into nucleosomes	206
Genetic information is stored in DNA and not protein	207
The structure of DNA explains its capacity to store biological information	208
DNA synthesis: an overview	210
DNA replication in prokaryotes	211
Replication in eukaryotes	214
CUADTED 10 The genetic code	
CHAPTER TO THE Genetic Code	219
The one gene–one polypeptide hypothesis	220

the one gene one polypeptide hypothesis	220
The one gene–one enzyme hypothesis	220
The one gene–one polypeptide hypothesis	220

The central dogma	220
Transcription	221
Initiation of transcription	222
Prokaryotes: transcription in the cytoplasm	224
Eukaryotes: transcription in the nucleus	224
Cutting, splicing and adding to eukaryotic mRNA	225
Translation and the genetic code	226
The genetic code	226
Translation	228
Protein synthesis	229
Ribosomes	229
Polypeptide synthesis	230
Initiation	230
Elongation	230
Termination	232
Protein targeting and processing	232

CHAPTER 11 Gene expression

An introduction to regulation of gene expression	237
Constitutive and inducible genes	237
Control points for gene expression	237
Regulation of gene expression in prokaryotes	238
Structure of bacterial operons	238
Regulation of the lac operon	238
The lac operon and negative regulation: repression in the absence of lactose	238
Regulation of the lac operon: glucose repression and positive regulation	240
Regulation of the trp operon	240
Regulation of gene expression in eukaryotes	242
Transcription factors and enhancers	242
Yeast GAL regulation	242
Enhancers and silencers: the modular nature of eukaryote	
gene expression	243
Gene regulatory cascades in eukaryotes	244
The new world of RNA-mediated regulation of gene expression	244

CHAPTER 12 Genomes, mutation and cancer 247

Genomes		248
G	enomes and phenotype	248
G	enome evolution	248
G	enome organisation: an overview	248
Т	he relative sizes of genomes	248
G	ene numbers in genomes	248
0	rganelle genomes	250
T	pes of DNA sequences	250

Gene families	254
Genome maps	256
Genes and genetic programs	256
Sets of genes respond to various situations	256
Sets of genes regulate related biological processes in different	
organisms	256
Essential and non-essential genes	256
Mutation, genetic variation and genome instability	258
Genomes and genetic variation	258
Mutation: the source of genetic variation	258
DNA synthesis errors and spontaneous mutation	259
Environmental mutagens	259
DNA repair mechanisms	260
Genomes, mutation and cancer	260
Cancer cells have modified growth and survival characteristics	260
Tumours are clonal in origin	261
Cancer is a genetic disease	261
Dominant oncogenes	261
Tumour suppressor genes and cell cycle regulation	262
Tumour suppressor genes and the integrity of the genome	262

CHAPTER 13 Genetic engineering and biotechnology

biotechnology	268
An overview of recombinant DNA	269
Cutting and joining DNA	269
Genetic transformation	269
Designer genes	269
Recombinant DNA technology	270
DNA-modifying enzymes	270
Restriction enzyme mapping	271
Joining DNA molecules	272
Introducing DNA into cells and using plasmid and bacteriophage vectors	272
Identifying and isolating individual genes	275
Characterising cloned DNA sequences	279
Applications of recombinant DNA technology	284
Analysing genetic variation	284
DNA technology in forensic science	284
Determining paternity	285
Mapping genes	285
Cloning genes of unknown function	286
Biotechnology	289
Making pharmaceutical products	289
Modifying agricultural organisms	290
Gene therapy	292
Cell therapy	292

