
590

Glossary

Abstract class: a class that has no instances; a superclass that acts only as a
generalized template for its instantiated subclasses.

Abstract operation: an operation that is not implemented in the class in which it
appears (usually an abstract superclass), but will be implemented in a subclass.

Abstraction: a simplified representation that contains only those features that are
relevant for a particular task; the act of separating out the general or reusable parts
of an element of a system from its particular implementation.

Activation: the execution of an operation, represented in interaction sequence
diagrams as a long thin rectangle.

Activity: an activity is some behaviour that may persist for the duration of a state.
Activity diagram: a variation of a statechart diagram that focuses on a flow of activity

driven by internal processing within an object rather than by events that are external
to it. In an activity diagram most (or all) states are action states (also called
activities), each of which represents the execution of an operation.

Actor: an actor is an external entity of any form that interacts with the system. Actors
may be physical devices, humans or information systems.

Adornment: an element attached to another model element, for example a stereotype
icon or a constraint.

Aggregation: a whole–part association between two or more objects, where one
represents the whole and the others parts of that whole.

Algorithm: a description of the internal logic of a process or decision in terms of a
sequence of smaller steps.

Analysis class stereotype: one of three specialised kinds of class (boundary, control
and entity classes (q.v.)) that feature in analysis class diagrams. The separation of
concerns that these represent forms the basis of the architecture recommended for
most models developed following USDP guidelines (cf. stereotype).

Antipattern: documents unsuccessful attempts at providing solutions to certain
recurring problems but includes reworked solutions that are effective.

Association: a logical connection, usually between different classes although in some
circumstances a class can have an association with itself. An association describes
possible links between objects, and may correspond either to logical relationships in
the application domain or to message paths in software.

Association class: a class that is modelled in order to provide a location for attributes
or operations that properly belong to an association between other classes.

Association instance: another name for a link (q.v.).
Attribute: an element of the data structure that, together with operations, defines a

class. Describes some property of instances of the class.
Boundary class: a stereotyped class that provides an interface to users or other

systems.



Glossary 591

Business rule: see enterprise rule.
Capta: data that has been selected for processing due to its relevance to a particular

purpose.
Cardinality: the number of elements in a set; contrast with multiplicity (q.v.).
Class: a descriptor for a collection of objects that are logically similar in terms of their

behaviour and the structure of their data.
Class diagram: a UML diagram that shows classes with their attributes and

operations, together with the associations between classes.
Class Responsibility Collaboration (CRC): CRC cards provide a technique for

exploring the possible ways of allocating responsibilities to classes and the
collaborations that are necessary to fulfil the responsibilities

Class-scope: a class-scope attribute occurs only once and is attached to the class (not
to any individual object. A class-scope operation is accessed through the class (i.e.
prefixed with the class name) not through an object. Model elements that are of
class scope are underlined in class diagrams.

Cohesion: a measure of the degree to which an element of a model contributes to a
single purpose.

Collaboration: the structure and links between a group of instances that participate in
a behaviour. The behaviour can be that of an operation or a use case (or any other
behavioural classifier in UML). 

Collaboration diagram: a collaboration diagram shows an interaction between
objects and the context of the interaction in terms of the links between the objects.

Collection class: provides collection-specific behaviour to maintain a collection. Used
when designing associations with a many multiplicity to hold collections of object
identifiers. 

Common Object Request Broker Architecture (CORBA): a mechanism to support
the construction of systems in which objects, possibly written in different languages,
reside on different machines and are able to interact by message passing.

Component: an executable software module with a well-defined interface and identity.
Component diagram: a diagram that shows the organization of and dependencies

among components. One of two UML implementation diagrams (q.v.).
Composition: a strong form of aggregation with a lifetime dependency between each

part and the whole. No part can belong to more than one composition at a time, and
if the composite whole is deleted its parts are deleted with it.

Concrete class: a class that may have instances.
Concurrent states: if an object may be in two or more states at the same time, then

these states are concurrent states.
Constructor operation: an operation that creates new instances of a class.
Context (in OCL—q.v.): the domain within which an OCL expression is valid, for

example, a class.
Context (of a pattern): the circumstances in which a particular problem occurs.
Contract: a black box description of a service (of a class or sub-system) that specifies

the results of the service and the conditions under which it will be provided.
Control class: a stereotyped class that controls the interaction between boundary

classes and entity classes.
Coupling: relates to the degree of interconnectedness between design components

and is reflected by the number of links and the degree of interaction an object has
with other objects.

