
Par t II: The life cycle
approach

Contents

Chapter 3 – Information systems

development life cycle p 31

MG12454 ch03.qxp 2/2/06 14:56 Page 29

I
n Part II we introduce the information systems development life cycle, which is a general approach to

developing systems. It has been the basis of many systems development projects since the 1970s. The

phases in the approach are described along with the strengths of the approach. We use this approach

as an exemplar and introduce methodologies, techniques, and tools by means of this approach. However,

we also discuss its weaknesses, or at least problems relating to the way it has been used in practice, as

they lead on to the alternative approaches to developing information systems, which are introduced in

Part III of the book. Many of the alternative themes discussed there have in their roots attempts to

address some of these weaknesses.

30 The life cycle approach

MG12454 ch03.qxp 2/2/06 14:56 Page 30

3 Infor mat ion systems

deve lopment l i fe cyc le

3.1 Information systems development life cycle
(SDLC)

The SDLC has had an enormous influence as a general approach to develop infor-

mation systems. Although there are many variants, it has the following basic

structure:

• feasibility study;

• system investigation;

• systems analysis;

• systems design;

• implementation;

• review and maintenance.

These stages together are frequently referred to as ‘conventional systems analysis’, ‘traditional

systems analysis’, ‘information systems development life cycle’, or, more frequently in the

USA, the waterfall model. The term ‘life cycle’ indicates the staged nature of the process.

Further, by the time the review stage comes, the information system may be found to be inad-

equate and it may not be long before the process starts again with a feasibility study to develop

another information system to replace it. In the next few sections we describe each stage in

turn.

1 Feasibility study
Among other reasons, a computer system might be contemplated to replace an old system

because increasing workloads have overloaded the present system, suitable staff are expensive

and difficult to recruit, advancing technology leads to new possibilities, there is a change in the

type of work, or there are frequent errors. The next stage is to look in more detail at the present

system and then to determine the requirements of the new one.

The feasibility study looks at the present system, the requirements that it was

intended to meet, problems in meeting these requirements, new requirements that have come

to light since it was first implemented, and briefly investigates alternative solutions. These

must be within the terms of reference given to the analyst relating to the boundaries of the

system and constraints, particularly those associated with resources. The alternatives

MG12454 ch03.qxp 2/2/06 14:56 Page 31

suggested might include leaving things alone and improved manual as well as computer sol-

utions.

For each of these, a description is given in terms of the technical, human, organizational,

and economic costs and benefits of developing and operating the system. So, any proposed

system must be feasible:

• legally, that is, it does not infringe any national or, if relevant, international company

law;

• organizationally and socially, that is, it is acceptable for the organization and its staff, par-

ticularly if it involves major changes to the way in which the organization presently

carries out its processing;

• technically, that is, it can be supported by the technology available and there is sufficient

expertise to build it;

• economically, that is, it is financially affordable and the expense justifiable.

Of the possible alternatives, a ‘recommended solution’ is proposed with an outline functional

specification. This information is given to management as a formal report and often through an

oral presentation by the systems analysts to management who will then decide whether to

accept the recommendations of the analysts. This is one of the decision points in the SDLC –

whether to proceed or not.

2 Systems investigation
If management has given its approval to proceed, the next stage is a detailed fact-finding phase.

This purports to be a thorough investigation of the application area. The information obtained

will be much more detailed than that recorded in the feasibility report. It will look at:

• the functional requirements of the existing system (if there is one) and whether these

requirements are being achieved;

• the requirements of the new system as there may be new situations or opportunities that

suggest altered requirements;

• any constraints imposed;

• the range of data types and volumes that have to be processed;

• exception conditions;

• problems of the present working methods.

These facts are gained by interviewing personnel (both management and operational staff),

through the use of questionnaires, by direct observation of the application area of interest, by

sampling, and by looking at records and other written material related to the application area:

• observation can give a useful insight into the problems, work conditions, bottlenecks, and

methods of work;

• interviewing, which may be conducted with individuals and groups of users, is usually

the most helpful technique for establishing and verifying information, and provides an

opportunity to meet the users and to start to overcome possible resistance to change;

32 The life cycle approach

MG12454 ch03.qxp 2/2/06 14:56 Page 32

• questionnaires are usually used where similar types of information need to be obtained

from a large number of respondents or from remote locations;

• searching records and documentation may highlight problems, but the analyst has to be

aware that the documentation may be out of date;

• sampling may be used but often requires specialist help from people with statistical and

other skills.

