
6.1 Introduction

Part of the job of the systems analyst is to find out from users what they require in a
new information system. Indeed, identifying what a new system should be able to do is
one of the first steps in its development, whether you are developing some simple
programs for your own use or embarking on the development of a large-scale system
for a commercial client. The user requirements can be classified in different ways
(Section 6.2), and analysts use a range of techniques to identify and document the
requirements (Sections 6.3 and 6.5). Each of the main fact finding techniques has
advantages and disadvantages and is appropriate for different situations. Stakeholders
are the people who have an interest in the new system and whose needs must be con-
sidered (Section 6.4). UML provides a diagramming technique that can be used to
document the stakeholders’ requirements. This is the use case diagram, a relatively
simple diagram that is supported by written information in the form of use case des-
criptions (Section 6.6).

118

Requirements 
Capture

CHAPTER6

OBJECTIVES

In this chapter you will learn

� the distinction between the current and required systems

� when and how to apply the five major fact finding techniques

� the need to document requirements

� how to draw use case diagrams to document requirements

� how to write use case descriptions.



User Requirements 119

6.2 User Requirements

The aim of developing a new information system must be to produce something that
meets the needs of the people who will be using it. In order to do this, we must have a
clear understanding both of the overall objectives of the business and of what it is that
the individual users of the system are trying to achieve in their jobs. Unless you are in
the rare position of developing a system for a new organization, you will need to
understand how the business is operating at present and how people are working
now. Many aspects of the current system will need to be carried forward into the new
system, so it is important that information about what people are doing is gathered
and documented. These are the requirements that are derived from the ‘current
system’. The motivation for the development of a new information system is usually
problems with and inadequacies of the current system, so it is also essential to capture
what it is that the users require of the new system that they cannot do with their
existing system. These are the ‘new requirements’.

6.2.1 Current system

The existing system may be a manual one, based on paper documents, forms and files;
it may already be computerized; or it may be a combination of both manual and
computerized elements. Whichever it is, it is reasonably certain that large parts of the
existing system meet the needs of the people who use it, that it has to some extent
evolved over time to meet business needs and that users are familiar and comfortable
with it. It is almost equally certain that there are sections of the system that no longer
meet the needs of the business, and that there are aspects of the business that are not
dealt with in the existing system.

It is important that the analyst, gathering information as one of the first steps in
developing a new system, gains a clear understanding of how the existing system
works: parts of the existing system will be carried forward into the new one. It is also
important, because the existing system will have shortcomings and defects, which
must be avoided or overcome in the new system. It is not always easy or possible to
replace existing systems. So-called legacy systems may have been developed some
time ago and may contain millions of lines of program code, which have been added to
and amended over a period of time. One approach to dealing with such systems is to
create new front-ends, typically using modern graphical user interfaces and object-
oriented languages, and wrap the legacy systems up in new software. If this is the case,
then it is also necessary to understand the interfaces to the legacy systems that the new
wrappers will have to communicate with.

It is not always possible to leave legacy systems as they are and simply wrap them in
new code. It was not possible to ignore the problems that faced companies at the turn
of the century when it was realized that many systems were in danger of catastrophic
collapse as a result of the decision to use two decimal digits to store the year. However,
the process of changing the program code in such systems is a matter of understanding
the internal working of existing systems rather than gathering information about the
way the organization works and the way that people do their jobs.

Not everyone agrees that a detailed understanding of the current system is necessary.
Ed Yourdon (1989) argues that it is a waste of time to model the current system in great
detail. Yourdon points out that so much time can be spent investigating and modelling
the current system that the analysts lose sight of their objective, and impatient users



cancel the project. He makes the case for concentrating on the behaviour that is
required of the new system. The opposite position is taken by SSADM (Structured
Systems Analysis and Design Method), which expends considerable time on the
investigation and modelling of the current system. This is done in order to refine it to its
logical essence and to be able to merge it with the new requirements to produce a
model of the required system that includes the essentials of the existing system.

We believe that a case can be made for investigating the existing system.

� Some of the functionality of the existing system will be required in the new system.

� Some of the data in the existing system is of value and must be migrated into the new
system.

� Technical documentation of existing computer systems may provide details of pro-
cessing algorithms that will be needed in the new system.

� The existing system may have defects that we should avoid in the new system.

� Studying the existing system will help us to understand the organization in general.

� Parts of the existing system may be retained. Information systems projects are now
rarely ‘green field’ projects in which manual systems are replaced by new computer-
ized systems; more often there will be existing systems with which interfaces must be
established.

� We are seeking to understand how people do their jobs at present in order to charac-
terize people who will be users of the new system.

� We may need to gather baseline information against which we can set and measure
performance targets for the new system.

For all these reasons, an understanding of the current system should be part of the
analysis process. However, the analyst should not lose sight of the objective of
developing a new system. In the sections on functional, non-functional and usability
requirements below, we shall explain what kind of information we are gathering.

6.2.2 New requirements

Most organizations now operate in an environment that is rapidly changing. The
relative strength of national economies around the world can change dramatically
and at short notice; the fortunes of large companies, which may be an organization’s
suppliers, customers or competitors, can be transformed overnight; new technologies
are introduced which change production processes, distribution networks and the
relationship with the consumer; governments and (particularly in Europe) supra-
governmental organizations introduce legislation that has an impact on the way that
business is conducted. Some authors make the case for developing business strategies
to cope with this turmoil. Tom Peters in ‘Thriving on Chaos’ (1988) argues that we
must learn to love change and develop flexible and responsive organizations to cope
with the dynamic business environment. A clear result of responding to a dynamic
environment is that organizations change their products and services and change the
way they do business. The effect of this is to change their need for information. Even
in less responsive organizations, information systems become outdated and need
enhancing and extending. Mergers and demergers create the need for systems to be
replaced. The process of replacement offers an opportunity to extend the capabilities
of systems to take advantage of new technological developments, or to enhance their
usefulness to management and workforce. Many organizations are driven by internal

120 Requirements Capture



User Requirements 121

factors to grow and change the ways in which they operate, and this too provides a
motivation for the development of new information systems.

Whether you are investigating the working of the existing system or the requirements
for the new system, the information you gather will fall into one of three categories:
‘functional requirements’, ‘non-functional requirements’ and ‘usability requirements’.
Functional and non-functional requirements are conventional categories in systems
analysis and design, while usability is often ignored in systems development projects.
In many university courses, issues surrounding the usability of systems are taught under
the separate heading of Human Factors or Human–Computer Interaction, or are only
considered in the design stage of the development process. However, the lesson of
human factors research is that usability considerations should be integral to the
systems development lifecycle, and so they are included here.

Functional requirements

Functional requirements describe what a system does or is expected to do, often
referred to as its functionality. In the object-oriented approach, which we are taking
here, we shall initially employ use cases to document the functionality of the system.
As we progress into the analysis stage, the detail of the functionality will be recorded
in the data that we hold about objects, their attributes and operations. In structured
methods, such as SSADM, the function may be the unit around which we structure
the system, and the function is described in progressively greater detail as we move
through analysis into design and implementation.

At this stage, we are setting out to establish what the system must do, and
functional requirements include the following.