Critical Path Analysis (CPA): a diagrammatic technique for analysing the depen-
dencies between project tasks and determining those tasks that must be completed



on time if the project itself is to be completed on time.
Data: raw facts, not yet identified as relevant to any particular purpose.
Dependency: a relationship between two model elements, such that a change in one

element may require a change in the dependent element.
Deployment diagram: A diagram that shows the run-time configuration of processing

nodes (q.v.) and the components, processes and objects that are located on them.
One of two UML implementation diagrams (q.v.).

Design constraint: a constraint that limits the design options that may be used.
Common design constraints include cost and data storage requirements.

Destructor operation: an operation that destroys instances of a class.
Domain model: an analysis class model that is independent of any particular use cases

or applications, and that typically contains only entity objects. A domain model may
serve as a basis for the analysis and design of components that can be reused in
more than one software system.

Encapsulation: hiding internal details of a sub-system (typically a class) from the view
of other sub-systems, so that each can be maintained or modified without affecting
the operation of other parts of the system.

Enterprise (or business) rule: a statement that expresses business constraints on the
multiplicity of an association; for example, an order is placed by exactly one
customer.

Entity class: a stereotyped class that represents objects in the business domain model.
Event: an occurrence that is of significance to the information system.
Exception: a mechanism for handling errors in object-oriented languages.
Extend relationship: a relationship between use cases where one use case extends or

adds new actions to another. Written as a stereotype: «extend».
Extreme Programming (XP): an approach to systems development that focuses on

producing the simplest coding solution for application requirements. It uses pair
programming, where program code is always written by two developers working at
the same workstation.

Forces (of a pattern): the particular issues that must be addressed in resolving a
problem.

Functional requirement: a requirement that specifies a part of the functionality
required by the user.

Generalization: the abstraction of common features among elements (for example,
classes) by the creation of a hierarchy of more general elements (for example,
superclasses) that encapsulate the common features.

Guard condition: a Boolean expression associated with a transition that is evaluated
at the time the event fires. The transition only takes place if the condition is true. A
guard condition is a function that may involve parameters of the triggering event
and also attributes and links of the object that owns the statechart.

Implementation diagram: a generic term for the two UML diagrams used in
modelling the implementation of a system.

Include relationship: a relationship between use cases where one use case includes
the actions described in another use case. Written as a stereotype: «include».

Incremental development: involves some initial analysis to scope the problem and
identify the major requirements. The requirements are then reviewed and those that
deliver most benefit to the client become the focus of the first increment of
development and delivery. The installation of the first increment provides valuable
feedback to the development team and informs the development of the second
increment and so on.

592 Glossary



Glossary 593

Information: facts that have been selected as relevant to a purpose and then organized
or processed in such a way that they have meaning for that purpose.

Inheritance: the mechanism by which object-oriented programming languages
implement a relationship of generalization and specialization between classes. A
subclass automatically acquires features of its superclasses.

Instance: a single object, usually called an instance in the context of its membership of
a particular class or type (also object instance).

Instance diagram: a UML diagram similar in form to a class diagram, but that
contains object instances instead of classes, links instead of asociations and may
show attribute values (also known as an object diagram).

Instance value (of an attribute): the value of an attribute that is taken by a particular
object at a particular time.

Integrity constraint: a constraint that has to be enforced to ensure that the
information system holds data that is mutually consistent and is manipulated
correctly. Referential integrity ensures that an object identifier in one object actually
refers to an object that exists. Dependency constraints ensure that attribute
dependencies, values are maintained consistently, where the value of one attribute
is calculated from other attributes, are maintained consistently. Domain integrity
ensures that attributes only hold permissible values.

Interaction: defines the message passing between objects within the context of a
collaboration to achieve a particular behaviour.

Interaction diagram: an umbrella term for sequence diagrams and collaboration
diagrams.

Interface: that part of the boundary between two interacting systems across which
they communicate; the set of all signatures for the public operations of a class or
package.

Interface class: a system interacts with its actors via its interface or boundary classes 
Invariant: an aspect of a UML model expressed as a formal statement that must

always remain true. For example, the value of a derived attribute totalCost may
need always to be equal to the total of all cost attribute values.

