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Technical Supplement 2
Waiting Line Models
LEARNING OBJECTIVES
After studying this technical supplement, you should be able to:

1. Explain the importance of waiting line models to service operations management

2. Give a real example of a decision modeled with waiting line methods

3. Demonstrate the measures important in waiting line situations

4. Show how waiting line models can be solved   
WAITING LINE SYSTEMS IN SERVICE OPERATIONS

Waiting lines occur throughout our lives, at traffic lights, at banks (or ATM machines), at restaurants, at theaters.  Waiting lines are concerned with the probabilistic phenomena of sometimes having to wait for extensive times, at other times being lucky enough to not have to wait at all.

The expected performance of waiting line systems is very important in many operations management contexts, especially in service operations management.  Some of the operations management contexts involving waiting lines are given below:

	
	Arrivals
	Queue
	Service Facility

	Assembly line
	Components
	Assembly line
	Workers or machines

	Barber shop
	Customers
	Assigned numbers
	Barbers

	Car wash
	Automobiles
	Dirty cars in line
	Car washer

	Computer center
	Jobs to run
	Stacked jobs
	Central Processing Unit

	Machine repair shop
	Breakdowns
	Work requests
	Mechanics

	Shipping dock
	Ships
	Empty or loaded ships
	Cranes

	Telephone system
	Calls
	Lines
	Switchboard


We all dislike waiting, as we would rather get on with our business.  This is even more crucial in business operations, where idle time for expensive equipment may be unacceptable.  But there is a cost of providing service capacity capable of keeping up with required work.  We might like for there to be a barber waiting at our beck and call whenever we find it convenient to enter a barber shop.  However, barber shops would have to pay for more barbers in order to make this possible, which raises their expenses, and would in turn lead to higher prices for haircuts.  


In operations, there is always a tradeoff between production capacity and the backlog of work to do.  If the nature is such that it can not be inventoried (done in advance of need), and if there is any variance in a systems arrival pattern, or its service time, a line of work will pile up on some occasions, while at other times the system may be idle.  Waiting line theory is concerned with the quantitative analysis of these systems.

WAITING LINE SYSTEMS

A waiting line system consists of the following components: arrivals, queues (waiting lines), queue discipline, service facility, and departures.

Arrivals:  An arrival occurs when an entity (a customer, a job, or other things) arrives in need of some service.  Arrivals can occur in a number of different ways.  The time between arrivals is constant in an assembly line, where durations of all tasks are controlled.  More often, there is some variance in the time between arrivals.  In a manufacturing plant, this variance may be quite low for at least some operations.  On the other hand, customer arrival at a facility such as a fast food restaurant is typically highly variable.  Arrivals may follow a wide number of probability distributions.  A commonly encountered distribution is the exponential distribution, with higher probabilities associated with smaller times between arrivals.

The time between arrivals may be a function of the calling population, the set of all possible arrival entities.  If the calling population is very small, such as a set of cruise liners in need of occasional mechanical overhaul, time between arrivals would be affected by the size of the calling population.  If there were only five ships in the cruise fleet, the fact that one was in dock undergoing repair would lower the probability of another mechanical failure, because now there would only be four ships that might suffer a problem rather than five.  Therefore, the rate of arrival is affected by the calling population size.  There are, in fact, a finite number of potential haircut customers for a barber shop.  However, the number of these potential customers is large enough that assuming an infinite calling population is undetectably different from the actual finite number, whatever that may be.

Waiting Lines: Waiting lines occur when work arrives for service, but all service facilities are occupied.  Waiting lines are bad in a competitive service environment, such as fast food.  As we noted earlier, if there is a line at a restaurant, no matter how good the restaurant, most people would think of alternative eating arrangements.  On the other hand, if a factory has invested in expensive production machinery, it wants to make sure that this machinery has all the work it can handle.  An inventory of raw materials to work on is a waiting line of a type, paid for by the factory to ensure that the expensive production machinery is efficiently utilized.