� Descriptions of the processing that the system will be required to carry out.

� Details of the inputs into the system from paper forms and documents, from inter-
actions between people, such as telephone calls, and from other systems.

� Details of the outputs that are expected from the system in the form of printed docu-
ments and reports, screen displays and transfers to other systems.

� Details of data that must be held in the system.

Non-functional requirements

Non-functional requirements are those that describe aspects of the system that are
concerned with how well it provides the functional requirements. These include the
following.

� Performance criteria such as desired response times for updating data in the system
or retrieving data from the system.

� Anticipated volumes of data, either in terms of throughput or of what must be stored.

� Security considerations.

Usability requirements

Usability requirements are those that will enable us to ensure that there is a good
match between the system that is developed and both the users of that system and
the tasks that they will undertake when using it. The International Standards
Organization (ISO) has defined the usability of a product as ‘the degree to which



specific users can achieve specific goals within a particular environment; effectively,
efficiently, comfortably and in an acceptable manner’. Usability can be specified in
terms of measurable objectives, and these are covered in more detail in Chapter 16
on Human–Computer Interaction. In order to build usability into the system from
the outset, we need to gather the following types of information.

� Characteristics of the users who will use the system.

� The tasks that the users undertake, including the goals that they are trying to
achieve.

� Situational factors that describe the situations that could arise during system use.

� Acceptance criteria by which the user will judge the delivered system.

Paul Booth (1989) describes the issues surrounding system usability in more detail.

6.3 Fact Finding Techniques

There are five main fact finding techniques that are used by analysts to investigate
requirements. Here we describe each of them in the order that they might be applied
in a system development project, and for each one we explain the kind of information
that you would expect to gain from its use, its advantages and disadvantages, and the
situations in which it is appropriate to use it.

6.3.1 Background reading

If an analyst is employed within the organization that is the subject of the fact-
gathering exercise, then it is likely that he or she will already have a good under-
standing of the organization and its business objectives. If, however, he or she is going
in as an outside consultant, then one of the first tasks is to try to gain an understanding
of the organization. Background reading or research is part of that process. The kind
of documents that are suitable sources of information include the following:

� company reports,

� organization charts,

� policy manuals,

� job descriptions,

� reports and

� documentation of existing systems.

Although reading company reports may provide the analyst with information about
the organization’s mission, and so possibly some indication of future requirements,
this technique mainly provides information about the current system.

Advantages and disadvantages

+ Background reading helps the analyst to get an understanding of the organization
before meeting the people who work there. 

+ It also allows the analyst to prepare for other types of fact finding, for example, by
being aware of the business objectives of the organization.

122 Requirements Capture



Fact Finding Techniques 123

+ Documentation on the existing system may provide formally defined information
requirements for the current system.

– Written documents often do not match up to reality; they may be out of date or
they may reflect the official policy on matters that are dealt with differently in
practice.

Appropriate situations

Background reading is appropriate for projects where the analyst is not familiar with
the organization being investigated. It is useful in the initial stages of investigation.

6.3.2 Interviewing

Interviewing is probably the most widely used fact finding technique; it is also the
one that requires the most skill and sensitivity. Because of this, we have included a
set of guidelines on interviewing that includes some suggestions about etiquette in
Box 6.1.

Conducting an interview requires good planning,
good interpersonal skills and an alert and responsive
frame of mind. These guidelines cover the points you
should bear in mind when planning and conducting
an interview.

Before the interview
You should always make appointments for inter-
views in advance. You should give the interviewee
information about the likely duration of the inter-
view and the subject of the interview.

Being interviewed takes people away from their
normal work. Make sure that they feel that it is
time well spent.

It is conventional to obtain permission from an
interviewee’s line manager before interviewing
them. Often the analyst interviews the manager
first and uses the opportunity to get this per-
mission.

In large projects, an interview schedule should
be drawn up showing who is to be interviewed,
how often and for how long. Initially this will be in
terms of the job roles of interviewees rather than
named individuals. It may be the manager who
decides which individual you interview in a
particular role.

Have a clear set of objectives for the interview.

Plan your questions and write them down. Some
people write the questions with space between
them for the replies.

Make sure your questions are relevant to the
interviewee and his or her job.

At the start of the interview
Introduce yourself and the purpose of the inter-
view.

Arrive on time for interviews and stick to the
planned timetable—do not over-run.

Ask the interviewee if he or she minds you
taking notes or tape-recording the interview. Even
if you tape-record an interview, you are advised to
take notes. Machines can fail! Your notes also
allow you to refer back to what has been said
during the course of the interview and follow up
points of interest.

Remember that people can be suspicious of
outside consultants who come in with clipboards
and stopwatches. The cost-benefit analyses of
many information systems justify the investment
in terms of savings in jobs!

During the interview
Take responsibility for the agenda. You should
control the direction of the interview. This should
be done in a sensitive way. If the interviewee is

Box 6.1 Guidelines on Interviewing



124 Requirements Capture

A systems analysis interview is a structured meeting between the analyst and an
interviewee who is usually a member of staff of the organization being investigated.
The interview may be one of a series of interviews that range across different areas of
the interviewee’s work or that probe in progressively greater depth about the tasks
undertaken by the interviewee. The degree of structure may vary: some interviews are
planned with a fixed set of questions that the interviewer works through, while
others are designed to cover certain topics but will be open-ended enough to allow
the interviewer to pursue interesting facts as they emerge. The ability to respond
flexibly to the interviewee’s responses is one of the reasons why interviews are so
widely used.

Interviews can be used to gather information from management about their
objectives for the organization and for the new information system, from staff about
their existing jobs and their information needs, and from customers and members of
the public as possible users of systems. While conducting an interview, the analyst can
also use the opportunity to gather documents that the interviewee uses in his or her
work.

It is usually assumed that questionnaires are used as a substitute for interviews
when potential interviewees are geographically dispersed in branches and offices
around the world. The widespread use of desktop video conferencing may change this
and make it possible to interview staff wherever they are. Even then, questionnaires
can reach more people.

Interviewing different potential users of a system separately can mean that the
analyst is given different information by different people. Resolving these differences
later can be difficult and time-consuming. One alternative is to use group interviews

getting away from the subject, bring them back
to the point. If what they are telling you is
important, then say that you will come back to it
later and make a note to remind yourself to do so.

Use different kinds of question to get different
types of information. Questions can be open-
ended—‘Can you explain how you complete a
timesheet?’—or closed—‘How many staff use this
system?’. Do not, however, ask very open-ended
questions such as ‘Could you tell me what you
do?’

Listen to what the interviewee says and en-
courage him or her to expand on key points.

Keep the focus positive if possible. Make sure
you have understood answers by summarizing
them back to the interviewee. Avoid allowing the
interview to degenerate into a session in which
the interviewee complains about everyone and
everything.

You may be aware of possible problems in the
existing system, but you should avoid prejudging
issues by asking questions that focus too much on
problems. Gather facts.

Be sensitive about how you use information
from other interviews that you or your colleagues
have already conducted, particularly if comments
were negative or critical.

Use the opportunity to collect examples of
documents that people use in their work, ask if
they mind you having samples of blank forms and
photocopies of completed paperwork.