A great deal of skill is required to use any of these effectively, and results need to be cross-

checked by using a number of these approaches. It may be possible to find out about similar

systems implemented elsewhere as the experience of others could be invaluable.

3 Systems analysis
Armed with the facts, the systems analyst proceeds to the systems analysis phase and analyses

the present system by asking such questions as:

• Why do the problems exist?

• Why were certain methods of work adopted?

• Are there alternative methods?

• What are the likely growth rates of data?

In other words, it is an attempt to understand all aspects of the present system and why it

developed as it did, and eventually indicate how things might be improved by any new

system. So, systems analysis provides pointers to the new design. In particular, the analysts

will emphasize the need to ascertain what are the requirements for the new system (see Section

5.6).

4 Systems design
Although usually modelled on the design suggested at the feasibility study stage, the new facts

may lead to the analyst adopting a rather different design to that proposed at that time. Much

will depend on the willingness to be thorough in the investigation phase and questioning in the

analysis phase. Typically, however, the new design might be similar to the previous system, but

avoiding the problems that occurred with the old system and without including any new ones.

Sometimes, the new system is somewhat more radical.

This stage involves the design of both the computer and manual parts of the system. The

design documentation set will contain details of:

• input data and how the data is to be captured (entered in the system);

• outputs of the system;

• processes, many carried out by computer programs, involved in converting the inputs

to the outputs;

• structure of the computer and manual files that might be referenced in the system;

• security and backup provisions to be made;

• systems testing and implementation plans.

Chapter 3 Information systems development life cycle 33

MG12454 ch03.qxp 2/2/06 14:56 Page 33

5 Implementation
Following the systems design phase are the various procedures that lead to the implementation

of the new system. If the design includes computer programs, these have to be written and

tested. New hardware and software systems need to be purchased and installed if they are not

available in the organization at present. It is important that all aspects of the system are proven

before cutover to the new system, otherwise failure will cause a lack of confidence in this and,

possibly, future computer applications. The design and coding of the programs might be

carried out by computer programmers. Alternatively, application packages might be purchased

to form part of the final system. In this approach, the analysis and programming functions are

separate tasks carried out by different people.

A major aspect of this phase is that of quality control. The manual procedures, along

with the hardware and software, need to be tested to the satisfaction of users as well as ana-

lysts. The users need to be comfortable with the new methods. The departmental staff can

practise using the system and any difficulties experienced should be ironed out. The education

and training of user staff is therefore an important element of this phase. Without thorough

training, users will be unfamiliar with the new system and unlikely to cope with the new

approach (unless it is very similar to the old system).

Documentation, such as the operations and user manuals, will be produced and

approved and the live (real, rather than test) data will be collected and validated so that the

master files can be set up. Security procedures (see also Section 8.6) need to be tested, so that

there is no unauthorized access and recovery is possible in case of failure. Once all this has been

carried out, the system can be operated and the old one discontinued. If cutover to the new

system is done ‘overnight’, then there could be problems associated with the new system. It is

usually too risky an approach to cutover. Frequently, therefore, there is a period of parallel

running, where old and new systems are run together, until there is complete confidence in the

new system. Alternatively, parts of the new system can be implemented in turn, forming a

phased implementation. If one part of the system is implemented ‘to test the water’ before the

rest of the system is implemented, this is referred to as a pilot run. Acceptance testing comes to

an end when the users feel assured that the new system is running satisfactorily and it is at this

point that the new system becomes fully operational (or ‘live’).

6 Review and maintenance
The final stage in the system development process occurs once the system is operational. There

are bound to be some changes necessary and some staff will be set aside for maintenance, which

aims to ensure the continued efficient running of the system. Some of the changes will be due

to changes in the organization or its environment, some to technological advances, and some to

‘extras’ added to the system at an agreed period following operational running. Inevitably,

however, some maintenance work is associated with the correction of errors found since the

system became operational.