Queue Discipline: When a busy service facility completes a job, and a waiting line exists, some decision rule is needed to select the next job to be serviced.  The most common decision rule is first-come, first-served (or first-in, first-out - FIFO).  This decision rule would be conventional when humans were waiting for service at a restaurant.  On the other hand, medical emergency rooms would use a different decision rule, treating life-threatening cases before those cases that were not life-threatening.  Production facilities might also apply other kinds of priority systems, such as repairing the equipment most critical to revenue generation.  

Service Facility: The next component of a waiting line system is the service facility.  Service facilities may consist of a number of servers operating in parallel, such as a row of bank tellers, each available to serve a line of waiting customers.  Service facilities may be sequential, as is often found in production lines and equipment repair facilities.  Service facilities are typically defined in terms of the number of servers, as well as the distribution of service times.  Service times can follow many different distributions.  The normal distribution is commonly encountered when there is a relatively low variance, such as the time it takes to cut a head of hair.  Some services are exponentially distributed, in facilities where most work takes very little time, but complications may cause very long service times on occasion.  Erlang service time distribution occurs when there is a series of exponential activities to be performed serially (with the restriction that these durations are identically distributed).  Some service times are lognormally distributed, when there is a low average service time that is distinctly greater than zero, but the possibility of very long service times.

Departures:  Once service is completed, jobs depart the waiting line system.

WAITING LINE DECISIONS
Many queuing models have been developed to describe the operating characteristics of different waiting line systems.  These operating characteristics describe steady state system behavior, which exists when the system is in some sort of balance, unbiased by starting conditions.  Transient state behavior, on the other hand, is what happens when the starting conditions are different than steady state behavior.  Most waiting line systems involve empty starting conditions at the beginning of a working day, for instance.  Therefore, early arriving work does not have to wait as long as work that arrives after enough time has passed for a waiting line to develop.

Sometimes transient state behavior is quite different than steady state conditions.  For instance, there is little waiting for a parking spot at a university prior to 8 a.m.  On the other hand, some waiting line systems involve arrivals prior to opening of business, such as automobiles arriving at a garage for service.  In that case, the initial state condition may actually involve more waiting than arrivals would experience later in the day.

Waiting line analysis needs to answer service-related questions.  It often is useful to use waiting line models to estimate the average performance of the system in order to identify optimal service levels.  The overall objective of economic analysis is to minimize total system cost, consisting of the cost of waiting (and balking) plus the cost of providing service.  

Service Costs: Service costs include the cost of equipment, personnel, facilities, and other related expenses incurred in providing service.  As the level of service increases, service costs will generally increase.  Two workers can deal with more jobs than one worker, either by getting jobs done faster, or by working on two jobs independently.  As the level of service capacity is increased, however, more idle time will be experienced.  If a medical clinic has two emergency physicians instead of one, more emergency cases can be dealt with.  But the cost of providing service will be increased substantially, and a valuable resource may be tied up with nothing to do for much of the time.

Waiting Costs: As the level of service capacity is increased, waiting time for entities will decline, thus reducing waiting costs.  Waiting costs are often quite difficult to estimate.  In the fast food business, the restaurant is likely to lose revenues if they have long lines (even if these lines move quite quickly), because most of us have an aversion to waiting in line, and if we see the line before we commit to join it, may well choose to look for another service establishment.  It is difficult to estimate the economic impact of lost jobs, because not only is the revenue of the balking customer lost, but these lost customers will likely complain about the restaurant to their acquaintances, magnifying the impact.  In a factory, if material is doing the waiting, there is very little impact.  There is extra inventory expense incurred from owning this extra buffer of material to keep machinery working, but this may be minimal compared to the impact of idle machinery.  This, in fact, is the reason that most of us (the inventory of work) wait quite often in doctors’ offices.

Total System Cost:  A quantitative model reflecting total system cost includes terms for the cost of waiting and the cost of providing service.  We wish to minimize total system cost:

Minimize TC(system) = Wsystem ( Cwaiting + Cservice 

The decision variable is the service level.  Each service level needs to be evaluated separately, estimating the total system waiting time (Wsystem ) associated with that service level, as well as the two cost components.