After the interview
Thank the interviewee for their time. Make an
appointment for a further interview if it is
necessary. Offer to provide them with a copy of
your notes of the interview for them to check that
you have accurately recorded what they told you.

Transcribe your tape or write up your notes as
soon as possible after the interview while the
content is still fresh in your mind.

If you said that you would provide a copy of
your notes for checking then send it to the inter-
viewee as soon as possible. Update your notes to
reflect their comments.



Fact Finding Techniques 125

in order to get the users to reach a consensus on issues. Dynamic Systems Develop-
ment Method (DSDM) is a method of carrying out systems development in which
group discussions are used (Stapleton, 1997). These discussions are run as workshops
for knowledgeable users with a facilitator who aims to get the users to pool their
knowledge and to reach a consensus on the priorities of the development project.

Advantages and disadvantages

+ Personal contact allows the analyst to be responsive and adapt to what the user
says. Because of this, interviews produce high quality information.

+ The analyst can probe in greater depth about the person’s work than can be achieved
with other methods.

+ If the interviewee has nothing to say, the interview can be terminated.

– Interviews are time-consuming and can be the most costly form of fact gathering.

– Interview results require the analyst to work on them after the interview: the
transcription of tape recordings or writing up of notes.

– Interviews can be subject to bias if the interviewer has a closed mind about the
problem.

– If different interviewees provide conflicting information, it can be difficult to
resolve later.

Appropriate situations

Interviews are appropriate in most projects. They can provide information in depth
about the existing system and about people’s requirements from a new system.

6.3.3 Observation

Watching people carrying out their work in a natural setting can provide the analyst
with a better understanding of the job than interviews, in which the interviewee will
often concentrate on the normal aspects of the job and forget the exceptional
situations and interruptions which occur and which the system will need to cope
with. Observation also allows the analyst to see what information people use to carry
out their job. This can tell you about the documents they refer to, whether they have
to get up from their desks to get information, how well the existing system handles
their needs. One of the authors has observed staff using a tele-sales system where
there was no link between the enquiry screens for checking the availability of stock
and the data entry screens for entering an order. These tele-sales staff kept a pad of
scrap paper on the desk and wrote down the product codes for all the items they had
looked up on the enquiry screens so that they could enter them into the order-
processing screens. This kind of information does not always emerge from interviews.

People are not good at estimating quantitative data, such as how long they take to
deal with certain tasks, and observation with a stopwatch can give the analyst plentiful
quantitative data, not just about typical times to perform a task but also about the
statistical distribution of those times.

In some cases where information or items are moving through a system and being
dealt with by many people along the way, observation can allow the analyst to follow the
entire process through from start to finish. This type of observation might be used in an



organization where orders are taken over the telephone, passed to a warehouse for
picking, packed and despatched to the customer. The analyst may want to follow a series
of transactions through the system to obtain an overview of the processes involved.

Observation can be an open-ended process in which the analyst simply sets out to
observe what happens and to note it down, or it can be a closed process in which the
analyst wishes to observe specific aspects of the job and draws up an observation
schedule or form on which to record data. This can include the time it takes to carry
out a task, the types of task the person is performing or factors such as the number of
errors they make in using the existing system as a baseline for usability design.

Advantages and disadvantages

+ Observation of people at work provides first hand experience of the way that the
current system operates.

+ Data are collected in real time and can have a high level of validity if care is taken
in how the technique is used.

+ Observation can be used to verify information from other sources or to look for
exceptions to the standard procedure.

+ Baseline data about the performance of the existing system and of users can be
collected.

– Most people do not like being observed and are likely to behave differently from
the way in which they would normally behave. This can distort findings and affect
the validity.

– Observation requires a trained and skilled observer for it to be most effective.

– There may be logistical problems for the analyst, for example, if the staff to be
observed work shifts or travel long distances in order to do their job.

– There may also be ethical problems if the person being observed deals with
sensitive private or personal data or directly with members of the public, for
example in a doctor’s surgery.

Appropriate situations

Observation is essential for gathering quantitative data about people’s jobs. It can
verify or disprove assertions made by interviewees, and is often useful in situations
where different interviewees have provided conflicting information about the way the
system works. Observation may be the best way to follow items through some kind
of process from start to finish. 

6.3.4 Document sampling

Document sampling can be used in two different ways. First, the analyst will collect
copies of blank and completed documents during the course of interviews and
observation sessions. These will be used to determine the information that is used by
people in their work, and the inputs to and outputs from processes which they carry
out, either manually or using an existing computer system. Ideally, where there is an
existing system, screen shots should also be collected in order to understand the inputs
and outputs of the existing system. Figure 6.1 shows a sample document collected
from Agate, our case study company.

126 Requirements Capture



Fact Finding Techniques 127

Second, the analyst may carry out a statistical analysis of documents in order to
find out about patterns of data. For example, many documents such as order forms
contain a header section and a number of lines of detail. (The sample document in
Figure 6.1 shows this kind of structure.) The analyst may want to know the
distribution of the number of lines in an order. This will help later in estimating
volumes of data to be held in the system and in deciding how many lines should be
displayed on screen at one time. While this kind of statistical sampling can give a
picture of data volumes, the analyst should be alert to seasonal patterns of activity,
which may mean that there are peaks and troughs in the amount of data being
processed.

Figure 6.1 Sample document from the AGATE case study.



Advantages and disadvantages

+ Can be used to gather quantitative data, such as the average number of lines on an
invoice.

+ Can be used to find out about error rates in paper documents.

– If the system is going to change dramatically, existing documents may not reflect
how it will be in future.

Appropriate situations

The first type of document sampling is almost always appropriate. Paper-based docu-
ments give a good idea of what is happening in the current system. They also provide
supporting evidence for the information gathered from interviews or observation.

The statistical approach is appropriate in situations where large volumes of data
are being processed, and particularly where error rates are high, and a reduction in
errors is one of the criteria for usability.

6.3.5 Questionnaires

Questionnaires are a research instrument that can be applied to fact finding in system
development projects. They consist of a series of written questions. The question-
naire designer usually limits the range of replies that respondents can make by giving
them a choice of options. (Figure 6.2 shows some of the types of question.) YES/NO
questions only give the respondent two options. (Sometimes a DON’T KNOW
option is needed as well.) If there are more options, the multiple choice type of
question is often used when the answer is factual, whereas scaled questions are used
if the answer involves an element of subjectivity. Some questions do not have a fixed
number of responses, and must be left open-ended for the respondent to enter what
they like. Where the respondent has a limited number of choices, these are usually
coded with a number, which speeds up data entry if the responses are to be analysed
by computer software. If you plan to use questionnaires for requirements gathering,
they need very careful design. Box 6.2 lists some of the issues that need to be
addressed if you are thinking of using questionnaires.

Advantages and disadvantages

+ An economical way of gathering data from a large number of people.

+ If the questionnaire is well designed, then the results can be analysed easily,
possibly by computer.

– Good questionnaires are difficult to construct.

– There is no automatic mechanism for follow up or probing more deeply, although
it is possible to follow up with an interview by telephone or in person if necessary.

– Postal questionnaires suffer from low response rates.