Knowledge: a complex structure of information, usually one that allows its possessor
to decide how to behave in particular situations.

Legacy system: any computerized information system, that has probably been used for
some time, that was built with older technologies (maybe using different develop-
ment approaches at different times) and that, most importantly, continues to deliver
benefit to the organization.

Life cycle (of a project): the phases through which a development project passes from
the inception of the idea to completion of the product and its eventual
decommissioning.

Lifeline: a lifeline is a vertical dashed line that represents the existence of an object on
an interaction sequence diagrams. An object symbol containing the object’s name is
placed at the top of a lifeline.

Link: a connection between objects; an instance of an association.
Message: a request to an object that it provide some specified service, either an action

that it can carry out or some information that it can provide.
Message passing: a metaphor for the way that objects interact in an object-oriented

system by sending each other messages that request services, or request or supply
information. Since objects interact only through the messages they exchange, their
internal details can remain hidden from each other.

Method: the implementation of an operation.



Methodology: comprises an approach to software development (e.g. object-
orientation), a series of techniques and notations (e.g. the Unified Modelling
Language—UML) that support the approach, a life cycle model (e.g. spiral incre-
mental) to structure the development process, and a unifying set of procedures and
philosophy.

Modular construction: an approach that aims to build systems that are easy to
maintain, modify or extend. Modular construction relies on modules that are essen-
tially decoupled sub-systems, with their internal details encapsulated.

Multiplicity: a constraint that specifies the range of permitted cardinalities (q.v.), for
example in an association role or in a composite class. An association may have a
multiplicity of 1..5; a particular instance of that association may have a cardinality
of 3.

Node: A physical computational resource used by a system at run-time, typically
having processing capability and memory.

Non-functional requirement: a requirement that relates to system features such as
performance, maintainability and portability.

Normalization: a technique that groups attributes based upon functional depen-
dencies according to several rules to produce normalized data structures that are
largely redundancy free.

Object: a single thing or concept, either in a model of an application domain or in a
software system, that can be represented as an encapsulation of state, behaviour and
identity; a member of a class that defines a set of similar objects. 

Object constraint language (OCL): a formal language that supplements the graphical
notations of UML. OCL is generally used to give precise definitions for operation
logic, or for properties such as invariants (q.v.).

Object diagram: see instance diagram.
Operation: an aspect of the behaviour that defines a class; an element of the services

that are provided by a class; a specification of an element of system functionality
that will be implemented as a method of an object.

Operation (in OCL—q.v.): usually an arithmetic, set or type operator, such as ‘+’,
‘size’ or ‘isEmpty’, that is applied to the property (q.v.) in an OCL expression.

Operation signature: determined by the operation’s name, the number and type of its
parameters and the type of the return value if any. Polymorphically redefined
operations have the same signature.

Package: a mechanism for grouping UML elements, usually classes, into groups.
Packages can be nested within other packages.

Pattern: a pattern is an abstract solution to a commonly occurring problem in a given
context.

Polymorphism: the ability of different methods to implement the same operation, and
thus to respond to the same message in different ways that are appropriate to their
class. For example, objects of different subclasses in an inheritance hierarchy may
respond differently to the same message, yet with a common meaning to their
responses.

Post-condition: part of an operation specification; those conditions that must be true
before the operation can execute.

Pre-condition: part of an operation specification; those conditions that must be true
after the operation has executed—in other words the valid results of the operation.

Primary operation: an operation to create or destroy an instance of a class, or to get or
set the value of an attribute.

Property: a feature or characteristic of a UML element, usually one for which there is

594 Glossary



Glossary 595

no specific UML notation.
Property (in OCL—q.v.): that specific element of the context (q.v.) to which an OCL

expression applies, for example an attribute of a class.
Prototype: a prototype is a system or partially complete system that is built quickly to

explore some aspect of the system requirements. It is not intended as the final
working system.

Query operation: an operation that returns information but causes no change of state
within a model or a software system.

Realize relationship: a relationship between two classes where one class offers the
interface of the other but does not necessarily have the same structure of the other.
Commonly used to show that a class supports an interface. Written as a stereotype:
«realize».