To demonstrate this concept, consider a car wash facility currently consisting of one line through which all arriving vehicles must pass.  They enter the system when they arrive, and are washed in FIFO order.  Arrivals are highly variable (we will go into appropriate distributions describing various arrival patterns later).  Service is relatively constant, as a hook is attached to each vehicle being washed, and the car is pulled through the system at a constant rate.  Manual drying is applied at the end of the wash cycle, but the people doing the drying are experienced, and take roughly the same amount of time for each vehicle.  The cost of providing this system has been identified by accountants as $900 per day.  Average waiting time per vehicle has been calculated (through sampling conducted by the manager) at 2 minutes, with a minimum of zero minutes and a maximum observed 30 minutes.  Most waiting is relatively short.  The cost of waiting is in ill will, and balking on the part of customers who drive by and see the line.  The manager has been very sensitive to balking, but she can only guess at the number of lost sales.  It is her considered judgment that when the line exceeds four vehicles, cars seeking a wash will pass.  Probably half of these customers come back later.  Since each car wash involves $10 in revenue at this establishment, some very rough estimating would be required to conduct the economic analysis.  The manager estimates that only one car leaves because the line is too long for twenty that stay for service.  Based upon records, on average, fifteen cars are washed per hour in an eight hour working day ($1,200 revenue on average per day, for 120 cars washed).  This implies 120/20 = 6 cars balking per day, of which half are lost business, or $30 in lost revenue per day.

The partners of the car wash are considering adding an additional service line.  This would cost an extra $600 per day in amortized expense for equipment plus personnel to do the work.  The new system is expected to eliminate current waiting.  In fact, additional business is expected, not only from those who have been balking, but also from those who talk to satisfied customers.  Management estimates an extra business amounting to five cars per day ($50 extra revenue per day).

Would this investment pay for itself?  We can easily see that for current business levels it will not.  

System 1 total cost: 
cost of waiting = $30/day, cost of service = $900/day, total cost $930/day

System 2 total cost: 
cost of waiting = 0, cost of service = ($900 + $600)/day, total cost $1,500/day

It is true that System 2 will involve extra revenue (of unstated amount).  
However, there is $570/day of this extra revenue required in order to make the investment in the second line profitable.

We will look at waiting line models to identify more precise measures of expected system performance.  This will enable more precise economic analysis.  However, the same basic cost analysis approach is required, to compare total system cost impact from all systems being considered.

If variance in arrivals and/or service is present, there is never a guarantee of elimination of all waiting.  However, in general, the more service capacity provided, the less waiting.  Each specific situation can be modeled to determine its specific expected system performance.  Some waiting line situations are easier to model than others.  Some standard models will be presented here.  For more complex situations, simulation analysis is typically required.

WAITING LINE SYSTEM MEASURES
The system characteristics most commonly obtained in waiting line analysis are:

Probabilities of any specified number of jobs or customers in the system

Pn 
Mean (expected) waiting time per job or customer




Wq 

Mean (expected) length of the waiting line





Lq 

Mean time in the system (waiting time plus service time) per job or customer
W

Mean number of jobs or customers in the system




L

Probability that the service facility will be idle.




P0 
Service facility utilization rate








Note that = 1 - P0 for a single-server waiting line system.

WAITING LINE ASSUMPTIONS

To determine these system characteristics, we must make certain assumptions.  A waiting line system can be classified by six key conditions, or parameters (following the notational scheme of D. G. Kendall, 1953
).  There are six elements to this notational scheme:

1. Arrival distribution

2. Service time distribution

3. Number of servers

4. Queue discipline

5. Maximum waiting line length

6. Number of potential customers in the calling population

Arrival Distribution: The pattern of arrivals concerns the distribution of the time between arrivals.  A commonly encountered distribution is Markovian, or exponential distribution.  Arrivals also can be constant, as in assembly lines or barber shops with appointment systems.  The Erlang distribution, as noted earlier, occurs when identical exponentially distributed arrivals occur in k sequences.  The general independent distribution usually involves normally distributed data.  The four most commonly used distributions for time between arrivals are given below:

M
Exponential (or Poisson)


D
Deterministic (constant)


Ek 
Erlang


GI
General independent

The key parameter for arrivals is the mean time between arrivals = 1/.  The parameter  is the number of arrivals per unit time.