PART 3 Plant form and function

CHAPTER 14 Reproduction, growth and development of flowering plants

Plant life cycles	299
Gametes of plants are not the direct result of meiosis	299
Plants have homosporous or heterosporous life cycles	300
The flower: the site of sexual reproduction	300
The anther: the male reproductive organ	301
The carpel: the female reproductive organ	301
Fertilisation	306
Reproduction without fertilisation: the unusual case of apomixis	307
Pollination in flowering plants: choose your partner carefully!	308
The stigma and style recognise pollen	308
Cross-pollination	308
Self-incompatibility is a genetically controlled recognition system	309
Self-pollination	310
Major events in the formation of seeds	311
Development of the embryonic plant	311
Endosperm formation	312
Seed and fruit development	312
Seed maturation, dormancy and germination	312
Organogenesis: making leaves, roots and flowers	314
The shoot apex	314
The root apex	315
Asexual reproduction in flowering plants	315
Vegetative reproduction	315
Totipotency: generating a whole plant from one cell	318
Biotechnology and plants	320
Tissue culture	320
Genetic engineering of plants	320

CHAPTER 15 Structure of plants

Plant cell walls	326
Middle lamella	326
Primary wall	327
Secondary wall	328
Plant tissue systems	328
Dermal tissue	328
Ground tissue	328
Vascular tissue	330
Stem structure	332
Primary growth	332

Secondary growth	334
Special functions of stems	336
Root structure	337
Primary growth	338
Secondary growth	341
Special functions of roots	342
Root adaptations and nutrient supply	343
eaf structure	345
Leaf arrangement and life span	345
Leaf shape and orientation	345
Leaf structure and organisation	346
Modifications of leaf structure	348

CHAPTER 16 Plant nutrition, transport and adaptation to stress

Nutrition of plants	355
Essential minerals	355
Pathways and mechanisms of transport	358
Water transport	359
Factors that affect water potential	359
Water uptake by plant cells	360
Transpiration	361
Water movement in xylem	362
Water movement from leaves	363
Translocation of assimilates	366
Pathway of assimilate transport	366
What substances are transported in phloem?	367
Rate of phloem transport	368
Mass-flow mechanism of transport	368
Adaptations to stress	369
Water stress	370
Salinity and mineral stress	373
Lack of oxygen around roots	374
Temperature stress	374

CHAPTER 17 Plant hormones and growth

responses379Auxin380Auxin and phototropism380Indole-3-acetic acid and other auxins381Auxin and cell elongation382Auxin and apical dominance383

XV

Gravitropism	383
Auxin binding proteins	384
Gibberellins	384
Gibberellins and stem elongation	384
Gibberellins and mobilisation of seed protein and carbohydrate	
reserves	385
Cytokinins	386
Abscisic acid	388
ABA and drought resistance	388
ABA and frost tolerance	389

Seed dormancy	389
Ethylene	390
Signal transduction	390
Fruit ripening	391
Shoot growth and flowering	391
Brassinosteroids	392
Photoperiodism and control of flowering	393
Short-day and long-day plants	393
Vernalisation and flowering	396
Monocarpic senescence	396

PART 4 Animal form and function

400

423

CHAPTER 18 Animal reproduction

Asexual reproduction	401
Regeneration	401
Budding	401
Parthenogenesis	402
Sexual reproduction	402
Hermaphroditism	403
Reproductive strategies	405
The costs of sexual reproduction	406
Gametogenesis and fertilisation	410
The formation of gametes: gametogenesis	411
Fertilisation: cellular events	416

CHAPTER 19 Animal development

Features of animal development	424
Cell behaviour during development	424
Anterior-posterior and dorsal-ventral axes	424
Embryonic development	424
Cleavage	424
Gastrulation	427
Mechanisms of morphogenesis	431
Organogenesis	433
Neurulation	433
Limb formation	435
Cell lineages and the maintenance of animal tissues	436
Cell lineages	436
Stem cells	436
Tissue maintenance	437
Blood cell formation	437

Regulation of development: cytoplasmic determinants and cell signalling	438
Primary induction and mesoderm induction in amphibia	439
The notochord and neural tube development	442
Genetic regulation of development	442
Genomic equivalence	442
Pattern formation	443
Mutation is a powerful means of identifying developmental	
patterning genes	444
Mutations that change the pattern of body structures	444
The molecular genetics of segmentation in Drosophila	444
Early embryonic development in Drosophila	444
Specifying the anterior-posterior axis	445
Zygotic segmentation genes	447
Homeotic (Hox) genes	448
Genetic regulation and intercellular signalling control development	450