128 Requirements Capture



Fact Finding Techniques 129

Figure 6.2 Types of question used in questionnaires.

YES/NO Questions
Do you print reports from the existing system? YES NO 10
(Please circle the appropriate answer.)

Multiple Choice Questions
How many new clients do you obtain in a year? a) 1–10 □ 11
(Please tick one box only.) b) 11–20 □

c) 21–30 □

d) 31 + □

Scaled Questions
How satisfied are you with the response time of the stock update?
(Please circle one option.)
1. Very 2. Satisfied 3. Dissatisfied 4. Very 12

satisfied dissatisfied

Open-ended Questions
What additional reports would you require from the system?

Using questionnaires requires good planning. If you
send out 100 questionnaires and they do not work, it
is difficult to get respondents to fill in a second
version. These guidelines cover the points you should
bear in mind when using questionnaires.

Coding
How will you code the results? If you plan to use an
optical mark reader, then the response to every
question must be capable of being coded as a mark
in a box. If you expect the results to be keyed into a
database for analysis, then you need to decide on
the codes for each possible response. If the
questions are open-ended, how will you collate
and analyse different kinds of responses?

Analysis
Whatever analysis you plan should be decided in
advance. If you expect to carry out a statistical analy-
sis of the responses, you should consult a statistician
before you finalize the questions. Statistical tech-
niques are difficult to apply to responses to poorly

designed questions.
You can use a special statistical software package,

a database or even a spreadsheet to analyse the
data.

Piloting
You should try out your questionnaire on a small
pilot group or sample of your respondents. This
enables you to find out if there are questions they do
not understand, they misinterpret or they cannot
answer.

If you plan to analyse the data using statistical
software, a database or a spreadsheet, you can
create a set of trial data to test your analysis tech-
nique.

Sample size and structure
If you plan to use serious statistical techniques,
then those techniques may place lower limits on
your sample size. If you want to be sure of getting
a representative sample, by age, gender, depart-
ment, geographical location, job grade or experi-

Box 6.2 Guidelines on Questionnaires



130 Requirements Capture

Appropriate situations

Questionnaires are most useful when the views or knowledge of a large number of
people need to be obtained or when the people are geographically dispersed, for
example, in a company with many branches or offices around the country or around
the world. Questionnaires are also appropriate for information systems that will be
used by the general public, and where the analyst needs to get a picture of the types
of user and usage that the system will need to handle.

ence of existing systems, then that will help to
determine how many people to include. Other-
wise it may be down to you to choose a sensible
percentage of all the possible respondents.

Delivery
How will you get the questionnaires to your respon-
dents, and how will they get their replies back to
you?

You can post them, or use internal mail in a
large organization, fax them, e-mail them or
create a web-based form on the company intranet
and notify your target group by e-mail. If you use
the intranet, you may want to give each respon-
dent a special code, so that only they can com-
plete their own questionnaire.

Your respondents can then post, fax or e-mail
their responses back to you.

Respondent information
What information about the respondents do you
want to gather at the same time as you collect
their views and requirements? If you want to
analyse responses by age, job type or location,
then you need to include questions that ask for
that information.

You can make questionnaires anonymous, or you
can ask respondents for their name. If the question-
naire is not anonymous, you need to think about
confidentiality. People will be more honest in their
replies if they can respond anonymously or in
confidence.

If you ask for respondents’ names and you store
that information, then in the UK you should
consider the provisions of the Data Protection Act
(1998). (See also Chapter 12.) There are similar
requirements in other countries.

Covering letter
In a covering letter you should explain the purpose
and state that the questionnaire has management
support. Give an estimate of the time required to
fill in the questionnaire and a deadline for its
return. Thank the respondents for taking part.

Structure
Structure the questionnaire carefully. Give it a title,
and start with explanatory material and notes 
on how to complete it. Follow this with questions
about the respondent (if required). Group
questions together by subject. Avoid lots of instruc-
tions like ‘If you answered YES to Q. 7a, now go to
Q. 13.’ Keep it reasonably short.

Return rate
Not everyone will necessarily respond. You need
to plan for this and either use a larger sample than
you need or follow up with reminders. If you use a
form on the Intranet, you should be able to
identify who has not responded and e-mail them
reminders. Equally, you can e-mail a thank you to
those who do respond.

Feedback
This needs to be handled carefully—telling every-
one that 90% of the company cannot use the
existing system may not go down well—but
people do like to know what use was made of the
response they made. They may have spent half an
hour filling in your questionnaire, and they will
expect to be informed of the outcome. A summary
of the report can be sent out to branches,
distributed to departments, sent to named respon-
dents or placed on the company intranet.



User Involvement 131

6.3.6 Remembering the techniques

For those who like mnemonics, these techniques are sometimes referred to as
SQIRO—Sampling, Questionnaires, Interviewing, Reading (or Research) and Obser-
vation. This order has been chosen to make it possible to pronounce the mnemonic.
However, this is not the order in which they are most likely to be used. This will
depend on the situation and the organization in which the techniques are being used.

6.3.7 Other techniques

Some kinds of systems require special fact finding techniques. Expert systems are
computer systems that are designed to embody the expertise of a human expert in
solving problems. Examples include systems for medical diagnosis, stock market
trading and geological analysis for mineral prospecting. The process of capturing the
knowledge of the expert is called knowledge acquisition and, as it differs from
establishing the requirements for a conventional information system, a number of
specific techniques are applied. Some of these are used in conjunction with computer-
based tools. 

6.4 User Involvement

The success of a systems development project depends not just on the skills of the
team of analysts, designers and programmers who work on it, or on the project
management skills of the project manager, but on the effective involvement of users in
the project at various stages of the life cycle. The term stakeholders was introduced in
Chapter 2 to describe all those people who have an interest in the successful
development of the system. Stakeholders include all people who stand to gain (or lose)
from the implementation of the new system: users, managers and budget-holders.
Analysts deal with people at all levels of the organization. In large projects it is likely
that a steering committee with delegated powers will be set up to manage the project
from the users’ side. This will include the following categories of people:

� senior management—with overall responsibility for running the organization,

� financial managers with budgetary control over the project,

� managers of the user department(s) and

� representatives of users.

Users will be involved in different roles during the course of the project as:

� subjects of interviews to establish requirements,

� representatives on project committees,

� those involved in evaluating prototypes,

� those involved in testing,

� subjects of training courses and

� end-users of the new system.



Case Study Example

The section that follows applies to what has been covered in this chapter so far to the case
study.

One of the first tasks in fact finding is to draw up a plan that outlines what information
is being sought, which techniques will be used, who is involved and how long the fact
finding will take. A draft plan for fact finding at Agate is shown below. The jobs of the
subjects are those shown in Figure A1.1 in the Agate case study.