Service Time Distribution:  Time of services also can be described by a number of different probability distributions.  General distributions typically are associated with normally distributed time of service.  Those distributions typically described in Kendall’s notation are:


M
Exponential


D
Deterministic (constant)


Ek 
Erlang


GS
General service

The key parameter for services is , the mean service rate in number of services per unit time.  The mean service time is 1/.

Number of Servers:  The number of parallel servers is an important factor in waiting line systems.  All servers are assumed to have the same capacity.  It is important to note that in a waiting line system, the total system service capacity must exceed the arrival rate, or the length of the waiting line would grow to infinity.  In fact, systems with arrival rates approaching service capacity will explode to an infinite waiting line, as it would take enormous luck for the system to encounter subsequent idle time to catch up with demand.

Kendall’s notation for number of parallel servers is the appropriate integer value s.

Queue Discipline:  Queue discipline reflects the decision rule determining the order in which waiting jobs or customers are selected for service.  The normal assumption is first-come, first-served.  The commonly assumed rules are:


FCFS

First-come, first-served


LIFO

Last-in, first-out


SIRO

Random service order


GD

General distribution (other decision rules)

Maximum Waiting Line Length: The maximum number of jobs or customers awaiting service can affect the performance of the waiting line model.  Many models may be appropriately described by an unlimited queue length.  But there may be limits to the length of the waiting line, such as the size of the parking lot at a restaurant.  Customer behavior may also play a role, through balking when long lines are present.  There are, however, precise ways to model this behavior rather than capping the maximum waiting line length.

Kendall’s notation for maximum queue length is the appropriate integer, or (.

Calling Population:  The calling population of a waiting line system is the size of the set of potential jobs or customers.  As with the waiting line length, even if this number is strictly less than infinity, assuming a value of infinity will not matter unless the calling population is quite small.

Kendall’s notation for calling population is the appropriate integer, or (.

STANDARD WAITING LINE MODELS

We will demonstrate six waiting line systems for which mathematical formulations have been developed and widely published.  There are many other sets of assumptions for which models have been generated as well.  However, these six cover many typical cases.  A service situation will be used to demonstrate each model, allowing you to compare the impact of different assumptions.

We will begin with a service facility designed for efficiency and service.  The rate of customer arrival () is assumed to be 10 cars per hour.  A service rate () of 12 per hour (five minutes per customer) would provide more than enough capacity, if there were no variance.  We will assume that the owner has hired one server and their initial training has enabled them to perform service in 5 minutes on average (exponentially distributed service time).

See Next Pages for Waiting Line Systems

(M/M/1):FCFS/(/( Model
This model assumes exponentially distributed arrival rates and exponentially distributed service times, with one server.  The conventional assumption of first-come, first-served priority is made, along with an infinite maximum waiting line and an infinite calling population.  The formulas for the standard queuing measures for this set of assumptions is:

Inputs

Mean time between arrivals

1/ = 1/10 hours = 6 minutes

Mean service time


1/ =1/12 hours = 5 minutes

Outputs
Average utilization


    =  = 10/12 = 0.8333

Empty system probability

P0 = 1 -  = 1 – 0.8333 = 0.1667

Probability of n units in system
Pn = n(1 - )


P1 = (0.8333)1(1-0.8333) = 0.1389






P2 = (0.8333)2(1-0.8333) = 0.1157






P3 = (0.8333)3(1-0.8333) = 0.0965

Mean queue length


Lq = /( - )
 = 10(0.8333)/(12 – 10)

Lq = 10 ( 0.8333/(12 - 10) = 4.1667 customers

Mean system length


L = /( - ) = 10/(12 - 10) = 5 customers

Mean waiting time


Wq = /( - )
= 0.8333/(12 – 10) 

= 0.4167 hours, or 25 minutes

Mean time in system


W = 1/( - )
= 1/(12 – 10) 
= 0.5 hours, or 30 minutes

Note that the mean number of customers in the system is equal to the mean in service (0.8333) plus the mean waiting (4.1667).  Also, the mean time in the system is equal to the mean time of service (5 minutes) plus the mean waiting time (25 minutes).  This system involves high levels of variance, with both arrivals and services exponentially distributed.  This leads to relatively long waiting lines on average, as both arrivals and services tend to suffer exceptionally long times on occasion.  The probability of waiting would be 

1 – P0 – P1 = 1 – 0.1667 – 0.1389 = 0.6944.