CHAPTER 20 Animal and human nutrition	454
What nutrients do animals need?	455
Nutrient composition of foods	458
Plant tissues	458
Animal tissues	459
How much food do animals require?	460
Metabolic rate and body mass	460
The digestive process	461
Physical digestion	461
Enzymatic digestion	461
Control of digestive secretion in humans	461
Evolution and diversity of digestive systems	465
Intracellular and extracellular digestion	465
Simple digestive cavities	465
Two openings: one-way movement of food	466

Muscular gut wall: coelomates	466
Chitinous mouthparts: arthropods	467
Jaws and teeth: vertebrates	468
Mammals	469
Filter feeding: eating tiny particles	470
Dealing with plant cell walls	471
Digesting cellulose	473
Foregut fermentation	473
Ruminant foregut fermenters	474
Hindgut fermentation	475
Body weight regulation in humans	476
Body composition and the myth of fast and slow metabolism	476
Where does our body fat come from?	476
Fuel for our bodies to meet our energy needs	477
Mechanisms for regulating body fat: evidence for a genetic basis of body mass	477

CHAPTER 21 Gas exchange in animals

Air and water as respiratory media	483
Exchanging gases	484
Surface area and volume	486
Ventilation and convection	486
Gas-exchange organs	487
Water breathers	487
The transition from water to air breathing	491
Air breathing: lungs	493
Air breathing: tracheae	499
Transporting gases	502
Transport of oxygen	502
Oxygen-carrying capacity	503
Oxygen affinity	503
Transport of carbon dioxide	504
Control of ventilation	505

CHAPTER 22 Circulation

510
511
516
518
519
519
521
522
525
525
526
529

Blood	531
Erythrocytes	532
Blood clotting	532

CHAPTER 23 Water, solutes and excretion 537

Water and solutes	538
Exchange with the environment	538
Extracellular and intracellular environments	539
Patterns of ionic and osmotic balance	540
Living in sea water	540
Living in salt lakes	542
Living in fresh water	542
Moving between sea and fresh water	543
Living on land	544
Nitrogenous wastes	545
Phylogenetic and environmental patterns	546
Excretion	547
Epithelial excretory organs	547
Tubular excretory organs	548
Invertebrates	549
Vertebrates	551

CHAPTER 24 Innate defences and the immune system

Innate defence mechanisms	563
External barriers	563
Identifying an invader	563
Cells that kill	564
Defensive molecules	565
The inflammatory response	566
Specific acquired immunity	566
Cells of the immune system	569
Lymphocytes and specificity	569
T lymphocytes (T cells) and the thymus	571
B lymphocytes (B cells) and their development	572
Phagocytic cells	573
Dendritic cells	573
NK cells	573
Molecules of the immune system	573
Antigens	573
Antibodies (immunoglobulins)	575
The T-cell receptor (TCR)	575
The major histocompatibility complex (MHC)	576
The problems of tolerance and autoimmunity	578

Nature of immune responses	578
Secondary lymphoid tissues and the lymphatic network	578
Humoral responses	580
Cellular responses	581
Immunity to infection	581
Defence against tumours	584
Allergy, hypersensitivity and immunopathology	585
Evolution of immune responses	586
Immunity in animals	586
Immunity in plants	587

CHAPTER 25 Hormonal control in animals

Animal hormones	593
Sites of action	594
General functions	595
Mechanisms of hormone action	595
Hormone control systems	596
Neurosecretion	596
Non-neural hormone secretion	596
Hormones in invertebrates	599
Hormonal control of development	599
Other invertebrate hormones	600
Hormones in vertebrates	600
Neurohaemal organs	600
Non-neural endocrine glands	604