At some stage there will also be a review of the system to ensure that it does conform to

the requirements set out at the feasibility study stage, and the costs have not exceeded those

34 The life cycle approach

MG12454 ch03.qxp 2/2/06 14:56 Page 34

predicted. The evaluation process might lead to an improvement in the way other systems are

developed through the process of organizational learning.

As commented earlier, because there is frequently a divergence between the operational

system and the requirements laid out in the feasibility study, there is sometimes a decision

made to look again at the application and enhance it or even develop another new system to

replace it. This could also occur for another reason. Changes in the application area could be

such that the operational system is no longer appropriate and should be replaced. The SDLC

then finishes and starts at the point where there is a recognition that needs are not being met

efficiently and effectively and the feasibility of a replacement system is then considered and the

life cycle begins again.

In the following sections we discuss the key concepts of methodologies, techniques, and

tools in the particular context of the SDLC.

3.2 Methodology
There were many variants of the SDLC. The earliest in the UK was that proposed by the

National Computing Centre (NCC) in the late 1960s. At the time, the NCC was sponsored by

the UK government to provide a lead in computing for both government and private organiz-

ations. One of its functions, therefore, was to suggest good standards for developing computer

applications. It had a great impact on the data processing community, particularly in the UK,

and represented a typical methodology of the 1970s based on the SDLC. This methodology has

been improved and altered since, so that a number of approaches used today can be regarded

as a modern variant of this approach, the most obvious being SSADM (Section 21.1).

The use of a methodology improves the practice of information systems development.

The attributes that we would expect of a methodology include:

1. A series of phases starting from the feasibility study through to review and mainten-

ance. The phases are expected to be carried out as a sequential process. Each of these

phases has subphases. The activities to be carried out in each of the subphases are

usually spelt out clearly in the methodology documentation, usually found in manuals.

The outputs (or ‘deliverables’) of each subphase are also detailed. Deliverables may

include documents, plans, or computer programs.

2. A series of techniques, which include ways to evaluate the costs and benefits of different

solutions and methods to formulate the detailed design necessary to develop computer

applications, are also detailed. We illustrate some of these techniques in Section 3.3.

3. A series of tools to help the systems analysts in their work. By tools, we mean, in this

book, software packages that aid some aspect of the approach. We discuss some of these

tools in Section 3.4.

4. A training scheme so that all analysts and others new to their roles and responsibilities

could adopt the standards suggested. Typically, there may be a training course offered

that might take up to six weeks. A qualification might be offered.

5. A philosophy, perhaps implied rather than stated, which might be that ‘computer

systems are usually good solutions to organizational problems and processing’. We

Chapter 3 Information systems development life cycle 35

MG12454 ch03.qxp 2/2/06 14:56 Page 35

suggest this because the assumption is that the inevitable consequence of using most

methodologies is a new computer application to perform the required functions.

Of course, the NCC methodology itself became dated and was replaced by other methodolo-

gies, many of which were also based on the life cycle but incorporated the latest methods,

techniques, and tools. Many more modern methodologies such as SSADM, Merise, and

Yourdon Systems Methodology, which are described later in the book, are life cycle

approaches.

For example, SSADM (Section 21.1) has the following stages:

• Stage 0 – feasibility;

• Stage 1 – investigation of current environment;

• Stage 2 – business systems options;

• Stage 3 – definition of requirements;

• Stage 4 – technical system options;

• Stage 5 – logical design;

• Stage 6 – physical design.

Although the terminology used for each stage seems different, we can see the progress through

the life cycle from feasibility study, via investigation and requirements analysis, through to

design. In fact, SSADM does not offer much specific advice regarding implementation, as this

is seen as being particular to the application environment and the assumption is made that little

general advice can be given. Each of these seven stages of SSADM are further detailed into

several steps (the methodology documentation consists of several manuals).

Although we have argued that most methodologies follow a life cycle of sorts, some cir-

cumvent stages in the wish to develop applications quickly, such as James Martin’s Rapid

Application Development (Section 23.1), for example; whereas others do not assume such a

logical step-by-step approach (Multiview, for example – Section 26.1). Yet others concentrate on

only part of the life cycle, like Soft Systems Methodology (Section 25.1). Finally, some method-

ologies concentrate on particular views about the emphasis that should be placed when

developing applications, such as ETHICS (Section 24.1), which emphasizes people aspects and

participation.