(M/D/1):FCFS/(/( Model

This model assumes exponentially distributed arrival rates and constant service times, with one server.  The conventional assumption of first-come, first-served priority is made, along with an infinite maximum waiting line and an infinite calling population.  The formulas for the standard queuing measures for this set of assumptions is:

Inputs

Mean time between arrivals

1/ = 1/10 hours = 6 minutes

Mean service time


1/ =1/12 hours = 5 minutes

Outputs
Average utilization


    =  = 10/12 = 0.8333

Empty system probability

P0 = 1 -  = 1 – 0.8333 = 0.1667

Probability of n units in system
Pn = n(1 - )


P1 = (0.8333)1(1-0.8333) = 0.1389






P2 = (0.8333)2(1-0.8333) = 0.1157






P3 = (0.8333)3(1-0.8333) = 0.0965

Mean queue length


Lq = 2/[2(1 - )] 

Lq = (0.8333)2/[2(1 - 0.8333)] = 2.08333 customers

Mean system length


L = Lq +  = 2.0833 + 0.8333
= 2.9167 customers

Mean waiting time


Wq = Lq / = 2.0833/10 
= 0.2083 hours, or 12.5 minutes

Mean time in system
W = Wq + 1/
= 0.2083 + 1/12 
= 0.2917 hours, or 17.5 minutes

Again, the mean number of customers in the system is equal to the mean in service (0.8333) plus the mean waiting (2.0833).  Also, the mean time in the system is equal to the mean time of service (5 minutes) plus the mean waiting time (12.5 minutes).  This system involves lower levels of variance, with only arrivals exponentially distributed.  The average waiting time and average number of customers waiting have been reduced by one half relative to the M/M/1 model.  The probability of waiting is identical to that of the M/M/1 model, because the average arrival rates and service rates would be the same.

(M/GS/1):FCFS/(/( Model
This model assumes exponentially distributed arrival rates and general service times (described by mean and standard deviation), with one server.  The conventional assumption of first-come, first-served priority is made, along with an infinite maximum waiting line and an infinite calling population.  The formulas for the standard queuing measures for this set of assumptions is:

Inputs

Mean time between arrivals

1/ = 1/10 hours = 6 minutes

Mean service time


1/ =1/12 hours = 5 minutes

Service time standard deviation
    = 1/60 hours = 1 minute

Outputs
Average utilization


    =  = 10/12 = 0.8333

Empty system probability

P0 = 1 -  = 1 – 0.8333 = 0.1667

Probability of n units in system
Pn = n(1 - )


P1 = (0.8333)1(1-0.8333) = 0.1389






P2 = (0.8333)2(1-0.8333) = 0.1157






P3 = (0.8333)3(1-0.8333) = 0.0965

Mean queue length


Lq = (2)/[2(1 - )] 

Lq = [(10)2 ( (1/60)2 + (0.8333)2] /[2(1 – 0.8333)] = 2.1667 customers

Mean system length


L = Lq +   = 2.1667 + 0.8333 

= 3 customers

Mean waiting time


Wq = Lq /  = 2.1667/10 
= 0.2167 hours, or 13 minutes

Mean time in system


W = Wq + 1/
= 0.2167 + 1/12 
= 0.3 hours, or 18 minutes

Comparison with the M/M/1 and M/D/1 models indicates that the low variance (standard deviation) of this model yielded performance very close to (but just a bit more waiting than) the constant service time model.  It is true that as the variance increases, the more waiting that will occur.  The probability of waiting here is identical to the M/M/1 and M/D/1 models.