CHAPTER 26 Nervous systems

Neurons: the functional units of nervous systems	616
What types of neurons are there?	617
Neurons transfer information as electrical signals	619
The active responses of neuronal membranes	619
What are action potentials?	621
How are action potentials conducted?	621
How is electrical information transmitted to other cells?	622
What are synaptic potentials?	622
How do neurons integrate information?	624
The evolution of nervous systems	626
Complex nervous systems: vertebrates	627
The mammalian brain	627
Higher functions of brains	630
How do neural circuits produce behaviour?	631
The functional divisions of nervous systems	632
Controlling muscles and movements	632
Monitoring the external world	634
Visceral control	639

CHAPTER 27 Animal movement	643
Locomotion as a key to animal life	644
Living in water	644
Buoyancy	644
Non-muscular locomotion	645
Muscular locomotion	646
Travelling through air	649
Unpowered (gliding) flight	649
Powered flight	652
Moving on land	653
Locomotion without legs	653
Locomotion with legs	654
Muscles and skeletons working together	657
Skeletons	657
Joints	660
Size and the skeleton	662
Muscle	662

CHAPTER 28 Animal behaviour

Genetics and the evolution of behaviour	672
Genetic markers	673
Selection experiments	673
Populations with genetic differences	673
Learning and the development of behaviour	673
Understanding complex behaviour	675
Obtaining food	676
Avoiding being eaten	677
Living in groups	678
Competition and territorial behaviour	679
Territorial behaviour	679
Animal contests	680
Courtship and mating behaviour	681
Courtship	681
Parental care	685
Social organisation and co-operative behaviour	686
Co-operative breeding in birds and mammals	687
Insect societies	688
Evolution of co-operation	689

CHAPTER 29 Animals responding to environmental stress

Phenotypic plasticity	694
Animals in the Australian arid zone	694
Termites in arid Australia	695

Animals living at low temperatures	696
Do animals freeze?	696
Insects at low temperatures	696
The Q10 concept	697
Temperature regulation and metabolism in animals	697
Thermal acclimation	699
Metabolic depression in animals	700
Hypothermia and the concept of torpor	700

Torpor in mammals and birds	701
Environmental oxygen stress	702
Adaptations to low levels of oxygen	704
Responses to high altitude in humans	706
Other animals at high altitude	708
Oxygen stress and temperature	708
Responses of animals to global warming	709

5 Evolution and biodiversity

CHAPTER 30 Evolving life

Recording the diversity of life	715
Discovering phylogeny and the evolutionary tree of life	715
How to discover a phylogenetic tree by cladistic analysis	715
Comparing morphology	717
Homologous features are evidence of relationships between divergent forms	718
Analogous features are evidence of convergence	718
Comparing molecules	720
Comparing amino acid sequences of proteins	720
Comparing nucleotide sequences of DNA	720
Classification is based on phylogenetic relationships	724
Purposes of classification	724
Taxonomy and naming the hierarchy of life	724
The binomial system	727
Species are the basic taxonomic units	728
Kingdoms of life	729

CHAPTER 31 Evolving earth

Fossils are a record in rocks of past life	735
How do fossils form and where are they found?	735
Dating rocks provides a time scale of evolution	736
Evolving earth influences life	739
Plate tectonics explains how continents drift	739
Ancient positions of continents	740
Geological eras mark major events in evolution	741
Precambrian life	741
Ediacaran fauna—evidence of multicellular organisms	741
Palaeozoic life: ancient life	743
Mesozoic life: age of dinosaurs	746
Cenozoic life: the beginning of modern life	748
Biogeographic regions of the modern earth reflect evolutionary history	749