3.3 Techniques
Most methodologies recommend a number of documentation aids to ensure that the investi-

gation is thorough. The early methodologies might have included:

• various flowcharts, which might, for example, help the analyst trace the flow of docu-

ments through a department;

• an organization chart, showing the reporting structure of people in a company or

department;

• manual document specifications, giving details of documents used in the manual

system;

36 The life cycle approach

MG12454 ch03.qxp 2/2/06 14:56 Page 36

• grid charts, showing how different components of the system, such as people and

machines, interact with each other;

• discussion records on which the notes taken at interviews could be recorded;

• file and record specifications describing, in the former case, all the data items in a record,

including their names and descriptions, size, format, and possible range of values.

Many of the documentation techniques outlined above have been replaced. The most well-used

techniques are probably now data flow diagramming (Section 12.1), which is important in spec-

ifying the process aspects of the system, and entity-relationship diagramming (Section 11.1),

which details the data aspects. Data flow diagrams that describe the logic of the system or the

physical implementation of the new design show:

• data flows into the system from the environment;

• data flows out of the system into the environment;

• processes that change the data within the system;

• data storage within the system;

• the boundary and scope of the system.

Entity-relationship diagrams, on the other hand, represent the data aspects. An entity is a data

type, such as a student, lecturer, course, and classroom. These diagrams show how these enti-

ties relate to each other and they also show the detail about each entity, similar to that provided

in a record specification form.

As we will see in Part IV, there are many techniques used in information systems devel-

opment. Some are associated with particular methodologies, like rich pictures (Section 10.1) in

Soft Systems Methodology, others are more generic, such as dataflow diagrams and entity-

relationship diagrams, which are recommended in many methodologies.

3.4 Tools
When we talk of tools in this book, we are referring to software packages that aid aspects of infor-

mation systems development. Most tools require significant computing power and good graphics

capabilities. Most tools available now were not available in the early days, although there were

project management tools (we discuss Microsoft Project in Section 18.4) and report-generating

packages, such as RPGII. Users of RPGII would complete a series of forms specifying how the

required report should be structured and what files contained the data necessary to be on the report.

This has been incorporated as one aspect of modern toolsets (Chapter 19). Oracle, for example, will

have an application generator as part of its toolset. Other tools support the production of docu-

ments, such as dataflow diagrams and entity-relationship diagrams. They include Visio, discussed

in Section 18.3, but again this feature is included in many toolsets. As you will see in Part V, there

are many different types of tool available, which ease much of the systems development process.

Probably the greatest benefit of using tools is that analysts and designers are not reluc-

tant to change documents, because the change process is simple. Frequent manual redrawing

is not satisfactory, because of the effort involved and the potential of introducing errors when

Chapter 3 Information systems development life cycle 37

MG12454 ch03.qxp 2/2/06 14:56 Page 37

redrawing. Without such drawing tools many a small change required by a user would not be

incorporated into the documentation of the system.

3.5 Potential strengths of the SDLC
The SDLC has a number of features to commend it. Methodologies incorporating this view of

applications development have been well tried and tested. The use of documentation standards

in such methodologies helps to ensure that the specifications are complete, and that they are

communicated to systems development staff, the users in the department, and the computer

operations staff. It also ensures that these people are trained to use the system. The education

of users on subjects such as the general use of computers is also recommended, and helps to

dispel fears about the effects of computers. Following such a methodology also prevents, to

some extent at least, missed cutover dates (the date when the system is due to become oper-

ational) and unexpectedly high costs and lower than expected benefits. At the end of each phase

the technologists and the users have an opportunity to review progress. By dividing the devel-

opment of a system into phases, each subdivided into more manageable tasks, along with the

improved training and the techniques of communication offered, we have the opportunity for

control of the applications development process.

