Useful Formulas

Measures of Risk

Variance of returns: $\sigma^2 = \sum_{s} p(s)[r(s) - E(r)]^2$

Standard deviation: $\sigma = \sqrt{\sigma^2}$

Covariance between

 $Cov(r_i, r_j) = \sum p(s)[r_i(s) - E(r_i)] [r_j(s) - E(r_j)]$ returns:

Beta of security *i*: $\beta_i = \frac{\text{Cov}(r_i, r_M)}{\text{Var}(r_M)}$

Portfolio Theory

Expected rate of return on a portfolio

 $E(r_p) = \sum_{i=1}^{n} w_i E(r_i)$ with weights w_i in each security:

Variance of portfolio rate of return: $\sigma_p^2 = \sum_{i=1}^n \sum_{j=1}^n w_j w_i \operatorname{Cov}(r_i, r_j)$

Market Equilibrium

The security market line: $E(r_i) = r_f + \beta_i [E(r_M) - r_f]$

Multifactor security market line (in excess returns): $E(R_i) = \beta_{iM} E(R_M) + \sum_{k=1}^{K} E(R_k)$

Fixed-Income Analysis

Present value of \$1:

Discrete period compounding: $PV = 1/(1 + r)^T$

Continuous compounding: $PV = e^{-rT}$

Forward rate of interest for period *T*: $f_T = \frac{(1 + y_T)^T}{(1 + y_{T-1})^{T-1}} - 1$

Real interest rate: $rr = \frac{1+rn}{1+i} - 1$

where *rn* is the nominal interest rate and *i* is the inflation rate

Duration of a security: $D = \sum_{t=1}^{T} t \times \frac{CF_t}{(1+y)^t}$ /Price

Modified duration: $D^* = D/(1 + y)$

Equity Analysis

Constant growth dividend discount model: $V_0 = \frac{D_1}{k - g}$ Sustainable growth rate of dividends: $g = ROE \times b$

Price/earnings multiple: $P/E = \frac{1-b}{k - \text{ROE} \times b}$

 $ROE = (1 - Tax \ rate) \left| ROA + (ROA - Interest \ rate) \frac{Debt}{Equity} \right|$

Derivative Assets

Put-call parity: $P = C - S_0 + PV(X + dividends)$

Black-Scholes formula: $C = Se^{-\delta T}N(d_1) - Xe^{-rT}N(d_2)$ (with constant dividend yield) $d_1 = \frac{\ln(S/X) + (r - \delta + \sigma^2/2)T}{\sigma\sqrt{T}}$

 $d_2 = d_1 - \sigma \sqrt{T}$

Spot-futures parity: $F_0 = S_0(1 + r - d)^T$

Interest rate parity: $F_0 = E_0 \left(\frac{1 + r_{\text{US}}}{1 + r_{\text{foreign}}} \right)^T$

Performance Evaluation

Sharpe ratio: $S_p = \frac{\overline{r}_p - \overline{r}_f}{\sigma_n}$

Treynor's measure: $T_p = \frac{\overline{r}_p - \overline{r}_f}{\beta_p}$

Jensen's alpha: $\alpha_n = \overline{r}_n - [\overline{r}_f + \beta_n(\overline{r}_M - \overline{r}_f)]$

Geometric average return: $r_G = [(1 + r_1)(1 + r_2) \dots (1 + r_T)]^{1/T} - 1$