CHAPTER 32 Mechanisms of evolution	755
Key concepts in evolution	756
A population	756
The gene pool	756
A species	756
Evolutionary change	756
Variation	757
Evolution by means of natural selection	757
The neo-Darwinian theory of evolution	758
Macroevolution	758
Evolutionary trees	758
Speciation	758
Genetic variation arises by mutation	760
Effect of mutation	760
Genes in populations	761
Detecting and measuring genetic variation in populations	761
The Hardy-Weinberg principle	762
Factors that change the genetic structure of populations	763
Random mating	763
Mutation	763
Migration	763
Genetic drift	763
Natural selection	763
Examples of natural selection	767
Theories of speciation	770
Species' concepts	770
Reproductive isolation and speciation	771
Modes of speciation	773
Speciation and chromosomal rearrangement	775
Hybridisation and asexual reproduction	775

Molecular evolution	777
Gene duplication	777
Homologous genes	777
Constructing evolutionary trees from molecular data	778
A challenge for the future	778

CHAPTER 33 Bacteria

Bacteria are prokaryotes	783
Bacteria were the first cellular life on earth	785
Early photosynthetic bacteria	785
Two major evolutionary lineages of bacteria—super kingdoms Bacteria and Archaea	786
Classifying and identifying bacteria	787
Super kingdom Bacteria includes cyanobacteria and endospore-forming species	788
Super kingdom Archaea includes halophiles, acidophiles, thermophiles and methanogens	792
The remarkable abundance and metabolic diversity of bacteria	793
Bacterial populations are often very large and dense	793
The metabolic diversity of bacteria	793
Four nutritional types of bacteria—chemoheterotrophs, photoautotrophs, chemoautotrophs and photoheterotrophs	796
Genetic systems of bacteria	799
Transformation: gene transfer by free molecules of DNA	800
Conjugation: gene transfer by plasmids	800
Transduction: gene transfer by bacteriophages	800
The importance of plasmids and phages to bacterial populations	802

CHAPTER 34 Viruses

The discovery of viruses	807
Viruses are subcellular organisms	809
Features distinguishing viruses from cellular organisms	809
Virions are the transmission phase	810
Viral genomes	810
Replication	812
Ecology and spread of viruses	814
Classification and relationships of viruses	815
Other virus-like 'agents'	818
Satellite viruses	818
Retrotransposons and similar agents	818
Viroids and prions: virus-like infectious agents	818
Virus control	819

CHAPTER 35 The protists	822
Protists are a diverse group of eukaryotes	824
Where did eukaryotic cells come from?	824
Origin of the nucleus	824
The endomembrane system: extension of the nuclear envelope	824
Mitochondria and plastids arose by endosymbiosis	825
Cilia and flagella: extensions of the cytoskeleton	826
Are simple protists ancient eukaryotes?	826
Sponge-like protists	827
'Collar' flagellates: choanoflagellates	827
Slime moulds	827
Cellular slime moulds	827
Acellular slime moulds: myxomycetes	830
Parasitic flagellates that contaminate water supplies: diplomonads	831
Symbionts and parasites: parabasalids	831
Amoebae	832
Rhizopods are amoebae that can alter their shape	832
Actinopods are radially symmetrical unicells	832
Protists with plastids	833
Protists with primary plastids: the 'green lineage'	833
Missing links in endosymbiosis: glaucophytes	834
Red algae: rhodophytes	834
Green algae: chlorophytes	835
Protistan pirates with second-hand plastids	837
Chromist protists: the 'brown lineage'	837
Flagellates with second-hand plastids: cryptomonads	837
Golden flagellates: chrysophytes	838
Chalk comes from dead algae: haptophytes	839
Algae in glass houses: diatoms	840
Brown algae: phaeophytes	840
Water moulds and downy mildews: oomycetes	843
Alveolates: dinoflagellates, ciliates and parasites	844
Dinoflagellates: whirling algae	844
Small but deadly: apicocomplexans	846
Ciliates: eukaryotes with two different nuclei	848
Euglenoids and kinetoplasts	849
Euglenoid flagellates	849
Flagellate parasites: kinetoplasts	850
Cercozoa and forams	851
Amoebae with second-hand chloroplasts: chlorarachniophytes	851
More chalky protists: forams	852