(M/M/s):FCFS/(/( Model

This model assumes exponentially distributed arrival rates and service times, with multiple servers.  The conventional assumption of first-come, first-served priority is made, along with an infinite maximum waiting line and an infinite calling population.  The formulas for the standard queuing measures for this set of assumptions is:

Inputs

Mean time between arrivals

1/ = 1/10 hours = 6 minutes

Mean service time


1/ =1/12 hours = 5 minutes

Number of servers


   s = 2

Outputs
Average utilization


    = s = 10/(2 (12) = 0.4167

Empty system probability
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= 1/(1 + 0.8333 + 0.83332/[2(1 – 0.41667)] 
= 1/(1 + 0.8333 + 0.5952) = 0.4118

Probability of n units in system
if n ( s, Pn = P0 ( (n/n!

   P1 = (0.4118) ( (10/12)1 /1 = 0.3431




   P2 = (0.4118) ( (10/12)2 /2 = 0.1430






If n > s, Pn = P0 ( (n/(s!sn-s)




   P3 = (0.4118) ( (10/12)3 /(2 ( 2(3-2))= 

0.0596
Mean queue length
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Lq = [0.4118 ( (0.8333)2 ( 0.4167] / [2(1 – 0.4167)2] = 0.1751 customers

Mean system length


L = Lq +  
= 0.1751 + 0.8333 
= 1.0084 customers

Mean waiting time


Wq = Lq /   = 0.1751 / 10
 = 0.0175 hours, or 1.05 minutes

Mean time in system


W = Wq + /
= 0.1751 + 1/12 = 0.1008 
hours, or 6.05 minutes

This system radically reduces the waiting line, at the cost of doubling service capacity (in the configuration of two parallel servers).  Waiting has practically disappeared, and would now only occur when there were three or more customers in the system, or 1 – 0.4118 – 0.3431 – 0.1430, or a probability of 0.1021.

(M/M/1):FCFS/K/( Model

This model differs from the M/M/1 model in that a finite waiting line is imposed.  It assumes exponentially distributed arrival rates and exponentially distributed service times, with one server.  The conventional assumption of first-come, first-served priority is made, along with an infinite calling population.  The formulas for the standard queuing measures for this set of assumptions is:

Inputs

Mean time between arrivals

1/ = 1/10 hours = 6 minutes

Mean service time


1/ =1/12 hours = 5 minutes

Maximum number in the system
K = 3

Outputs
Average utilization


 =  = 10/12 = 0.8333

Empty system probability

P0 = (1 - K+1) 
     = (1 – 0.8333)/(1 – 0.83334) = 0.3219

Probability of n units in system
Pn = n ( P0  

P1 = (0.8333)1(0.3219) = 0.2683






P2 = (0.8333)2(0.3219) = 0.2235






P3 = (0.8333)3(0.3219) = 0.1863

Mean system length
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Mean waiting time


Wq = Lq / (PK)


= 0.5961/[10(1-0.1863)] 
= 0.0733 hours, or 4.40 minutes

Mean time in system


W = L / (PK)


= 1.2742/[10(1 – 0.1863)] 
= 0.1566 hours, or 9.40 minutes

By capping the maximum number waiting, in effect the number of arrivals is reduced, thus radically reducing the waiting line length and time.  However, there is much less work done, as there will be fewer customers served.  The smaller K is, the more impact.

(M/M/s):FCFS/K/( Model

This model adds the feature of multiple servers to the last model.

Inputs

Mean time between arrivals

1/ = 1/10 hours = 6 minutes

Mean service time


1/ =1/12 hours = 5 minutes

Number of servers


s = 2

s ( K
Maximum number in the system
K = 3

Outputs
Average utilization


 = n = 10/(2 (12) = 0.4167

Probability of n units in system
For n ( s, Pn = [()n /n!] ( P0

P1 = [(0.8333)1/1] ( P0





P2 = [(0.8333)2/2] ( P0






For s < n ( K
Pn = [()n /(s!sn-s)] ( P0




P3 = [(0.8333)3/(2(2)] ( P0

P0 + P1 + P2 + P3 = 1.0





P0 + 0.8333 P0 + 0.3472 P0 + 0.1447 P0 = 1

P0 = 0.4301
P1 = 0.3584
P2 = 0.1493
P3 = 0.0622

Mean system length
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L = 0 + 1( 0.3584 + 2 ( 0.1493 + 3 ( 
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Mean queue length
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Lq = 1 ( 0.0622 = 0.0622 customers