3.6 Potential weaknesses of the SDLC
The criticisms of the systems development approach to applications development, or, to be

more precise, of the way in which it was used include:

• failure to meet the needs of management;

• instability;

• inflexibility;

• user dissatisfaction;

• problems with documentation;

• lack of control;

• incomplete systems;

• application backlog;

• maintenance workload;

• problems with the ‘ideal’ approach;

• emphasis on ‘hard’ thinking;

• assumption of ‘green-field’ development.

We will discuss each of these in turn.

1 Failure to meet the needs of management
As can be seen in Figure 3.1, although systems developed by this approach often successfully

deal with such operational processing as the various accounting routines (payroll, invoicing,

etc.), the needs of middle management and top management can be ignored. Management

information needs, such as that required when making decisions about where to locate a new

38 The life cycle approach

MG12454 ch03.qxp 2/2/06 14:56 Page 38

factory, which products to stop selling, what sales or production targets to aim for and how

sales can be increased, are neglected. Although some information may filter up to provide

summary or exception reports, the computer is being used largely only for routine and repeti-

tive tasks. Instead of meeting corporate objectives, computers are being used to help solve

low-level operational tasks. In general, the danger is that such systems are rather limited in

their scope and rather unambitious.

2 Models of processes are unstable
The conventional SDLC approach attempts to improve the way that the processes in businesses

are carried out. However, businesses do change, and processes need to change frequently to

adapt to new circumstances in the business environment. Because these computer systems

model processes, they have to be modified or rewritten frequently. It could be said therefore

that computer systems, which are to some extent ‘models’ of processes, are unstable because

the real-world processes themselves are unstable.

3 Output-driven design leads to inflexibility
The outputs that the system is meant to produce are usually decided very early in the systems devel-

opment process. Design is ‘output driven’ (see Figure 3.2) in that, once the output is agreed, the

inputs required, the file contents, and the processes involved to convert the inputs to the outputs

can all be designed. However, changes to required outputs are frequent and, because the system

has been designed from the outputs backwards, changes in requirements usually necessitate a very

large change to the system design and therefore cause either a delay in the implementation schedule

or are left undone, leading to an unsatisfactory and inappropriate system.

4 User dissatisfaction
This is often a feature of many computer systems. Sometimes systems are rejected as

soon as they are implemented. It may well be only at this time that the users see the

Chapter 3 Information systems development life cycle 39

Figure 3.1: Failure to meet all the needs of management

Often ignored by
computerization

Computer data
processing

Top (strategic)
management

Middle (tactical)
management

Operations
management

Supplier
order

processing

Invoicing

Ledgers

Payroll
Production control

Stock
control

Sales order
processing

MG12454 ch03.qxp 2/2/06 14:56 Page 39

repercussions of their ‘decisions’. These decisions have been assumed by the analysts to be

firm ones and, as computer systems can prove inflexible, it is normally very difficult to

incorporate changes in requirements once the systems development is under way. Many

companies expect users to ‘sign off’ their requirements at an early stage when they do not

have the information to agree the exact requirements of the system. The users sign docu-

mentation completed by computer-oriented people. The documents may not be designed for

the users. On the contrary, they are designed for the systems analysts, operations staff, and

programming staff who are involved in developing the system. Users cannot be expected to

be familiar with the technology and its full potential, and therefore find it difficult to con-

tribute to the debate to produce better systems. The period between ‘sign-off’ and

implementation tends to be one where the users are very uncertain about the outcome and

they are not involved in the development process and therefore may lose their commitment

to the system. They might have become disillusioned with computer systems and, as a con-

sequence, fail to co-operate with the systems development staff. Systems people, as they see

the situation, talk about user staff as being awkward or unable to make a decision. Users

may first see the system only on implementation and find it inappropriate. This alienation

between technologists and users has even been known to lead to users developing their own

informal systems which are used alongside the computer system, ultimately causing the

latter to be superfluous.

5 Problems with documentation
We have suggested that one of the benefits of the methodology is the standardization and docu-

mentation that methodologies use. Yet this is not ideal. The orientation of the documentation is

frequently toward the computer person and not the user, and this represents a potential source

of problems. The main purpose of documentation is that of communication, and a technically

oriented document is not ideal.

40 The life cycle approach

Figure 3.2: Design is output-driven

What are
the required

outputs?