Objective Technique Subject(s) Time 
commitment

To get background on the company Background Company reports, 0.5 day
and the advertising industry reading trade journals

To establish business objectives. Interview Two directors 2 x 1 hour 
Agree likely scope of new system. each
Check out involvement of 
non-UK offices

To gain understanding of roles of Interview Department heads 2 x 1 hour 
each department. Check out line (only 1 account each
management and team structure manager)
in the Creative Department. 
To agree likely interviewees 
among staff

To find out how the core Interview 1 account manager 1.5 hours 
business operates 1 graphic designer each

1 copy writer 
1 editor

To follow up development of Observation 2 creative staff 0.5 day each
business understanding

To determine role of support/admin Interview 2 admin staff 1.5 hours each
staff and relationship to core business (based on 

experience with 
the company)

To establish what records and Interview/ Filing clerk 2 x 1 hour 
resources are kept document sampling Resource librarian each

To determine what use is made of Interview Computer manager 2 x 1 hour
current computer system. 
To determine functionality of 
current system

To establish additional requirements Interview 2 account managers 3 x 1 hour 
for new system 3 staff from Creative each

Department 

To establish accounting Interview Accountant 1.5 hours 
requirements for new system Credit controller each

1 purchasing 
assistant 
1 accounts clerk

132 Requirements Capture



Documenting Requirements 133

6.5 Documenting Requirements

Information systems professionals need to record facts about the organization they are
studying and its requirements. As soon as the analysts start gathering facts, they will
need some means of documenting them. In the past the emphasis was on paper forms,
but now it is rare for a large-scale project to depend on paper-based documentation.
As we have explained in Chapter 5, systems analysts and designers model the new
system in a mixture of diagrams and text. The important thing to bear in mind is that
within a project some set of standards should be adhered to. These may be the agreed
standards of the organization carrying out the analysis and design project or they may
be a requirement of the organization that is having the work done. For example,
government and military projects usually require that developers conform to a specific
set of standards. We are using UML to produce models of the system from different
perspectives. Computer Aided Software Engineering (CASE) tools are normally used
to draw the diagrammatic models and to maintain in a repository the associated data
about the various things that are shown in the diagrams.

However, there will also be other kinds of documents, not all of which fit into the
UML framework. In large-scale projects a librarian or configuration manager may be
required to keep track of these documents and ensure that they are stored safely and
in a way that enables them to be retrieved when required. Such documents include
the following:

� records of interviews and observations,

� details of problems,

� copies of existing documents and where they are used,

� details of requirements,

� details of users and

� minutes of meetings.

Even in smaller projects which cannot justify a librarian, a filing system with an
agreed set of conventions on how material is to be filed, and for recording who has
taken items from the filing system is good practice.

In many projects, these documents will be stored digitally, using a document
management system or a version control system. In this case, many people can access
the same document simultaneously. The system enforces control over whether a docu-
ment can be updated, and ensures that no more than one person at a time is able to
‘check out’ a document in order to amend it.

Not all of the documents listed above represent requirements, and it is necessary to
maintain some kind of list or database of requirements. There are software tools avail-
able to hold requirements in a database, and some can be linked to CASE tools and
testing tools. This makes it possible to trace from an initial requirement through the
analysis and design models to where it has been implemented and to the test cases
that test whether the requirement has been met.

Use cases, which are explained in the next section, can be used to model requirements,
but because they focus on the functionality of the system, are not good for documenting
non-functional requirements. Jacobson et al. (1999) suggest that the use case model
should be used to document functional requirements and a separate list of ‘supplemen-
tary requirements’ (those not provided by a use case) should be kept. They say that
together, the use case model and the list of supplementary requirements constitute a



134 Requirements Capture

traditional requirements specification. Rosenberg and Scott (1999) argue that use cases
are not the same as requirements: use cases describe units of system behaviour, whereas
requirements are rules that govern the behaviour of the system; one requirement may be
met by more than one use case, and one use case may meet more than one requirement;
some non-functional requirements are difficult to attribute to any particular use case.

Some people try to document requirements in use cases by writing long use case des-
criptions using templates that enable them to include non-functional requirements as
well as functional requirements. One of the authors has also come across developers
who use the process of brainstorming for use cases as a way of eliciting requirements.
However, this tends to produce some very odd use cases.

We favour the view that use cases can be used to model functional requirements,
but a separate list of requirements should be kept, containing all requirements—
functional and non-functional—for the system. Where there is a relationship between
a particular use case and a particular requirement, this should be recorded. Moreover,
some requirements describe very high-level units of behaviour and may need to be
broken down into low-level requirements that describe more precisely what is to be
done. Any database of requirements should make it possible to hold this kind of
hierarchical structure of requirements.

Sometimes the process of requirement gathering throws up more requirements
than can be met in a particular project. They may be outside the scope of the project,
over-ambitious, too expensive to implement or just not really necessary at this point
in time. The process of building a requirements model for a system involves going
through all the candidate requirements to produce a list of those that will be part of
the current project. Figure 6.3 shows this as an activity diagram.

6.6 Use Cases

Use cases are descriptions of the functionality of the system from the users’ pers-
pective. Use case diagrams are used to show the functionality that the system will
provide and to show which users will communicate with the system in some way to
use that functionality. Figure 6.4 shows an example of a use case diagram. This is 
a relatively simple diagramming technique, and its notation is explained below in
Section 6.6.2. 

Figure 6.3 Activity diagram to show the activities involved in capturing requirements.



Use Cases 135

Use case diagrams were developed by Jacobson et al. (1992), and the subtitle of the
book in which they are presented is A Use Case Driven Approach. Jacobson and his
co-authors offer a complete approach to the development of object-oriented software
systems, but use case diagrams are the starting point for much of what follows in their
approach.

6.6.1 Purpose
The use case model is part of what Jacobson et al. (1992) call the requirements
model; they also include a problem domain object model and user interface
descriptions in this requirements model. Use cases specify the functionality that the
system will offer from the users’ perspective. They are used to document the scope of
the system and the developer’s understanding of what it is that the users require.

Use cases are supported by behaviour specifications. These specify the behaviour
of each use case either using UML diagrams, such as collaboration diagrams or
sequence diagrams (see Chapter 9), or in text form as use case descriptions.

Textual use case descriptions provide a description of the interaction between the
users of the system, termed actors, and the high level functions within the system,
the use cases. These descriptions can be in summary form or in a more detailed form
in which the interaction between actor and use case is described in a step-by-step
way. Whichever approach is used, it should be remembered that the use case
describes the interaction as the user sees it, and is not a definition of the internal
processes within the system, or some kind of program specification.

Staff Management

Add a new member
of staff

Add a new staff
grade

Change the
rate for a

staff grade

Change the
grade for a

member of staff

Calculate staff
bonuses

Accountant

Figure 6.4 Example use case diagram.



136 Requirements Capture

6.6.2 Notation

Use case diagrams show three aspects of the system: actors, use cases and the system
or sub-system boundary. Figure 6.5 shows the elements of the notation.

Actors represent the roles that people, other systems or devices take on when
communicating with the particular use cases in the system. Figure 6.5 shows the actor
Staff Contact in a diagram for the Agate case study. In Agate, there is no job title
Staff Contact: a director, an account manager or a member of the creative team can
take on the role of being staff contact for a particular client company, so one actor can
represent several people or job titles. Equally, a particular person or job title may be
represented by more than one actor on use case diagrams. This is shown in Figures
6.5 and 6.6 together. A director or an account manager may be the Campaign
Manager for a particular client campaign, as well as being the Staff Contact for one
or more clients.