CHAPTER 36 Plants

Evolution of plants	857
Green algae and the origin of land plants	858
Adaptations to living on land	859
Specialisation of vegetative features	859
Alternating generations and sexual reproduction	860
Non-vascular plants: liverworts, hornworts and mosses	862
Gametophytes: the haploid generation	862
Sporophytes: the diploid generation	865
Vascular plants evolved conducting tissues	867
Lycophytes: clubmosses and quillworts	868
Psilophytes: fork ferns	870
Sphenophytes: horsetails	870
Filicophytes: ferns	871
Seed plants	874
Seeds from ovules	874
Pollen transport of male gametes	875
Secondary growth allows plants to become large	875
Cycadophytes: ancient seed plants	876
Ginkgophytes: retain flagellated sperm	877
Coniferophytes: successful non-flowering seed plants	877
Gnetophytes: closest relatives of flowering plants?	880
Magnoliophytes: flowering plants	881
The flower	883
Origin and evolution of the flower	883
In the life cycle of flowering plants fertilisation is a 'double' event	885
The agents of pollination are often animals	886
Fruits protect seeds and aid their dispersal	888

CHAPTER 37 Fungi

The diversity and evolution of fungi	894
What is a fungus?	895
Fungal growth	890
Hyphae are for feeding	890
Specialised hyphae	897
Fungal nuclei are different	898
Fungal nutrition	899
Fungi digest nearly any form of organic carbon	899
Fungi tolerate environmental extremes	900
Fungal reproduction	90
Spores for travel and survival	90
Life without sex	90

902
903
904
905
906
909
909
909
911
912
912
913
913
913
914
915
915
915

CHAPTER 38 Simple animals: sponges to flatworms

Animals are multicellular, heterotrophic organisms	919
What do we know of the origin and early evolution of animals?	919
The origin of multicellularity	919
Fossil faunas and what they tell us about the history of animals	919
The phylogeny of modern groups of animals	920
Protostomes and deuterostomes: two modes of development	921
Sponges: phylum Porifera	921
Radially symmetrical animals	923
Polyps and medusae: phylum Cnidaria	923
Jellyfish: class Scyphozoa	926
Box jellyfish: class Cubozoa	927
Hydras: class Hydrozoa	927
Sea anemones and corals: class Anthozoa	928
Comb jellies: phylum Ctenophora	930
Simple protostomes	
Flatworms: phylum Platyhelminthes	931
Free-living flatworms: class Turbellaria	932
Ectoparasitic flukes: class Monogenea	933
Endoparasitic flukes: class Trematoda	933
Tapeworms: class Cestoda	935
Proboscis worms: phylum Nemertea	936

CHAPTER 39 Annelids, molluscs, nematodes and arthropods

and arthropods	941
Coelomate protostomes	942
Segmented worms: phylum Annelida	942
Functional implications of segmentation and a coelom	943
Marine bristle worms: class Polychaeta	944
Annelids with a clitellum: class Euclitellata	945
Snails, clams and relatives: phylum Mollusca	947
Molluscan body plan	947
Chitons: class Polyplacophora	948
Filter feeding and the class Bivalvia	949
Torsion and the class Gastropoda	950
Squid and octopus: class Cephalopoda	952
Roundworms: phylum Nematoda	954
Joint-limbed animals with an exoskeleton: phylum Arthropoda	956
Evolution of arthropods	956
Advantages and disadvantages of an exoskeleton	957
Features of the arthropod body	957
Chelicerate arthropods: spiders, scorpions and their relatives	957
Mandibulate arthropods: myriapods, crustaceans and insects	959
CHAPTER 40 Echinoderms and chordates	968