Mean waiting time


Wq = Lq / [(PK)]


= 0.0622/[10(1 – 0.0622)] = 0.0066 hours, 

or 0.40 minutes

Mean time in system


W = L / [(PK)]

= 0.8437/[(10(1 – 0.0622)] = 0.0900 hours, 

or 5.40 minutes

As with the one server model, capping the maximum number waiting reduces the effective number of arrivals.  With multiple servers, there is radical reduction in the waiting line length and time.  The smaller K is, the more impact.

SUMMARY
Waiting line models are important conceptually in considering service operations.  The performance of these systems when probabilistic arrival and/or service distributions are present is usually quite counterintuitive.  Waiting line models provide a means to more accurately estimate the impact of changes to various service systems, especially when arrival patterns are determined by customer behavior, leading to arrival patterns and service patterns following various distributions.

This chapter demonstrated some of the more conventional types of waiting line systems.  Formulas exist for specific types of waiting line situations.  Real applications involve a great deal of complexity, often stringing a series of waiting line systems together.  Therefore, solution of waiting line problems is usually accomplished through simulation.

KEY TERMS
Arrival:  component in a waiting line system representing the appearance of work to be accomplished

Balking:  customer arrival pattern in a waiting line system where if the line exceeds a certain level, the customer departs the system prior to receiving service

Calling population: the set of all possible arrival entities

Distribution: statistical pattern enabling identification of probabilities

FIFO: first-in, first-out priority rule commonly used to select the next work

Queue discipline: the rules used to select the next work for a waiting line system

Service facility: the component of a waiting line system that performs work

Steady state: waiting line system performance at the stage when initial condition biases have been eliminated

Transient state: behavior of a waiting line system during the period when the initial condition bias still affects system performance measures

Waiting line: the queue of work that has arrived but which the system has been unable to begin service for

PROBLEMS
1.
Many business operations face uneven waiting lines.  How do grocery stores deal with fluctuating waiting lines?  How do banks deal with fluctuating waiting lines at teller windows?

2.
Give an example of a last-in, first-out queue discipline.

3.
What is the effect of scheduling arrivals (such as barber appointments) on a waiting line?

4.
How does customer impatience affect waiting lines?

5.
In an operation involving waiting lines, what happens when the arrival rate exceeds the service rate?

6.
What can be done to reestablish a stable operation if the arrival rate exceeds the service rate?

7.
Why will limited queue lines reach a steady state even when the arrival rate exceeds the service rate?

8.
Why will models with limited calling populations reach a steady state even though the arrival rate may exceed the service rate?
9.
Sal Maglie has operated a small barber shop in Poughkeepsie for a number of years.  Sal has experienced a wide variety of business conditions over that time.  With the development of his business, conditions have changed a great deal.  Sal has kept meticulous records of operations over the years.  There have been distinct changes in the distribution of customer arrivals as well as the time Sal takes to give a haircut.  When Sal was learning to cut hair, the rate of service varied a lot.  He averaged 30 minutes per haircut, distributed exponentially.  About one customer per hour arrived in a random manner, risking his head to Sal's care.


Calculate the basic parameters of this system 
(P0, P1, P2, L, Lq, W, Wq, ρ).
10.
A towing company operates a large fleet of trucks.  These trucks have averaged one call for mechanical service every 4 hours.  Trucks generate revenue at the rate of $20 per hour.  The mechanic, Thumbs Swenson, costs the company $12 per hour in wages, fringes, and equipment.  Thumbs was found to average 20 minutes on a truck without help from the truck driver (2 hours per truck with the truck driver's help).  Assuming an M/M/1:FCFS/(/( model:


a.  What is the probability of 0, 1, or 2 trucks in need of repair at any one 

      time?


b.  What is the average number of trucks requiring repair at any one time?


c.  What is the average time a truck is out of service after breaking down?


d.  What is the average amount of time a truck waits for Thumbs?