What processes
will lead to that

output being
achieved?

What files will
hold the

necessary static
data?

What data will
be required as

raw input?

MG12454 ch03.qxp 2/2/06 14:56 Page 40

6 Lack of control
Despite the methodological approach enabling estimates of the time, people, and other

resources needed, these estimates can be unreliable because of the complexity of some phases

and the inexperience of the estimators. Computer people have been seen as unreliable and

some disenchantment has ensued in relation to computer applications.

7 Incomplete systems
Computers are particularly good at processing a large amount of data speedily. They excel

where the processing is the same for all items: where the processing is structured, stable, and

routine. This often means that the unusual (exceptional conditions) is frequently ignored in the

computer system. They are too expensive to cater for. If they are diagnosed in the system inves-

tigation stage, then clerical staff are often assigned to deal with these exceptions. Frequently

they are not diagnosed, the exceptions being ignored or forgotten, and the system is falsely

believed to be complete. These exceptions cause problems early on in the operational life of the

system. These problems mark a particular technical failure, but they also indicate a systems

failure, a failure to analyse and design the system properly.

8 Application backlog
A further problem is the application backlog. There may well be a number of systems waiting

to be developed. The users may have to wait some years before the development process can

get under way for any proposed system. The process to develop an information system will

itself take many months and frequently years from feasibility study to implementation. Users

may also postpone requests for systems because they know it is not worth doing because of the

backlog. This phenomenon is referred to as the invisible backlog.

9 Maintenance workload
The temptation, then, is toward ‘quick and dirty’ solutions. The deadline for cutover may seem

sacrosanct. It might be politically expedient to patch over poor design rather than spend time

on good design. This is one of the factors that has led to the great problem of keeping oper-

ational systems going. With many firms, the effort given to maintenance can be as high as 60–80

per cent of the total workload. With so many resources being devoted to maintenance, which

often takes priority, it is understandable that there is a long queue of applications in the

pipeline. The users are discouraged by such delay in developing and implementing ‘their’

applications because of the necessity to maintain the legacy systems (see Section 8.1).

10 Problems with the ‘ideal’ approach
The SDLC model assumes a step-by-step, top-down process. This is somewhat naive. It is

inevitably necessary to carry out a series of iterations when, for example, new requirements are

discovered or subphases might prove unnecessary. In other words, information systems devel-

opment is an iterative process, whatever textbooks say. The political dimension where, for

example, people have their own ‘agenda’ transcends the rationale of any methodology. Users

Chapter 3 Information systems development life cycle 41

MG12454 ch03.qxp 2/2/06 14:56 Page 41

and analysts will need to interpret the methodology, and its techniques and tools, to be relevant

to a particular problem situation. It also assumes a tailor-made rather than packaged solution,

usually for a medium- or large-scale application using mainframe computers. With the wide-

spread use of PC systems, such an approach may be inappropriate and unwieldy.

11 Emphasis on ‘hard’ thinking
The SDLC approach may make a number of simplistic assumptions. It assumes that there are

‘facts’ that only need to be investigated and identified; it assumes that there can be a ‘best sol-

ution’ identified that will ‘solve the problem’; it assumes that this ‘ideal solution’ can be easily

engineered by following a step-by-step methodology; and it assumes that the techniques

offered will analyse and design all that needs to be done. But we are not engineering a simple

mechanical object. The world of information systems is concerned with organizations and

people as much as technology. The situations encountered are often ambiguous, issue-laden,

messy, and problematical, and an alternative approach might well be more appropriate in these

difficult but common situations.

12 Assumption of ‘green-field’ development
The SDLC has been criticized for embodying the assumption that all systems developed are

new and that developers begin with a ‘green field’, that is, there are no existing systems that

have to be taken into consideration. This may have been true when the first computerized

systems replaced manual systems, but it is no longer the case. New developments are not nicely

separated from each other and any new development work is more likely to be an incremental

development of an existing system than a complete replacement. It is also likely to have to be

integrated with many existing systems in an organization, typically having been developed at

different times, with different developers, on different architectures and platforms. This makes

development a much more messy activity than would otherwise be the case. This assumption

is not confined to the SDLC, as many methodologies also implicitly make this assumption. One

that specifically addresses the complexity of existing systems is Renaissance (see Section 25.5).