CHAPIER 40	Echinoderms and chordates	
Echinoderms		

The echinoderm skeleton	
The water vascular system	

]	Reproduction, development and regeneration	971
]	Echinoderms include six classes of marine animals with five-rayed	
	symmetry	972
Chor	Chordates	
	Acorn worms and pterobranchs: hemichordates	974
,	Tunicates: urochordates	975
]	Lancelets: cephalochordates	975
Craniates: chordates that evolved a head		976
	Jawless craniates: lampreys and hagfishes	976
	Vertebrates: craniates that evolved a backbone and jaws	976
	Cartilaginous fishes	977
]	Ray-finned fishes	978
Tetra	Tetrapods and their relatives	
	Coelacanths and lungfishes	980
	Amphibians: living on land and in water	980
	Amniotes: an embryo with a pond of its own	981
,	Turtles and their relatives	982
:	Snakes, lizards and the tuatara	982
	Archosaurians: crocodiles, dinosaurs and birds	982
i	Mammals	985
]	Primates	987
Hum	an evolution	989
	Sahelanthropus and Australopithecus: upright apes, the first	
	hominids	990
]	Paranthropus: robust forms	992
]	Homo: increase in brain size	992
	Out-of-Africa or a multiregional origin of Homo sapiens?	993

PART 6 Ecology

CHAPTER 41 Australian biota	998
The Australian biota: southern connections	999
Australia in Gondwana	1000
Evolution of Australian environments through the Cenozoic	1001
Changing climate and increased aridity	1001
Changing landforms and weathering of soils	1002
Increasing frequency of fire	1003
Quaternary ice ages: cool, arid periods	1003
Arrival of humans	1004
Modern Australian environments	1006
Terrestrial environments	1006

Marine environments	1006
Australian flora	1008
Dominance of sclerophylls ('hard' leaves)	1009
Succulent survivors	1010
Characteristics of some Australian flowering plants	1011
A unique southern fauna	1016
Insects with southern connections	1017
Biogeographic patterns of terrestrial vertebrates	1017
Adaptive radiation of frogs	1017
Australian reptiles	1018
Adaptive radiation in mammals	1019

CHAPTER 42 Population ecology

What is a population?	1029
Distribution and abundance of populations	1029
Potential and realised distributions	1031
Density-independent population dynamics	1033
Exponential population growth in discrete time	1033
Modelling density-independent growth	1033
Environmental variability and exponential growth	1034
Exponential population growth in continuous time	1034
Density-dependent population dynamics	1036
Space-limited populations	1037
Age- and size-structured population dynamics	1039
Bioeconomics: managing exploited populations	1041
Viable population sizes for conservation	1043

CHAPTER 43 Living in communities

Species coexist and interact in communities	
Community structure	
Species diversity	1048
Structural diversity of plant communities	1049
Interactions within communities	1052
Symbiosis	
Commensalism	1053
Mutualism	1053
Parasitism	1054
Predation	1055
Abundance of predators and prey	1055
Fruit eaters aid seed dispersal	1056
Predation and biological control	1056
Plant defences	1057
Animal defences	1058
Keystone predators	1059
Competition	
Ecological niche	
Niche overlap and character displacement	1062
Communities are not constant	1063
Succession: the replacement of one community by another	1063
Disturbance affects many communities	1064
Fire promotes habitat variability	1064
Disturbance can promote diversity	1065
but humans can act as novel disturbances	1056
Communities are the result of many different interactions	1067
Biomes: communities on a global scale	
Gradients and ecotones	1069

CHAPTER 44 Ecosystems

Feeding relationships shape ecosystems	1076
Food chains and food webs	1077
Ecological pyramids	1080
Pyramids of numbers	1080
Pyramids of biomass	1081
Pyramids of energy	1081
Why food chains are short	1081
Productivity of different ecosystems	1084
Productivity of ecosystems may change through time	1085
Biogeochemical cycles	1086
The water cycle	1086
Carbon cycle	1089
Nitrogen cycle	1091
Phosphorus cycle	1093

CHAPTER 45 Human impacts

1100
1102
1102
1103
1103
1105
1106
1108
1109
1113
1116
1116
1117
1117
1118
1118

Appendix 1Classification of cellularorganisms1123Glossary1126Credits1160Index1165