The use case description associated with each use case can be brief:

Assign staff to work on a campaign

The campaign manager selects a particular campaign. A list of staff not already working on that
campaign is displayed, and he or she selects those to be assigned to this campaign.

Alternatively, it can provide a step-by-step breakdown of the interaction between
the user and the system for the particular use case. An example of this extended
approach is provided below.

Staff Contact

Change a client
contact

Actor

Communication
association

System or subsystem boundary

Use case

Figure 6.5 The notation of the use case diagram.

Assign staff to work
on a campaign

Campaign
Manager

Figure 6.6 Use case showing Campaign Manager actor.



Use Cases 137

Assign staff to work on a campaign

Actor Action System Response
1. The actor enters the client name. 2. Lists all campaigns for that 

client.
3. Selects the relevant campaign. 4. Displays a list of all staff 

members not already allocated 
to this campaign.

5. Highlights the staff members to be 6. Presents a message confirming
assigned to this campaign. that staff have been allocated.

Alternative Courses

Steps 1-3. The actor knows the campaign name and enters it directly.

Constantine (1997) makes the distinction between essential and real use cases.
Essential use cases describe the ‘essence’ of the use case in terms that are free of any
technological or implementation details, whereas real use cases describe the concrete
detail of the use case in terms of its design. During the analysis stage, use cases are
almost always essential, as the design has not yet been decided upon. In a real use
case, Step 2 in the use case description for Assign staff to work on a campaign
could be described as ‘Lists all campaigns for the client in a list box, sorted into
alphabetical order by campaign title.’

Each use case description represents the usual way in which the actor will go
through the particular transaction or function from end to end. Possible major
alternative routes that could be taken are listed as alternative courses. The term
scenario is used to describe use cases in which an alternative course is worked
through in detail, including possible responses to errors. The use case represents the
generic case, while the scenarios represent specific paths through the use case.

As well as the description of the use case itself, the documentation should include
the purpose or intent of the use case, that is to say details of the task that the user is
trying to achieve through the means of this use case, for example:

The campaign manager wishes to record which staff are working on a particular campaign. This
information is used to validate timesheets and to calculate staff year-end bonuses.

One way of documenting use cases is to use a template (a blank form or word-
processing document to be filled in). This might include the following sections:

� name of use case,

� pre-conditions (things that must be true before the use case can take place),

� post-conditions (things that must be true after the use case has taken place),

� purpose (what the use case is intended to achieve) and

� description (in summary or in the format above).

Two further kinds of relationships can be shown on the use case diagram itself.
These are the Extend and Include relationships. They are shown on the diagram
using two pieces of UML notation that you will come across in other diagrams:
dependencies and stereotypes.

Dependencies—a dependency is a relationship between two modelling elements
where a change to one will probably require a change to the other because the one is
dependent in some way on the other. A dependency is shown by a dashed line with



Campaign
Manager

Check campaign
budget

Extension points
Summary print:
system displays balance

«extend»
user requires
print-out

Print campaign
summary

Figure 6.7 Use case diagram showing «extend»

138 Requirements Capture

an open arrowhead pointing at the element on which the other is dependent. There
are many kinds of dependencies in UML, and they are distinguished from one
another using stereotypes.

Stereotypes—a stereotype is a special use of a model element that is constrained to
behave in a particular way. Stereotypes can be shown by using a keyword, such as
‘extend’ or ‘include’ in matched guillemets, like «extend». (Guillemets are used as
quotation marks in French and some other languages.) Stereotypes can also be
represented using special icons. The actor symbol in use case diagrams is a
stereotyped icon—an actor is a stereotyped class and could also be shown as a class
rectangle (see Chapter 7) with the stereotype «actor» above the name of the actor.
So by stereotyping classes as «actor» we are indicating that they are a special kind
of class that interacts with the system’s use cases. Note, however, that actors are
external to the system, unlike use cases and classes.

The Extend and Include relationships are easy to confuse. «extend» is used when
you wish to show that a use case provides additional functionality that may be
required in another use case. In Figure 6.7, the use case Print campaign summary
extends Check campaign budget. This means that at a particular point in Check
Campaign Budget the user can optionally invoke the behaviour of Print campaign
summary, which does something over and above what is done in Check campaign
budget (print out the information in this case). There may be more than one way of
extending a particular use case, and these possibilities may represent significant
variations on the way the user uses the system. Rather than trying to capture all these
variations in one use case, you would document the core functionality in one and
then extend it in others. Extension points can be shown in the diagram, as in Check
campaign budget in Figure 6.7. They are shown in a separate compartment in the
use case ellipse, headed Extension points. The name of the extension point is
given and a description of the point in the use case where it occurs. A condition can
be shown next to the dependency relationship. This condition must be true for the
extension to take place in a particular instance of the use case.
«include» applies when there is a sequence of behaviour that is used frequently

in a number of use cases, and you want to avoid copying the same description of it
into each use case in which it is used. Figure 6.8 shows that the use case Assign
staff to work on a campaign has an «include» relationship with Find
campaign. This means that when an actor uses Assign staff to work on a
campaign the behaviour of Find campaign will also be included in order to select
the relevant Campaign.



Use Cases 139

As well as describing the use cases, it is worth describing who the actors are in
terms of job titles or the way in which they interact with the system. Although at the
moment, we are concentrating on requirements, later we shall need to know who the
actual users are for each high level function that is represented by a use case. This
may help in specifying the security for different functions or in assessing the usability
of the functions.

Bear in mind that actors need not be human users of the system. They can also be
other systems that communicate with the one that is the subject of the systems develop-
ment project, for example, other computers or automated machinery or equipment.

Figure 6.9 shows a use case diagram for the Campaign Management subsystem with
both Extend and Include relationships. Note that you do not have to show all the
detail of the extension points on a diagram: the Extension points compartment in
the use case can be suppressed. Of course, if you are using a CASE tool to draw and
manage the diagrams, you may be able to toggle the display of this compartment on
and off, and even if the information is not shown on a particular diagram, it will still be
held in the CASE tool’s repository.

In Chapter 4, the concepts of generalization, specialization and inheritance were
introduced. They are explained in more detail in Chapter 8. However, generalization
and specialization can be applied to actors and use cases. For example, suppose 
that we have two actors, Staff Contact and Campaign Manager, and a Campaign

Campaign
Manager

Assign staff to work
on a campaign

«include»
Find campaign

Figure 6.8 Use case diagram showing «include»

Campaign
Manager

Accountant

Assign staff
to work on
a campaign

Add a new
advert to

a campaign

Chack campaign
budget

Print campaign
summary

Print campaign
invoice

Find campaign

«include»

«include»

«include»

«extend»

Campaign Management

«extend»

Figure 6.9 Use case diagram showing both «extend» and «include».



Staff
Contact

Campaign
Manager

Assign staff towork
on a campaign

Assign team of staff
to work on a

campaign

Assign individual
staff to work on a

campaign

Change a client
contact

Record completion
of an advert

Figure 6.10 Generalization of actors and use cases.