Refactoring: restructuring and simplifying programme code so that duplication is
removed and flexibility is enhanced.

Relation: a group of related data items organized in columns and rows, also known as
a table.

Repository: the part of a CASE tool environment that handles the storage of models,
including diagrams, specifications and definitions.

Responsibility: a high level description of behaviour a class exhibits. It reflects the
knowledge or information that is available to that class, either stored within its own
attributes or requested via collaboration with other classes, and also the services
that it can offer to other objects.

Sequence diagram: or interaction sequence diagram, shows an interaction between
objects arranged in a time sequence. Sequence diagrams can be drawn at different
levels of detail and also to meet different purposes at several stages in the
development life cycle.

Service: a useful function (or set of functionality) that is carried out by an object (or a
sub-system) when requested to do so by another object.

Signal: an asynchronous communication between objects that may have parameters.
Software architecture: describes the sub-systems and components of a software

system and the relationships between the components.
Specialization: the other face of generalization; an element (for example, a class) is

said to be specialized when it has a set of characteristics that uniquely distinguish it
from other elements. Distinguishes subclasses from their superclass.

Stakeholders: anyone who is affected by the information system. Stakeholders not
only include users and development team members, but also resource managers and
the quality assurance team, for example.

State: the state of an object is determined by values of some of its attributes and the
presence or absence of certain links with other objects. It reflects a particular
condition for the object and normally persists for a period of time until a transition
to another state is triggered by an event. Instantaneous ‘flow-through’ states are
allowed in UML 1.4.

Stereotype: a specialized UML modelling element. The stereotype name is contained
within matched guillemets ‹‹...››. For example, an interface package is a stereotype of
a package.

Stimulus: an interaction between two objects that conveys information with an expec-
tation of some action.

Subclass: a specialized class that acquires general features from its ancestor super-
classes in a generalization hierarchy, but that also adds one or more specialized
characteristics of its own.



Sub-system: a part of a system that can be regarded as a system in its own right.
Superclass: a generalized class that is an abstraction of the common characteristics of

its subclasses in a generalization hierarchy.
Synchronizing operation: an operation that ensures that those attribute values which

are dependent upon each other (e.g. may be calculated from each other) have
consistent values.

System: an abstraction of a complex interacting set of elements, for which it is possible
to identify a boundary, an environment, inputs and outputs, a control mechanism
and some process or transformation that the system achieves.

Table: group of related data items organized in columns and rows. Used to store data
in relational databases.

Task: a specific activity or step in a project.
Technique: a method for carrying out a project task.
Transaction: an elementary exchange, say of an item of capta (q.v.) or of a unit of

value.
Transition: the movement from one state or activity to another, triggered by an event.

A transition may start and end at the same state.
Type: a stereotype of class that is distinct from an implementation class; a type is

defined by its attributes and operations but, unlike an implementation class, may
not contain any methods. Classes that represent the concepts of the application
domain are in fact types. An object may change its type dynamically during system
execution, and may thus appear at different times to belong to different classes.

Usability requirement: user requirement that describes criteria by which the ease of
use of the system can be judged.

Use case: describes, from a user’s perspective, a behaviourally related set of trans-
actions that are normally performed together to produce some value for the user.
Use cases can be represented graphically in a use case diagram, each use case being
described in the data dictionary. Use cases may be modelled at varying degrees of
abstraction, essential use cases, the most abstract, are technologically and
implementation independent whereas real use cases describe how the use case
actually operates in a particular environment.

Use case realization: a set of model elements that show the internal behaviour of the
software that corresponds to the use case—usually a collaboration.

User requirement: something that users require a software system to do (functional
requirement); alternatively, a standard for the performance of a system (non-
functional requirement).

User story: in Extreme Programming requirements are captured as user stories. A user
story is very similar to a use case.

Visibility: UML modelling elements (e.g. attributes or operations) may be designated
with different levels of accessibility or visibility. Public visibility means that the
element is directly accessible by any class; private visibility means that the element
may only be used by the class that it belongs to; protected visibility means that the
element may only be used by either the class that includes it or a subclass of that
class; and package visibility means that an element is visible to objects in the
package.

Wrapper: or object wrapper, used to integrate object-oriented and non-object-
oriented systems by encapsulating the non-object-oriented system with an object-
oriented style of interface.

596 Glossary