e.  On the average, how many trucks are idle while waiting for Thumbs?
11.
As the trucks got older, the wrecking company discussed in problem 10 found that the rate of mechanical failures increased.  In the second year of operation, Ace suffered a truck breakdown rate of one truck per hour.  The increased severity of the mechanical failures also required additional mechanic time, and the average repair time per truck was now 30 minutes.

a.  What is the probability of 0, 1, or 2 trucks in need of repair?


b.  What is the average number of trucks that are inoperative?


c.  What is the average time a truck is inoperative?


d.  What is the average number of trucks waiting for the mechanic?


e.  What is the average idle time for a truck that is waiting for a mechanic?


f.  What is the cost to Ace in lost revenue by not having enough 

     mechanics?


g.  Would it pay to add a mechanic?

12.
Thelma’s Diner features special-order hamburgers.  Customers arrive at the rate of 5 per hour following the exponential distribution.  Service is normally distributed and the appropriate queuing model is (M/GS/1:FCFS/(/().  Determine the number of people who will be waiting in line, the average time they have to wait, and the probabilities of 0, 1, 2, and more than 2 waiting customers, given the following different service rates (each negative exponentially distributed).
a.  A service rate of 5, standard deviation 0.0333 per hour ( = 12 minutes, 
     std 2 minutes), normally distributed.

b.  A service rate of 6, standard deviation 0.0333 per hour ( = 10 minutes, 
     std 2 minutes), normally distributed.

c.  A service rate of 7.5, standard deviation 0.0333 per hour ( = 8 minutes, 
     std 2 minutes), normally distributed.
13.
A Car Wash uses a fixed-time assembly line requiring 3 minutes to wash a car, including drying time.  If customers arrive in a random manner at the average rate of 8 per hour, calculate the expected number of cars in the system and the average time each customer can expect to spend at the car wash.  (M/D/1:FCFS/(/()
14.
The Fifth National Bank of Bryan is expanding.  To justify a second teller, the vice-president of finance has requested a series of waiting line analyses.  The initial phase involves determining current system properties.  At present, customers arrive following the exponential distribution at the rate of about 10 per hour.  The teller spends exactly 5 minutes with each customer.  Define the appropriate model, stating any assumptions you have made, and determine the current operating parameters.
15.
According to the marketing staff of the FNB in problem 14, customer service times could be more accurately described by a random (negative exponential) distribution.  What effect does this change in assumptions have on the current system parameters?
16.
The board of directors of FNB (problems 15 and 16) has concluded that a second teller is needed.  Using the exponential arrival distribution, and two servers:

a.  Determine the probability of an arriving customer finding five people 

      already in the queue (thus constituting six customers in the system: One 

       being served, four in line, plus the new arrival).


b.  Determine the same probability for a two-teller system.


c.  Compare the empty-system probabilities for the one- and two-teller 

     situations.


d.  What are the server utilization factors?


e.  What is the mean queue length for each system?
17.
A city traffic control facility is used to collect traffic fines.  The mayor of the city is very concerned that citizens be treated well by city officials.  Those who get traffic citations vote.  The mayor has received complaints that the office for paying citations has experienced long waiting lines, and the mayor wants an analysis of the system.  The system consists of a clerk who processes each ticket.  Looking up data and cross-referencing results in a distribution of service time that is exponentially distributed with a mean capacity of 10 per hour.  People come into the office during peak periods (10 a.m. through 3 p.m.) at the rate of 6 per hour.  If the line is longer than 5 people, citizens tend to leave.  Analyze the expected performance of the current system. (M/M/1:FIFO/5/()

a.  Identify the probability that the clerk is idle


b.  Identify the average number of citizens waiting


c.  Identify the average waiting time per citizen
18.
Analyze the data in problem 17, only using two clerks instead of 1. 

a.  Identify the probability that either clerk is idle


b.  Identify the probability that both clerks are idle.


c.  Identify the average number of citizens waiting


d.  Identify the average waiting time per citizen

� Kendall, D.G. Stochastic processes occurring in the theory of queues and their analysis by means of the imbedded Markov chain, The Annals of Mathematical Statistics 24, 1953, 338-354.
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