140 Requirements Capture

Manager can do everything that a Staff Contact can do, and more. Rather than
showing communication associations between Campaign Manager and all the use
cases that Staff Contact can use, we can show Campaign Manager as a
specialization of Staff Contact, as in Figure 6.10. Similarly, there may be similar use
cases where the common functionality is best represented by generalizing out that
functionality into a ‘super-use case’ and showing separate. For example, we may find
that there are two use cases at Agate Assign individual staff to work on a
campaign, and Assign team of staff to work on a campaign, which are similar
in the functionality they offer. We might abstract out the commonality into a use case
Assign staff to work on a campaign, but this will be an abstract use case. It
helps us to define the functionality of the other two use cases, but no instance of this
use case will ever exist in its own right. This is also shown in Figure 6.10. 

6.6.3 Supporting use cases with prototyping

As the requirements for a system emerge in the form of use cases, it is sometimes helpful
to build simple prototypes of how some of the use cases will work. A prototype is a
working model of part of the system—usually a program with limited functionality that
is built to test out some aspect of how the system will work. (Prototypes were discussed
in Section 3.2.2 and are explained in more detail in Chapter 17 on the design of the user
interface.)

Prototypes can be used to help elicit requirements. Showing users how the system
might provide some of the use cases often produces a stronger reaction than showing
them a series of abstract diagrams. Their reaction may contain useful information about
requirements.

For example, there are a number of use cases in the Campaign Management sub-
system for Agate that require the user to select a campaign in order to carry out some



Use Cases 141

business function. The use case diagram in Figure 6.9 reflects this in the «include»
relationships with the use case Find campaign. The use case Find campaign will
clearly be used a great deal, and it is worth making sure that we have the requirements
right. A prototype could be produced that provides a list of all the campaigns in the
system. A possible version of this is shown in Figure 6.11.

Showing this prototype interface design to the users may well produce the
response that this way of finding a campaign will not work. There may be hundreds
of campaigns in the system, and scrolling through them would be tedious. Different
clients may have campaigns with similar names, and it would be easy to make a
mistake and choose the wrong campaign if the user does not know which client it
belongs to. For these reasons, the users might suggest that the first step is to find the
right client and then only display the campaigns that belong to that client. This leads
to a different user interface—shown in Figure 6.12.

The information from this prototyping exercise forms part of the requirements for the
system. This particular requirement is about usability, but it can also contribute to
meeting other, non-functional requirements concerned with speed and the error rate: it
might be quicker to select first the client and then the campaign from a short-list than it
is to search through hundreds of campaigns; and it might reduce the number of errors
made by users in selecting the right campaign to carry out some function on.

Figure 6.12 Revised prototype interface for the Find campaign use case.

Figure 6.11 Prototype interface for the Find campaign use case.



Figure 6.13 Prototype storyboard.

142 Requirements Capture

Prototypes can be produced with visual programming tools, with scripting
languages like TCL/TK, with a package like Microsoft PowerPoint® or even as web
pages using HTML.

Prototypes do not have to be developed as programs. Screen and window designs
can be sketched out on paper and shown to the users, either formally or informally. A
series of possible screen layouts showing the steps that the user would take to interact
with a particular use case can be strung together in a storyboard, as in Figure 6.13.

6.6.4 CASE tool support

Drawing any diagram and maintaining the associated documentation is made easier
by a CASE tool, as described in Section 3.6.

As well as allowing the analyst to produce diagrams showing all the use cases in
appropriate subsystems, a CASE tool should also provide facilities to maintain the
repository associated with the diagram elements, and to produce reports. Automatically
generated reports can be merged into documents that are produced for the client organi-
zation. The behaviour specification of each use case forms part of the requirements
model or requirements specification, which it is necessary to get the client to agree to.

6.6.5 Business modelling with use case diagrams

We have used use case diagrams here to model the requirements for a system. They
can also be used earlier in the life of a project to model an organization and how it
operates. Business modelling is sometimes used when a new business is being set up,
when an existing business is being ‘reengineered’, or in a complex project to ensure
that the business operation is correctly understood before starting to elicit the
requirements.

In the examples that we have shown above, the actors have all been employees of
the company interacting with what will eventually be at least in part a computerized
system. In business modelling, the actors are the people and organizations outside
the company, interacting with functions within the company. For example, Figure
6.14 shows the Client as an actor and use cases that represent the functions of the
business rather than functions of the computer system.

A full business model of Agate would show all the functions of the company, and the
actors would be the other people and organizations with which Agate interacts, for
example the media companies (TV stations and magazine and newspaper publishers)
from which Agate buys advertising time and space, and the subcontractors that Agate
uses to do design work and printing.



Requirements Capture and Modelling 143

6.7 Requirements Capture and Modelling

The first stage of most projects is one of capturing and modelling the requirements
for the system. As we progress through the book, we shall include activity diagrams
to illustrate the main activities in and products of each phase. These diagrams link
back to the table in Figure 5.18, which summarizes the approach that we are taking
in this book. Figure 6.15 shows the first such diagram.

In this case we have not broken the activity Requirements capture and
modelling down into more detail, though it could potentially be broken down into
separate activities for the capture of the requirements (interviewing, observation, etc.)
and for the modelling of the requirements (use case modelling, prototyping, etc.).

We have used object flows to show the documents and models that are the inputs
to and outputs from activities, and swimlanes to show the role that is responsible for
the activities. In this case, one or more people in the role of Requirements Team
will carry out this activity. In a small project, this may be one person, who carries out

Client

Sign up client

Run advertising
campaign for client

Invoice client

Figure 6.14 Example of business modelling with use cases.

Figure 6.15 Activity diagram for Requirements capture and modelling.



144 Requirements Capture

many other analysis and design activities; in a large project or organization, this may
be a team of requirements analysis specialists taking more specialist roles.

The Case Study Chapter A2, which follows this one, provides more extended
examples of the outputs of the Requirements capture and modelling activity, and
the book website provides a full use case model.

6.8 Summary

Analysts investigating an organization’s requirements for a new information system
may use five main fact finding techniques—background reading, interviews, obser-
vation, document sampling and questionnaires. They use these to gain an under-
standing of the current system and its operation, of the enhancements the users require
to the current system and of the new requirements that users have for the new system.

Using agreed standards to document requirements allows the analysts to communi-
cate these requirements to other professionals and to the users. Use case diagrams are
one diagramming technique that is used to summarize the users’ functional require-
ments in a high level overview of the way that the new system will be used.

Case Study Example

You have already seen several examples from the case study in this section. The use cases are
determined by the analyst from the documentation that is gathered from the fact-finding
process. What follows is a short excerpt from an interview transcript, which has been
annotated to show the points which the analyst would pick up on and use to draw the use
case diagrams and produce the associated documentation. The interview is between Dave
Harris, a systems analyst, and Peter Bywater, an Account Manager at Agate. It is from one of
the interviews with the objective ‘To establish additional requirements for new system’ in the
fact finding plan in the earlier case study section in this chapter.