This issue is also addressed elsewhere, for example, in evolutionary development (Section 7.1)

and legacy systems (Section 8.1).

The above criticisms of the SDLC should be regarded as ‘potential’ criticisms, as many organ-

izations using the approach do not fall into all or even most of the potential traps. However,

this book concerns itself with improving information systems development by adapting the

SDLC or using alternative approaches to developing information systems.

In Part III, we will look at themes regarding differing views about information systems

development. They can be seen as ways in which people in the field have reacted to the poten-

tial problems of the SDLC. This has resulted in many views about what a methodology should

emphasize: people aspects, planning aspects, automation . . . there are many such views. To

some extent these can be seen as representing different philosophies, for example, a people-

oriented approach might be seen as being based on the philosophy that people have a right to

42 The life cycle approach

MG12454 ch03.qxp 2/2/06 14:56 Page 42

design their organizational environment. But these themes also reflect greater possibilities, for

example, software tools that can both make the process easier and faster, and also make some

approaches possible, which aim toward automation of the development process. Similarly, the

craft of systems analysis has been improved greatly through the use of alternative techniques.

3.7 Conclusion
Before we consider approaches to systems analysis, which represent advances on the tra-

ditional SDLC approach, the reader should stop and consider that many systems developed

today are still done using no real methodology at all. This is particularly true in organizations

using PCs, perhaps developing websites as their first experience of computing. The SDLC has

many advantages over trial and error.

The SDLC is being used successfully. In many respects, there is nothing intrinsically

wrong with the SDLC. Much depends on the way in which it is used. There must be sufficient

resources assigned to the process; it needs to be well managed and controlled so that any devi-

ation from the plan is noticed and dealt with; it should be seen not as a rigid process but as a

flexible and iterative one; the feasibility study needs to be seen as a way of exploring alterna-

tives rather than as a way of advancing a limited point of view; and systems development

should not be seen as a purely technological process but one involving all users and developers,

indeed the organization as a whole. However, many of the alternative approaches address

some of the potential weaknesses suggested above. This may mean improving one or more of

the phases, including the use of an alternative technique or a new software tool.

We also do not wish to assert that any of the alternative methodologies represents a

panacea. Major concerns in computing remain, for example:

• meeting project deadlines;

• system maintenance;

• staff recruitment and retention;

• user dissatisfaction;

• changing requirements.

Notwithstanding these continuing pessimistic trends, there are many successful information

systems, some developed using the basic SDLC approach. In Part III we will look at the various

themes in information systems development methodologies that are seen as developments or

alternatives to the basic approach discussed in this chapter. These alternative approaches

usually address one or more of the potential criticisms of the SDLC approach discussed in the

previous section.

Chapter 3 Information systems development life cycle 43

MG12454 ch03.qxp 2/2/06 14:56 Page 43

Summary
• The SDLC has had an enormous influence as a

general approach to develop information systems.

Although there are many variants, it has the fol-

lowing basic structure: feasibility study; system

investigation; systems analysis; systems design;

implementation; review and maintenance.

• An information systems development method-

ology is likely to include: a series of phases with

subphases, each having expected outputs (or ‘deliv-

erables’); a series of techniques; a series of tools; a

training scheme and some underlying philosophy.

• Although the SDLC has many strengths and is still

used today, it also has many potential weaknesses,

which has led to alternative methodologies, tech-

niques, and tools being available.

44 The life cycle approach

Questions
1. Distinguish between techniques, tools, and methodolo-

gies in the context of the SDLC.

2. Discuss the strengths and the limitations of the tra-

ditional systems development life cycle.

3. Would you adopt the SDLC for developing a small

application on a PC? Would you modify it in any way?

Give reasons for your answer.

Fur ther reading
Avison, D.E. and Shah, H.U. (1995) The Information Systems

Development Cycle: A First Course in Information Systems,

McGraw-Hill, Maidenhead, UK. Avison and Shah describe an

up-to-date approach modelled on the SDLC. It can be

regarded as a prequel to this present book.

MG12454 ch03.qxp 2/2/06 14:56 Page 44