Dave Harris: You were telling me about concept notes. What do you mean by this?
Peter Bywater: At present, when we come up with an idea for a campaign we use a
word-processor to create what we call a concept note. We keep all the note files in one
directory for a particular campaign, but it’s often difficult to go back and find a particular
one.
DH: So is this something you’d want in the new system?
PB: Yes. We need some means to enter a concept note and to find it again.
(This sounds like two possible use cases. Who are the actors?)
DH: So who would you want to be able to do this?
PB: I guess that the staff working on a campaign should be able to create a new note in
the system.
DH: Only them? 
(Any other actors?)
PB: Yes, only the staff actually working on a campaign.
DH: What about finding them again? Is this just to view them or could people modify
them?
PB: Well, we don’t change them now. We just add to them. It’s important to see how a
concept has developed. So we would only want to view them. But we need some easy
way of browsing through them until we find the right one.
(Who are the actors for this?)



Summary 145

DH: Can anyone read the concept notes?
PB: Yes, any of the staff might need to have a look.
DH: Would you need any other information apart from the text of the concept itself?
(Thinking ahead to Chapter 7!)
PB: Yes. It would be good to be able to give each one a title. Could we use the titles then
when we browse through them? Oh, and the date, time and whoever created that
concept note.
DH: Right, so you’d want to select a campaign and then see all the titles of notes that are
associated with that campaign, so you could select one to view it?
(Thinking about the interaction between the user and the system.)
PB: Yes, that sounds about right.
...
From this information, Dave Harris is going to be able to develop the use case descriptions for
two use cases:

Create concept note,
Browse concept notes.

The use case diagram is shown in Figure 6.16. The use case descriptions will be as follows.

Create concept note.
A member of staff working on a campaign can create a concept note, which records
ideas, concepts and themes that will be used in an advertising campaign. The note is in
text form. Each note has a title. The person who created the note, the date and time are
also recorded. 

Browse concept notes.
Any member of staff may view concept notes for a campaign. The campaign must be
selected first. The titles of all notes associated with that campaign will be displayed. The
user will be able to select a note and view the text on screen. Having viewed one note,
others can be selected and viewed.

The interaction here is quite straightforward, so we shall not need a more detailed
breakdown of the interaction between user and system.

Note that in Figure 6.16, because Campaign Staff is a specialization of Staff, we do not
need to show a communication association between the Campaign Staff actor and the Browse
concept notes use case.



146 Requirements Capture

Review Questions

6.1 Read the following description of a requirement for FoodCo, and decide which parts of it are
functional requirements and which are non-functional requirements.

The allocation of staff to production lines should be mostly automated. A process will be run once
a week to carry out the allocation based on the skills and experience of operatives. Details of holi-
days and sick leave will also be taken into account. A first draft Allocation List will be printed off by
12.00 noon on Friday for the following week. Only staff in Production Planning will be able to
amend the automatic allocation to fine-tune the list. Once the amendments have been made, the
final Allocation List must be printed out by 5.00 pm. The system must be able to handle allocation
of 100 operatives at present, and should be capable of expansion to handle double that number.

6.2 Name the five main fact finding techniques and list one advantage and one disadvantage of
each.

6.3 Imagine that you will be interviewing one of the three staff in Production Planning at FoodCo.
Draw up ten questions that you would want to ask him or her.

6.4 What is the purpose of producing use cases?

6.5 Describe in your own words the difference between the «extend» and «include» relationships
in use case diagrams.

6.6 What is the difference between an ‘essential’ and a ‘real’ use case?

6.7 Write a use case description in the extended form, used for the Assign staff to work on
a campaign example in Section 6.6.2, for either Create concept note or Browse con-
cept notes.

6.8 Think of the different possible uses you could make of a library computer system and draw a
use case diagram to represent these use cases.

6.9 List some non-functional requirements a library computer system (as in Question 6.8) that
you would not model using use cases.

6.10 In what way are use case diagrams different when used for business modelling?

Staff

Campaign Staff

Browse concept
notes

Create concept
note

Concept Notes

Figure 6.16 Use cases for Concept Notes subsystem.



Summary 147

Case Study Work, Exercises and Projects

6.A Refer to the material for the second case study—FoodCo (introduced in Case Study B1). Draw
up your initial fact finding plan along the lines of the plan given above.

6.B Read the following excerpt from a transcript of an interview with one of the production
planners at FoodCo. Draw a use case diagram and create use case descriptions for the use cases that
you can find in this information.

Ken Ong: So what happens when you start planning the next week’s allocation?
Rik Sharma: Well, the first thing to do is to check which staff are unavailable.
KO: Would that be because they are on holiday?
RS: Yes, they could be on holiday, or they could be off sick. Because staff are handling raw food, we
have to be very careful with any illness. So factory staff often have to stay off work longer than they
would if they were office workers.
KO: So how do you know who’s off sick and who’s on holiday?
RS: They have to complete a holiday form if they want a holiday. They send it to the Factory
Manager, who authorizes it and sends it to us. We take a copy, and enter the details into our system.
We then return the form to the member of staff.
KO: What details do you enter?
RS: Who it is, the start date of the holiday and the first date they are available for work again.
KO: What about illness?
RS: The first day someone is off sick they have to ring in and notify us. We have to find someone to
fill in for them for that day if we can.
KO: Right. Let’s come back to that in a minute. How do you record the fact that they’re off sick for
your next week’s production plan?
RS: We make an entry in the system. We record which member of staff it is, when they went off
sick, the reason and an estimate of how many days they’re likely to be off.
KO: Right, so how do you get at that information when you come to plan next week’s allocation?
RS: Well, we run off three lists. We enter Monday’s date, and it prints us off one list showing who is
available all week, a second list showing who is not available all week, and a third list showing who is
likely to be available for part of the week.
KO: Then what?
RS: Then we start with the people who are available all week and work round them. We pull each
operative’s record up on the screen and look at two main factors—first their skills and experience,
and second which line they’re working on at the moment and how long they’ve been on that line.
Then we allocate them to a line and a session in one of the three factories.
KO: So you can allocate them to any one of the three factories. Do you enter the same data for
each one?
RS: No, there are slight variations in the allocation screen for each of the factories—mainly for
historical reasons.
...



Further Reading

� Booth (1989) Chapter 5 describes the issues surrounding the usability of systems in more detail
than we can here, and explains the process of Task Analysis. 

� Oppenheim’s book (2000) provides a very detailed coverage of questionnaire design for survey
purposes. It is aimed mainly at social science and psychology students, but has some relevant
chapters on how to formulate effective questions. Many books for students on how to carry out a
research project cover fact-gathering techniques such as interviewing and questionnaire design.
Allison et al. (1996) is an example, but most university libraries and bookshops will have a
selection of similar books.

� Hart (1997) gives a detailed explanation of the techniques that are specific to the development of
expert systems.

� Roberts (1989) addresses the role of users in a systems development project. This book is one of a
series of guides written for civil servants in the UK government service, and is relatively
bureaucratic in its outlook. However it ranges widely over the issues that users may face. Yourdon
(1989) discusses users and their roles in Chapter 3.

� Jacobson et al. (1992) present the original ideas behind use cases as an analysis technique. For a
more recent view, look at Rosenberg and Scott (1999) or Cockburn (2000).

� Examples of use cases from the Agate case study are available on the book website. This includes
references to examples of templates for use case descriptions.

148 Requirements Capture


